Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = water loss effect of slurry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2566 KiB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 90
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

17 pages, 2674 KiB  
Article
Effect of Additives on Properties of Phase-Change Solidified Plugging Materials
by Hui Zhang, Yongchao Feng, Gege Teng, Jianjun Ni and Jiping She
Processes 2025, 13(7), 2160; https://doi.org/10.3390/pr13072160 - 7 Jul 2025
Viewed by 345
Abstract
The phase-change solidification plugging material (PSPM), a novel type of plugging material for severe fluid loss in demanding formations, necessitates performance enhancement and deeper insight into its hydration mechanism. In this paper, with a foundational formula comprising a nucleating agent (S1), activator (M1), [...] Read more.
The phase-change solidification plugging material (PSPM), a novel type of plugging material for severe fluid loss in demanding formations, necessitates performance enhancement and deeper insight into its hydration mechanism. In this paper, with a foundational formula comprising a nucleating agent (S1), activator (M1), and deionized water, a comprehensive investigation was conducted. This involved basic performance testing, including fluidity, setting or thickening time, hydration heat analysis, SEM and XRD for hydration products, and conduction of kinetics model. The focus was on analyzing the effects of three additives on system properties, hydration process, and hydration products, leading to the inference of the hydration mechanism of PSPM. It was found that the structure additives (SA) and flow pattern regulator (6301) did not partake in the hydration reaction, focusing instead on enhancing structure strength and maintaining slurry stability, respectively. Conversely, the phase regulator (BA) actively engaged in the hydration process, transitioning the system from the KG-N-D to the KG-D model, thereby extending the thickening time without altering the final hydration products. The morphology and composition of the products confirmed that SI and M1 dissolve in the aqueous solution and progressively form Mg(OH)2 and MgSO4·zMg(OH)2·xH2O. The slurry gradually solidifies, ultimately resulting in the formation of a high-strength consolidated body, thereby achieving the objective of lost circulation control. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 4548 KiB  
Article
Experimental Study on the Effect of Hydroxyethyl Cellulose on the Friction-Reducing Performance of Thixotropic Slurries in Pipe Jacking Construction
by Xiao Yu, Yajun Cao, Fubing Tian, Chaowei Chen, Chao Chen, Wei Wang and Yaru Jiang
Materials 2025, 18(13), 3155; https://doi.org/10.3390/ma18133155 - 3 Jul 2025
Viewed by 342
Abstract
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments [...] Read more.
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments optimizing bentonite, carboxymethyl cellulose (CMC), and sodium carbonate (Na2CO3) ratios established 10 wt.% bentonite, 0.3 wt.% CMC, and 0.4 wt.% Na2CO3 as the optimal formulation. Subsequently, to address performance limitations in challenging conditions, this study introduces hydroxyethyl cellulose (HEC) as a novel additive, with potential advantages under high-salinity and variable pH conditions. Comparative experiments demonstrated that HEC, as a non-ionic water-soluble cellulose, not only significantly increases FV and reduces FL while maintaining SG, FCT, and WSR within acceptable thresholds, but also exhibits superior pH stability compared to CMC. Based on the aforementioned results, interface friction characterization tests were conducted on representative slurry formulations with varying FVs, quantitatively demonstrating the viscosity-dependent friction-reduction performance. Complementary scanning electron microscopy (SEM) analysis of three distinct thixotropic slurry compositions systematically revealed their microstructural characteristics, with microscopic evidence confirming the excellent compatibility between HEC and thixotropic slurry matrix. These findings highlight HEC’s potential as an effective alternative in pipe jacking, particularly in demanding geological environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 3962 KiB  
Article
Preparation and Performance Evaluation of High-Temperature Polymer Nano-Plugging Agents for Water-Based Drilling Fluids Systems Applicable to Unconventional Reservoirs
by Lei Yao, Xiaohu Quan, Yongjie Zhang, Shengming Huang, Qi Feng and Xin Zhang
Polymers 2025, 17(5), 588; https://doi.org/10.3390/polym17050588 - 23 Feb 2025
Cited by 3 | Viewed by 999
Abstract
To address the challenges of micro-fracture development in shale formations, frequent wellbore instability, and the limited plugging capability of water-based drilling fluids in unconventional reservoirs, a nano-plugging agent (NPA) was synthesized using emulsion polymerization. The synthesized NPA was characterized through thermogravimetric analysis (TGA) [...] Read more.
To address the challenges of micro-fracture development in shale formations, frequent wellbore instability, and the limited plugging capability of water-based drilling fluids in unconventional reservoirs, a nano-plugging agent (NPA) was synthesized using emulsion polymerization. The synthesized NPA was characterized through thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), revealing excellent high-temperature stability and a spherical or sub-spherical morphology, with particle diameters ranging from approximately 20 to 50 nm. The rheological, filtration, and plugging properties of NPA were systematically evaluated, and its sealing mechanism was analyzed. The results demonstrate that at a test temperature of 180 °C, the optimal NPA concentration in the drilling fluid base slurry is 1.5%, achieving a 60.5% reduction in HTHP (high-temperature high-pressure) sand disc filtration loss. Additionally, the API filtration loss and HTHP filtration loss reduction rates reached 58.1% and 50.3%, respectively, highlighting the remarkable filtration loss reduction and plugging efficiency of NPA under high-temperature conditions. After NPA treatment, the specific surface area and pore volume of shale cuttings decreased to 9.348 m2/g and 0.035 cm3/g, respectively, indicating effective surface plugging. The mechanism analysis suggests that due to its nanoscale size, NPA can penetrate deep into micro-pores and fractures within the shale, achieving deep-layer plugging. Furthermore, NPA forms a physical plugging barrier on the shale surface, effectively suppressing shale hydration and swelling. This study provides valuable insights and guidance for addressing wellbore instability and the insufficient plugging performance of drilling fluids in unconventional reservoir drilling operations. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 3rd Edition)
Show Figures

Figure 1

24 pages, 5166 KiB  
Article
Flocculation Mechanism and Microscopic Statics Analysis of Polyacrylamide Gel in Underwater Cement Slurry
by Hao Lu, Bo Dai, Chunhe Li, Hua Wei and Jinhui Wang
Gels 2025, 11(2), 99; https://doi.org/10.3390/gels11020099 - 1 Feb 2025
Cited by 1 | Viewed by 931
Abstract
Zeta potential testing, Fourier infrared spectroscopy, and total organic carbon analysis were employed in this manuscript to explore the flocculation mechanism of polyacrylamide (PAM) on slurry with a high content of polycarboxylate ether (PCE). Through the combination of assessments of chemical bond shifts, [...] Read more.
Zeta potential testing, Fourier infrared spectroscopy, and total organic carbon analysis were employed in this manuscript to explore the flocculation mechanism of polyacrylamide (PAM) on slurry with a high content of polycarboxylate ether (PCE). Through the combination of assessments of chemical bond shifts, adsorption indicators, and intrinsic viscosity of high-molecular-weight polymer systems, the microscale flocculation mechanisms of different PAM dosages in cement suspensions were elucidated, showcasing stages of “adsorption–lubrication–entanglement”. Initially (PAM < 0.3%), with PAM introduction, the polymer primarily underwent adsorption interactions, including hydrogen bonding between the ester group, amine group, and water molecules; chelation between the ester group and Ca2+ and Al3+ on the cement surface; and bridging between PAM’s long-chain structure and cement particles. As the PAM content increased, the cement particles’ adsorption capacity saturated (PAM < 0.67%). The entropy loss of polymer conformation could not be offset by adsorption energy, leading to its exclusion from the interface and depletion attractive forces. Slurry movement shifted from inter-particle motion to high-molecular-weight polymer sliding in interstitial fluid, forming a lubrication effect. With further PAM content no less than 0.67%, the polymer solution reached a critical entanglement concentration, and the contact of the rotation radius of the long-chain molecules led to entanglement domination. By introducing bridging adsorption, depletion attraction, and entanglement forces, the cohesion of cement-based polymer suspensions was subsequently determined. The results showed a linear correlation between cohesion and PAM concentration raised to powers of 0.30, 1.0, and 0.75 at different interaction stages, and a multiscale validation from microscopic flocculation mechanisms to macroscopic performance was finally completed through a comparative analysis with macroscopic anti-washout performance. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

20 pages, 1940 KiB  
Article
Study on the Performance of Filters Under Biogas Slurry Drip Irrigation Systems
by Shuaijie Wang, Haitao Wang, Xuefeng Qiu, Jiandong Wang, Shuji Wang, Hang Wang and Tao Shen
Agriculture 2025, 15(1), 30; https://doi.org/10.3390/agriculture15010030 - 26 Dec 2024
Cited by 2 | Viewed by 899
Abstract
Filters are essential components for maintaining the stability of drip irrigation systems, effectively reducing the risk of clogging. However, when applied to slurry drip irrigation systems, the complexity of slurry water quality makes it unclear how different filter types and their combinations affect [...] Read more.
Filters are essential components for maintaining the stability of drip irrigation systems, effectively reducing the risk of clogging. However, when applied to slurry drip irrigation systems, the complexity of slurry water quality makes it unclear how different filter types and their combinations affect the hydraulic performance of the system. This study provides a comprehensive performance evaluation of two common filter types and their combinations, considering various flow rates and biogas slurry-to-water ratios under drip irrigation conditions. The results revealed the following key findings: (1) In the application of biogas slurry drip irrigation, an increase in the concentration or flow rate of the slurry significantly affects the hydraulic performance of the filter, increasing the risk of clogging and shortening the operational lifespan. Notably, the impact of changes in slurry concentration on the hydraulic performance of the filter is much greater than that of the flow rate. Compared to mesh filters, disk filters offer better hydraulic performance, with the contaminant capacity of disk filters being approximately three times that of mesh filters. (2) In biogas slurry drip irrigation, the filter combination generally outperforms single filters in terms of hydraulic performance and contaminant removal capacity. Due to the unique nature of the water source in biogas slurry, a selection process for filter combinations was conducted. It was found that when a disk filter is used as the pre-filter and a mesh filter as the post-filter, the overall rate of head loss change is the smallest, and the clogging uniformity is the least. (3) In the entropy weight-TOPSIS comprehensive evaluation, the filter’s operating time and contaminant capacity are key factors affecting its overall performance. From the perspective of improving the operational stability of the biogas slurry drip irrigation system, it is recommended to use a disk filter + mesh filter combination. This study conducts practical measurements on the hydraulic performance, contaminant removal capacity, filtration accuracy, and other indicators of commonly used mesh and disk filters, aiming to provide useful references for the practical application of biogas slurry drip irrigation filters. Full article
(This article belongs to the Special Issue Livestock Waste Sustainable Management and Applications)
Show Figures

Figure 1

15 pages, 4298 KiB  
Article
Slurry Transportation Characteristics of Potash Mine Cemented Paste Backfills via Loop Test Processing
by Rongzhen Jin, Xue Wang, Siqi Zhang, Huimin Huo, Jiajie Li and Wen Ni
Processes 2024, 12(12), 2929; https://doi.org/10.3390/pr12122929 - 21 Dec 2024
Cited by 4 | Viewed by 950
Abstract
This study evaluated the properties and processing of cemented paste backfills (CPBs) for potash mining through loop tests. The CPBs were made with steel slags as the binder, granulated potash tailings as the aggregate, and waste brine water as the liquid phase. The [...] Read more.
This study evaluated the properties and processing of cemented paste backfills (CPBs) for potash mining through loop tests. The CPBs were made with steel slags as the binder, granulated potash tailings as the aggregate, and waste brine water as the liquid phase. The effects of solid concentration and steel slag dosage on the transport and mechanical properties of CPBs were assessed. The loop test demonstrated that all CPB slurries performed well, exhibiting strong long-distance pipeline transport capabilities. The 28-day compressive strength of the backfills exceeded 1 MPa, meeting the design requirements for backfill strength. The key rheological parameters, including yield stress (τ0) and viscosity coefficient (η), were comprehensively and theoretically analyzed based on the variations in pressure loss per unit distance of the filling slurry measured during the loop test. The empirical formulas for CPB pressure loss, accounting for varying flow rates and pipeline diameters, were derived with an error margin under 2%. The response surface analysis showed that the affecting extents of factors on pressure loss in CPB slurry were ranked as follows: solid concentration > cementing agent content > flow rate. This study offered valuable guidance for the processing of potash mine backfill operations. Full article
(This article belongs to the Special Issue Advanced Materials for Sustainable and Green Sample Preparation)
Show Figures

Figure 1

17 pages, 9202 KiB  
Review
Pipeline Transport Performance of Paste Backfill Slurry in Long-Distance Underground Backfilling: A Review
by Wei Wang, Bin Yu, Wenyuan Xu, Kai Yang, Yanying Yin and Mengyuan Li
Minerals 2024, 14(12), 1238; https://doi.org/10.3390/min14121238 - 5 Dec 2024
Cited by 2 | Viewed by 1455
Abstract
This paper reviews recent advancements in the pipeline transport performance of paste backfill slurry in long-distance underground backfilling operations, with a primary focus on applications in metal mines. Key aspects, including flow performance, energy consumption during transport, and operational stability, are discussed in [...] Read more.
This paper reviews recent advancements in the pipeline transport performance of paste backfill slurry in long-distance underground backfilling operations, with a primary focus on applications in metal mines. Key aspects, including flow performance, energy consumption during transport, and operational stability, are discussed in detail. Slurry concentration and rheological properties, including viscosity, yield stress, and flow behavior, as well as particle size distribution, are examined for their effects on transport efficiency. The relationship between these characteristics and pipeline resistance is also examined. Factors like pipeline orientation, configuration, diameter, length, elbow design, and elevation gradients are explored, demonstrating that careful design can optimize flow performance, reduce energy consumption, and minimize the risk of blockages and bursts. Additionally, the roles of commonly used additives, such as water reducers, foaming agents, antifreeze agents, and thickeners, are discussed in terms of their impact on slurry flowability, stability, and resistance losses. Optimal slurry regulation, strategic pipeline design, and effective additive utilization improve flow efficiency, extend service life, and reduce maintenance costs, thereby ensuring reliable backfill operations. Future research should focus on innovative pipeline designs, such as improving material selection and configuration to optimize flow stability and reduce energy consumption. Advanced additives, including thickeners and water reducers, could further enhance slurry flowability, reduce pipeline resistance, and improve system reliability. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials)
Show Figures

Figure 1

17 pages, 5641 KiB  
Article
Experimental Study on the Strength Characteristics of Cast-In-Situ Mortar Specimens in a Slurry Environment
by Zhijiang Yang, Yulu Chen, Tingting Luo, Tao Han, Chuanwei Jia, Tao Zhang and Weihao Yang
Appl. Sci. 2024, 14(23), 11225; https://doi.org/10.3390/app142311225 - 2 Dec 2024
Cited by 1 | Viewed by 813
Abstract
As coal resource development progresses deeper underground, the increasing depth of mine shafts poses significant challenges to the safety and stability of traditional shaft construction methods, further compounding operational difficulties. In this context, cast-in-situ concrete shaft walls in a slurry environment have emerged [...] Read more.
As coal resource development progresses deeper underground, the increasing depth of mine shafts poses significant challenges to the safety and stability of traditional shaft construction methods, further compounding operational difficulties. In this context, cast-in-situ concrete shaft walls in a slurry environment have emerged as an effective solution. The strength of these shaft walls is a crucial parameter for assessing their safety. To explore this, experiments were conducted on slurry preparation and mortar casting (used here as a substitute for concrete) under three different conditions: slurry environment, pure water environment, and dry environment. The cast specimens underwent compressive, tensile, shear, and microscopic observation tests to analyze the strength development patterns of the mortar specimens in these varied casting environments. The study yielded several key findings: As the casting environment becomes more complex, the strength of the mortar specimens gradually decreases. Specifically, specimens cast in a slurry environment exhibit strengths approximately 15% to 20% lower than those cast in a dry environment, although both environments show similar trends in strength development over time. Across all casting environments, the initial strength loss of the specimens is significant, while the rate of strength loss decreases in the later stages; the strength loss is minimal in specimens cast in a pure water environment and reaches its maximum in those cast in a slurry environment. Additionally, in specimens cast in a slurry environment, air void diameter tends to polarize, and the distribution of air void is denser compared to the other two environments. In conclusion, cast-in-situ mortar in a slurry environment exhibits the lowest strength and the greatest strength loss compared to specimens cast in dry and pure water environments. Nonetheless, the strength development trends over time remain similar across all conditions, providing theoretical and technical support for the construction of shaft walls in slurry environments. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

13 pages, 2568 KiB  
Article
Effect of Super Retarder on Recycled Water and Concrete Properties of Waste Slurry in Mixing Plant
by Jinyue Wang, Yanfeng Zuo, Lixiong Gao, Siqin Liu and Guang Yang
Appl. Sci. 2024, 14(22), 10392; https://doi.org/10.3390/app142210392 - 12 Nov 2024
Viewed by 1027
Abstract
A large amount of waste slurry water will be generated in the production process of concrete mixing plant, due to the complex composition of waste slurry water, if it is not handled in time when stored, serious coagulation will occur, which will accelerate [...] Read more.
A large amount of waste slurry water will be generated in the production process of concrete mixing plant, due to the complex composition of waste slurry water, if it is not handled in time when stored, serious coagulation will occur, which will accelerate the loss of equipment and reduce the utilization rate. In this paper, a super retarder suitable for waste slurry recycled water from concrete mixing plant was prepared using composite technology. The waste slurry recycled water mixed with super retarding agent was characterized by using microscopic testing means XRD, TG and DTG. The waste slurry recycled water mixed with super retarding agent was used to replace tap water in the production of concrete, and its effect on the workability and mechanical properties of concrete was investigated. It was found that the compounding of Butane 2-phospho-1,2,4-tricarboxylic acid (PBTCA) with Reclaimed water treatment agent (ACS) resulted in a setting time of 64 h for 10% concentration of recycled water, with optimal retarding effect. When PBTCA:ACS was 1:20, mixed at 1.5% of the mass of recycled water, the 1 h slump of concrete had no loss, the loss of extension was 15 mm, the 7 days compressive strength was increased by 3.5 MPa, and the 28 days compressive strength was increased by 3.0 MPa. The microscopic results showed that the use of ACS and PBTCA does not affect the type of cement hydration products, but only affects the the rate of hydration product generation. Full article
Show Figures

Figure 1

16 pages, 3267 KiB  
Article
Effect of Ionic Liquids with Different Structures on Rheological Properties of Water-Based Drilling Fluids and Mechanism Research at Ultra-High Temperatures
by Haoxian Shi, Yanjiang Yu, Yingsheng Wang, Zijie Ning and Zhihua Luo
Molecules 2024, 29(17), 4206; https://doi.org/10.3390/molecules29174206 - 5 Sep 2024
Viewed by 1777
Abstract
The rheology control of water-based drilling fluids at ultra-high temperatures has been one of the major challenges in deep or ultra-deep resource exploration. In this paper, the effects of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) (ILA), 1-ethyl-3-methylimidazolium tetrafluoroborate (ILB) and N-methyl, butylpyrrolidinium bis(trifluoromethanesulfonimide) (ILC) on the rheological [...] Read more.
The rheology control of water-based drilling fluids at ultra-high temperatures has been one of the major challenges in deep or ultra-deep resource exploration. In this paper, the effects of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) (ILA), 1-ethyl-3-methylimidazolium tetrafluoroborate (ILB) and N-methyl, butylpyrrolidinium bis(trifluoromethanesulfonimide) (ILC) on the rheological properties and filtration loss of polymer-based slurries at ultra-high temperatures (200 °C and 240 °C) are investigated by the American Petroleum Institute (API) standards. The results show that ionic liquids with different structures could improve the high-temperature rheological properties of polymer-based drilling fluids. The rheological parameter value (YP/PV) of the polymer-based slurry formulated with ILC is slightly higher than that with ILA at the same concentration, while the YP/PV value of the polymer-based slurry with ILA is slightly higher than that with ILB, which is consistent with the TGA thermal stability of ILA, ILB, and ILC; the thermal stability of ILC with pyrrolidine cations is higher than that of ILA with imidazole cations, and the thermal stability of ILA with bis(trifluorosulfonyl)amide anions is higher than that of ILB with tetrafluoroborate anions. Cation interlayer exchange between organic cation and sodium montmorillonite can improve the rheological properties of water-based drilling fluids. And meantime, the S=O bond in bis(trifluorosulfonyl)amide ions and the hydroxyl group of sodium montmorillonite may form hydrogen bonds, which also may increase the rheological properties of water-based drilling fluids. ILA, ILB, and ILC cannot reduce the filtration loss of polymer-based drilling fluids at ultra-high temperatures. Full article
Show Figures

Figure 1

20 pages, 7666 KiB  
Article
Study on the Reuse of Shield Mud from Clay Stratum in Synchronous Grouting Slurry
by Ying Fan, Yang Gao, Weilong Tao and Sihong Huang
Buildings 2024, 14(8), 2537; https://doi.org/10.3390/buildings14082537 - 18 Aug 2024
Cited by 3 | Viewed by 1136
Abstract
The purpose of this study is to investigate the feasibility of replacing the fly ash in synchronous grouting material by reusing the shield mud produced in the clay stratum during the shield construction of Wuhan Rail Transit Line 11. The test utilizes the [...] Read more.
The purpose of this study is to investigate the feasibility of replacing the fly ash in synchronous grouting material by reusing the shield mud produced in the clay stratum during the shield construction of Wuhan Rail Transit Line 11. The test utilizes the shield mud from the clay stratum to replace the fly ash material in synchronous grouting at percentages of 20%, 40%, 60%, 80%, and 100%, and research and analyses are conducted on the fluidity, stability, strength, and resistance to water dispersion of the slurry after the replacement; at the same time, improvements in the undesirable phenomenon produced by the synchronous grouting slurry are also examined after the replacement. The results show that, when the fly ash is replaced by shield mud at 80%, the mortar still has good stability and strength performance, but, at the same time, the initial value of consistency and the phenomenon of flow time loss is too large. Through the adjustment of the water–binder ratio and the addition of an appropriate amount of a polycarboxylate superplasticizer agent, the adverse phenomenon of the slurry is effectively improved, and the compressive strength and ease of the slurry are also improved. At the same time, when adding an appropriate amount of hydroxyethyl methyl cellulose (HEMC), the slurry has good water dispersion resistance, but, with the gradual increase in HEMC, the fluidity of the slurry deteriorates and the compressive strength decreases. The test proves that the shield mud in the clay stratum can be used to replace most of the fly ash in an appropriate proportion, which not only solves the problem of the shield mud being difficult to work with, but also provides more valuable insights for tunneling projects. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 7665 KiB  
Article
Synthesis and Performance Evaluation of High-Temperature-Resistant Extreme-Pressure Lubricants for a Water-Based Drilling Fluid Gel System
by Shengming Huang, Tengfei Dong, Guancheng Jiang, Jun Yang, Xukun Yang and Quande Wang
Gels 2024, 10(8), 505; https://doi.org/10.3390/gels10080505 - 1 Aug 2024
Cited by 4 | Viewed by 2238
Abstract
Addressing the high friction and torque challenges encountered in drilling processes for high-displacement wells, horizontal wells, and directional wells, we successfully synthesized OAG, a high-temperature and high-salinity drilling fluid lubricant, using materials such as oleic acid and glycerol. OAG was characterized through Fourier-transform [...] Read more.
Addressing the high friction and torque challenges encountered in drilling processes for high-displacement wells, horizontal wells, and directional wells, we successfully synthesized OAG, a high-temperature and high-salinity drilling fluid lubricant, using materials such as oleic acid and glycerol. OAG was characterized through Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The research findings demonstrate the excellent lubricating performance of OAG under high-temperature and high-salinity conditions. After adding 1.0% OAG to a 4% freshwater-based slurry, the adhesion coefficient of the mud cake decreased to 0.0437, and at a dosage of 1.5%, the lubrication coefficient was 0.032, resulting in a reduction rate of 94.1% in the lubrication coefficient. After heating at 200 °C for 16 h, the reduction rate of the lubrication coefficient reached 93.6%. Even under 35% NaCl conditions, the reduction rate of the lubrication coefficient remained at 80.3%, indicating excellent lubrication retention performance. The lubricant OAG exhibits good compatibility with high-density drilling fluid gel systems, maintaining their rheological properties after heating at 200 °C and reducing filtration loss. The lubrication mechanism analysis indicates that OAG can effectively adsorb onto the surface of N80 steel sheets. The contact angle of the steel sheets increased from 41.9° to 83.3° before and after hot rolling, indicating a significant enhancement in hydrophobicity. This enhancement is primarily attributed to the formation of an extreme-pressure lubricating film through chemical reactions of OAG on the metal surface. Consequently, this film markedly reduces the friction between the drilling tools and the wellbore rocks, thereby enhancing lubrication performance and providing valuable guidance for constructing high-density water-based drilling fluid gel systems. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

20 pages, 3819 KiB  
Article
Development of Negative-Temperature Cement Emulsified Asphalt Spraying Materials Based on Spraying Performance and Rheological Parameters
by Yitong Hou, Kaimin Niu, Bo Tian, Junli Chen and Xueyang Li
Materials 2024, 17(13), 3137; https://doi.org/10.3390/ma17133137 - 26 Jun 2024
Cited by 1 | Viewed by 1253
Abstract
To develop a cement emulsified asphalt composite (CEAC) that can be sprayed under a plateau negative temperature environment, the effects of the water–solid ratio, calcium aluminate cement substitution rate, emulsified asphalt content, sand–binder ratio, and polyvinyl alcohol (PVA) fiber content on the spraying [...] Read more.
To develop a cement emulsified asphalt composite (CEAC) that can be sprayed under a plateau negative temperature environment, the effects of the water–solid ratio, calcium aluminate cement substitution rate, emulsified asphalt content, sand–binder ratio, and polyvinyl alcohol (PVA) fiber content on the spraying performance and rheological parameters of CEAC were explored through the controlled variable method. Additionally, the correlation between the spraying performance and rheological parameters of CEAC was established, and the optimal proportion of CEAC was determined. Then, the difference in frost resistance and pore structure between the cement slurry (CS) without emulsified asphalt and CEAC at the optimum proportion was analyzed. The results showed that the optimum proportions for sprayed CEAC were 0.14 water–solid ratio, 0.5 sand–binder ratio, 25% substitution of calcium aluminate cement, 5% emulsified asphalt content, and 1.5% PVA fiber volume mixing. The yield stress and plastic viscosity of CEAC were positively correlated with the build-up thickness, whereas the rebound rate and the latter showed a negative correlation. The spraying performance may be described by the rheological parameters; the ranges of yield stress and plastic viscosity of 2.37–3.95 Pa·s and 77.42–108.58 Pa, respectively, produced the best spray ability. After undergoing an equivalent number of freeze–thaw cycles, CEAC exhibited lower mass and strength loss rates compared to CS, thereby demonstrating superior frost resistance. In addition, the pore structure analysis showed that the difference in capillary and macropore contents was the main reason for the variability in frost resistance between CS and CEAC. Full article
Show Figures

Figure 1

21 pages, 10564 KiB  
Article
Preparation and Application of CO2-Resistant Latex in Shale Reservoir Cementing
by Chunyuan Jiang, Xuecheng Zheng, Yuanqiang Zhu, Lei Tang, Yuhao Liu, Zhijun Zhao and Hongyu Zhang
Processes 2024, 12(5), 945; https://doi.org/10.3390/pr12050945 - 7 May 2024
Cited by 1 | Viewed by 1326
Abstract
With the application of CO2 fracturing, CO2 huff and puff, CO2 flooding, and other stimulation technologies in shale reservoirs, a large amount of CO2 remained in the formation, which also lead to the serious corrosion problem of CO2 [...] Read more.
With the application of CO2 fracturing, CO2 huff and puff, CO2 flooding, and other stimulation technologies in shale reservoirs, a large amount of CO2 remained in the formation, which also lead to the serious corrosion problem of CO2 in shale reservoirs. In order to solve the harm caused by CO2 corrosion, it is necessary to curb CO2 corrosion from the cementing cement ring to ensure the long-term stable exploitation of shale oil. Therefore, a new latex was created using liquid polybutadiene, styrene, 2-acrylamide-2-methylpropanesulfonic acid, and maleic anhydride to increase the cement ring’s resistance to CO2 corrosion. The latex’s structure and characteristics were then confirmed using infrared, particle size analyzer, thermogravimetric analysis, and transmission electron microscopy. The major size distribution of latex is between 160 and 220 nm, with a solid content of 32.2% and an apparent viscosity of 36.8 mPa·s. And it had good physical properties and stability. Latex can effectively improve the properties of cement slurry and cement composite. When the amount of latex was 8%, the fluidity index of cement slurry was 0.76, the consistency index was 0.5363, the free liquid content was only 0.1%, and the water loss was reduced to 108 mL. At the same time, latex has a certain retarding ability. With 8% latex, the cement slurry has a specific retarding ability, is 0.76 and 0.5363, has a free liquid content of just 0.1%, and reduces water loss to 108 mL. Moreover, latex had certain retarding properties. The compressive strength and flexural strength of the latex cement composite were increased by 13.47% and 33.64% compared with the blank cement composite. A long-term CO2 corrosion experiment also showed that latex significantly increased the cement composite’s resilience to corrosion, lowering the blank cement composite’s growth rate of permeability from 46.88% to 19.41% and its compressive strength drop rate from 27.39% to 11.74%. Through the use of XRD and SEM, the latex’s anti-corrosion mechanism, hydration products, and microstructure were examined. In addition to forming a continuous network structure with the hydrated calcium silicate and other gels, the latex can form a latex film to attach and fill the hydration products. This slows down the rate of CO2 corrosion of the hydration products, enhancing the cement composite’s resistance to corrosion. CO2-resistant toughened latex can effectively solve the CO2 corrosion problem of the cementing cement ring in shale reservoirs. Full article
Show Figures

Figure 1

Back to TopTop