Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Collection of Environmental Samples
- Piezometer 5 (PZ5), located downstream of the landfill in an external area overlooking the southwest side of the settlement;
- Piezometer 6 (PZ6), located downstream of the landfill in an external area overlooking the southern side of the settlement;
- Leachate extraction wells 1 and 2 (S1 + S2), located within the settlement in the no-longer-active southern part;
- Leachate extraction wells 3 and 4 (S3 + S4), located within the settlement in the currently active northern part;
- Rio Filippa Monte, with water collected directly from the Rio Filippa in its upstream portion on the northwest side of the settlement;
- Rio Filippa Valley, with water collected directly from the Rio Filippa in its downstream portion on the southeast side of the settlement.
- The locations of the sampling points in relation to the orographic characteristics of the settlement are shown in Figure 1.
- δ 16O/18O.
- 2H
- 3H
2.2. Measuring Unit
- 2H/1H = 155.76 ± 0.1 ppm (ratio 1/6420);
- 16O/18O = 2005.20 ± 0.43 ppm (ratio 1/499).
2.3. Comparison with Rainfall Data
2.4. Comparison with Waste Delivery Flows
3. Results
3.1. Radioisotope Analysis
3.2. Comparison with Rainfall Data
3.3. Comparison with Waste Delivery Flows
4. Discussion
4.1. Results Analysis and Interpretation
4.2. Comparison with the Scientific Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Filippa, Detritus Journal. 2008. Available online: https://detritusjournal.com/la-filippa/ (accessed on 3 November 2023).
- Rezania, S.; Oryani, B.; Nasrollahi, V.R.; Darajeh, N.; Lotfi Ghahroud, M.; Mehranzamir, K. Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. Processes 2023, 11, 2566. [Google Scholar] [CrossRef]
- Szpilko, D.; de la Torre Gallegos, A.; Jimenez Naharro, F.; Rzepka, A.; Remiszewska, A. Waste Management in the Smart City: Current Practices and Future Directions. Resources 2023, 12, 115. [Google Scholar] [CrossRef]
- Engelbrecht, R. Environmental radioactivity monitoring. In Handbook of Radioactivity Analysis: Volume 2; Academic Press: Cambridge, MA, USA, 2020; pp. 1–40. [Google Scholar] [CrossRef]
- Belcher, D.M. The Stable Isotopic Variations and the Hydrogeology of the Coronet Peak Skifield, Queenstown. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2009. [Google Scholar] [CrossRef]
- Sankoh, A.A.; Derkyi, N.S.A.; Frazer-williams, R.A.D.; Laar, C.; Kamara, I. A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries. Water 2022, 14, 35. [Google Scholar] [CrossRef]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total Environ. 2021, 769, 144581. [Google Scholar] [CrossRef] [PubMed]
- Essien, J.P.; Ikpe, D.I.; Inam, E.D.; Okon, A.O.; Ebong, G.A.; Benson, N.U. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS ONE 2022, 17, e0263279. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Faisal, K.; Shaker, A.; Yan, W.Y. Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images. Waste Manag. Res. 2019, 37, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Fao.org 2003. FAO.org. Available online: https://www.fao.org/faolex/results/details/en/c/LEXFAOC038107/ (accessed on 3 November 2023).
- Sappa, G.; Barbieri, M.; Andrei, F. Isotope-Based Early-Warning Model for Monitoring Groundwater–Leachate Contamination Phenomena: First Quantitative Assessments. Water 2023, 15, 2646. [Google Scholar] [CrossRef]
- Tazioli, A.; Fronzi, D.; Mammoliti, E. Tritium as a Tracer of Leachate Contamination in Groundwater: A Brief Review of Tritium Anomalies Method. Hydrology 2022, 9, 75. [Google Scholar] [CrossRef]
- Peeters, K.; Zuliani, T.; Ščančar, J.; Milačič, R. The use of isotopically enriched tin tracers to follow the transformation of organotin compounds in landfill leachate. Water Res. 2014, 53, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Mazzucco, W.; Costantino, C.; Restivo, V.; Alba, D.; Marotta, C.; Tavormina, E.; Cernigliaro, A.; Macaluso, M.; Cusimano, R.; Grammauta, R.; et al. The Management of Health Hazards Related to Municipal Solid Waste on Fire in Europe: An Environmental Justice Issue? Int. J. Environ. Res. Public Health 2020, 17, 6617. [Google Scholar] [CrossRef] [PubMed]
- Borisova, D.; Kostadinova, G.; Petkov, G.; Dospatliev, L.; Ivanova, M.; Dermendzhieva, D.; Beev, G. Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model. Atmosphere 2023, 14, 1089. [Google Scholar] [CrossRef]
- Damgaard, A.; Manfredi, S.; Merrild, H.; Stensøe, S.; Christensen, T.H. LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag. 2011, 31, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed]
- Abalansa, S.; El Mahrad, B.; Icely, J.; Newton, A. Electronic Waste, an Environmental Problem Exported to Developing Countries: The GOOD, the BAD and the UGLY. Sustainability 2021, 13, 5302. [Google Scholar] [CrossRef]
- ISO 11704; Water Quality—Gross Alpha and Gross Beta Activity—Test Method Using Liquid Scintillation Counting. ISO: Geneva, Switzerland, 2018; ISO 11704 International Standard Second edition 2018-11.
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017; ISO/IEC 17025 International Standard.
- ISO 13166; Water Quality—Uranium Isotopes—Test Method Using Alpha-Spectrometry. ISO: Geneva, Switzerland, 2020; ISO 13166 International Standard.
- ISO 13164-4:2023; Water Quality—Radon-222—Part 4: Test Method Using Two-Phase Liquid Scintillation Counting. ISO: Geneva, Switzerland, 2023; ISO 13164-4:2023.
- ISO 9698:2019; Water Quality—Tritium—Test Method Using Liquid Scintillation Counting. ISO: Geneva, Switzerland, 2019; ISO 9698:2019 Published (Edition 3, 2019).
- Andrei, F.; Barbieri, M.; Sappa, G. Application of 2H and 18O Isotopes for Tracing Municipal Solid Waste Landfill Contamination of Groundwater: Two Italian Case Histories. Water 2021, 13, 1065. [Google Scholar] [CrossRef]
- Siegel, D.I.; Chanton, J.R.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water. Glob. Biogeochem. Cycles. 2001, 15, 967–975. [Google Scholar] [CrossRef]
- Ramaroson, V.; Rakotomalala, C.U.; Rajaobelison, J.; Fareze, L.P.; Razafitsalama, F.A.; Rasolofonirina, M. Tritium as tracer of groundwater pollution extension: Case study of Andralanitra landfill site, Antananarivo–Madagascar. Appl. Water Sci. 2018, 8, 57. [Google Scholar] [CrossRef]
- Raco, B.; Battaglini, R.; Dotsika, E. New isotopic fractionation factor limits and chemical characterization of landfill gas. J. Geochem. Eplor. 2014, 145, 40–50. [Google Scholar] [CrossRef]
ID | Bq/l | % VSMOW ** | % VSMOW ** | Sampling Period |
---|---|---|---|---|
3H—TRIZIO § | δ18O/16O * | 2H/1H * | February: First Sampling | |
PZ5 | <4.2 | −8.15 ± 0.06 | −53.3 ± 0.4 | |
PZ6 | <4.2 | −8.04 ± 0.02 | −53.8 ± 0.02 | |
S1 + S2 | 30 ± 5.0 | −8.11 ± 0.10 | −52.2 ± 0.2 | |
S3 + S4 | 152 ± 7.0 | −6.57 ± 0.06 | −30.7 + 0.4 | |
Rio Monte | <4.8 | −8.02 ± 0.04 | −52.2 ± 0.2 | |
Rio Valle | <4.8 | −7.99 ± 0.08 | −52.3 ± 0.6 | |
PZ5 | <4.2 | −7.33 ± 0.04 | −54.8 ± 1.8 | May: Second Sampling |
PZ6 | <4.2 | −7.54 ± 0.75 | −54.5 ± 1.7 | |
S1 + S2 | 30.6 ± 6.1 | −7.03 ± 0.33 | −50.1 ± 1.5 | |
S3 + S4 | 224 ± 3.7 | −5.61 ± 4.32 | −27.6 ± 0.8 | |
Rio Valle | <4.8 | −7.78 ± 1.66 | −52.9 ± 1.7 | |
Rio Monte | NP | NP | NP |
ID | Bq/l | % VSMOW ** | % VSMOW ** | Sampling Period |
---|---|---|---|---|
3H—TRIZIO § | δ18O/16O * | 2H/1H * | August: Third Sampling | |
PZ5 | <4.2 | −7.73 ± 0.41 | −55.8 ± 3.5 | |
PZ6 | <4.2 | −8.86 ± 0.48 | −50.5 ± 1.7 | |
S1 + S2 | 22.3 ± 5.10 | −7.01 ± 0.51 | −42.9 ± 4.5 | |
S3 + S4 | 228 ± 31.0 | −5.52 ± 1.41 | −23.7 ± 2.0 | |
Rio Monte | NP | NP | NP | |
Rio Valle | NP | NP | NP | |
PZ5 | <4.2 | −7.39 ± 0.33 | −50.6 ± 0.50 | November: Fourth Sampling |
PZ6 | <4.2 | −7.18 ± 0.51 | −50.2 ± 1.00 | |
S1 + S2 | 36.4 ± 7.10 | −6.89 ± 0.13 | −40.1 ± 0.40 | |
S3 + S4 | 267 ± 35.0 | −6.28 ± 0.41 | −23.8 ± 0.30 | |
Rio Monte | NP | NP | NP | |
Rio Valle | NP | NP | NP |
Month | Monthly Rain (mm) | Total Leachate Extracted S1 + S2 (MC) Phase 1 Volume | Total Leachate Extracted S3 + S4 (MC) Phase 2 Volume | Delivery Quantity (Tons) |
---|---|---|---|---|
February | 15.00 | 177 | 209 | 8093 |
May | 30.20 | 197 | 415 | 11,925 |
August | 34.80 | 175 | 280 | 4298 |
November | 45.20 | 178 | 381 | 14,445 |
Site | Geological Structure | Detection Methods | Maximum Distance of Radioisotope Detection Outside the Landfill | Reference |
---|---|---|---|---|
Sardinia island, Italy | Sand and alluvial deposits | H2, O18 | Not analyzed | [24] |
Umbria region, Central Italy | Arenaceous, conglomerate sand, alluvial sand, silt | H2, O18 | Not analyzed | [24] |
Antananarivo, Madagascar | Clay, peat, kaolin sand, 1 m thick | H3 | 700 m | [26] |
Ligurian region, North West Italy | Compact marl, >50 m thick | H3, O18 detection | 0 m | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzotti, A.; Pulliero, A.; Khalid, Z.; Ferrante, O.; Aquilia, E.; Sciacca, S.; Oliveri Conti, G.; Ferrante, M. Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy. Int. J. Environ. Res. Public Health 2025, 22, 528. https://doi.org/10.3390/ijerph22040528
Izzotti A, Pulliero A, Khalid Z, Ferrante O, Aquilia E, Sciacca S, Oliveri Conti G, Ferrante M. Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy. International Journal of Environmental Research and Public Health. 2025; 22(4):528. https://doi.org/10.3390/ijerph22040528
Chicago/Turabian StyleIzzotti, A., A. Pulliero, Z. Khalid, O. Ferrante, E. Aquilia, S. Sciacca, G. Oliveri Conti, and M. Ferrante. 2025. "Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy" International Journal of Environmental Research and Public Health 22, no. 4: 528. https://doi.org/10.3390/ijerph22040528
APA StyleIzzotti, A., Pulliero, A., Khalid, Z., Ferrante, O., Aquilia, E., Sciacca, S., Oliveri Conti, G., & Ferrante, M. (2025). Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy. International Journal of Environmental Research and Public Health, 22(4), 528. https://doi.org/10.3390/ijerph22040528