Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = water flow glazing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3154 KiB  
Article
Impact of Blade Ice Coverage on Wind Turbine Power Generation Efficiency: A Combined CFD and Wind Tunnel Study
by Yang Ji, Jinxiao Wang, Haiming Wen, Chenyang Liu, Yang Liu and Dayong Zhang
Energies 2025, 18(13), 3448; https://doi.org/10.3390/en18133448 - 30 Jun 2025
Viewed by 249
Abstract
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three [...] Read more.
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three ice accretion types, glaze, mixed, and rime, on NACA0012 airfoils are quantified. Glaze ice at the leading edge induces the most severe degradation, reducing lift by 34.9% and increasing drag by 97.2% at 10 m/s. STAR-CCM+ analyses reveal critical pressure anomalies and ice morphology-dependent flow separation patterns. These findings inform the optimization of anti-icing strategies for cold-climate wind farms. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

20 pages, 5588 KiB  
Article
Analysis of the Characteristics of Ice Accretion on the Surface of Wind Turbine Blades Under Different Environmental Conditions
by Tingzhu Qian, Dayong Zhang, Chenyang Liu, Xiangyi Kong, Haiming Wen, Yijia Yuan and Yang Ji
Atmosphere 2025, 16(3), 246; https://doi.org/10.3390/atmos16030246 - 21 Feb 2025
Viewed by 807
Abstract
The problem of ice accretion on wind turbine blades seriously affects the safe operation and efficiency of wind farms. In this paper, FENSAP-ICE software is adopted to conduct research on this issue. The mechanism of ice accretion on wind turbine blades is analyzed, [...] Read more.
The problem of ice accretion on wind turbine blades seriously affects the safe operation and efficiency of wind farms. In this paper, FENSAP-ICE software is adopted to conduct research on this issue. The mechanism of ice accretion on wind turbine blades is analyzed, including the formation process of ice accretion, as well as three types of ice accretion, namely glaze ice, rime ice, and mixed ice, and their occurrence conditions. A prediction method for ice accretion on the blades is elaborated. A numerical calculation method is employed, and the accuracy of the numerical model is verified through the design of multiple groups of numerical simulation calculations for ice accretion on the NACA0012 airfoil. Using this model, the laws governing how environmental temperature, incoming flow rate, liquid water content, and droplet diameter influence ice accretion on wind turbine blades are studied. It is found that reducing the environmental temperature and increasing the incoming flow rate and the liquid–liquid water content will increase the ice accretion mass and area. Increasing the droplet diameter will increase the ice accretion mass, but the ice-covered area will decrease and will concentrate towards the leading edge. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 1100 KiB  
Article
Single-Glazed Vacuum Tube Collector with SnAl2O3 Selective Flat Absorber Plate and Gravity Single-Stage Direct Water Flow: A Comprehensive Geometric Optimization
by Aleksandar Nešović and Robert Kowalik
Appl. Sci. 2025, 15(4), 1838; https://doi.org/10.3390/app15041838 - 11 Feb 2025
Cited by 1 | Viewed by 762
Abstract
This paper continues the mathematical research of the novel glass tube collectors for water heating. The subject of this research is a vacuum solar collector composed of a glass tube and a selective (using the SnAl2O3 coating) flat absorber plate. [...] Read more.
This paper continues the mathematical research of the novel glass tube collectors for water heating. The subject of this research is a vacuum solar collector composed of a glass tube and a selective (using the SnAl2O3 coating) flat absorber plate. Water heating is performed using gravitational driving force and single-stage direct flow. The thermal performance with the geometric optimization (absorber width and glass tube thickness) of the presented solar collector type was determined using the specially designed iterative calculation algorithm (phase 1) and the double multi-criteria analysis (phase 2). Different operational (absorber temperature, ambient temperature and wind speed), geometric (mass, surface occupation, total surface occupation and volume occupation), economic (manufacturing costs and exploitation costs) and ecological (embodied energy and greenhouse gas emission) indicators were taken into account. The results showed that the useful heat power has an increasing trend if the flat absorber plate width increases, while the thermal efficiency has a decreasing trend. It was also determined that the glass tube thickness and the thermal performance of the solar collector are oppositely dependent. The main conclusion of this paper is that the optimal performance of such non-conventional solar systems is achieved when the absorber plate width is between 85 and 90 mm. Full article
(This article belongs to the Special Issue Solar Energy Collection, Conversion and Utilization)
Show Figures

Figure 1

11 pages, 3987 KiB  
Article
A Rectangular Spiral Inward–Outward Alternating-Flow Polymer Thermal Collector for a Solar Water Heating System—A Preliminary Investigation in the Climate of Seri Iskandar, Malaysia
by Taib Iskandar Mohamad and Mohammad Danish Shareeman Mohd Shaifudeen
Appl. Sci. 2024, 14(23), 11045; https://doi.org/10.3390/app142311045 - 27 Nov 2024
Cited by 1 | Viewed by 1153
Abstract
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on [...] Read more.
A flat-plate unglazed solar water heater (SWH) with a polymer thermal absorber was developed and experimented with. Polymer thermal absorbers could be a viable alternative to metal thermal absorbers for SWH systems. The performance of this polymer SWH system was measured based on inlet and outlet water temperature, water flow rate, ambient air temperature and solar irradiance. The polymer thermal absorbers were hollow Polyvinyl Chloride (PVC) tubes with a 20 mm external diameter and 3 mm thickness and were painted black to enhance radiation absorption. The pipes are arranged in a rectangular spiral inward–outward alternating-flow (RSioaf) pattern. The collector pipes were placed in a 1 m × 1 m enclosure with bottom insulation and a reflective surface for maximized radiation absorption. Water circulated through a closed loop with an uninsulated 16 L storage tank, driven by a pump and controlled by two valves to maintain a mass flow rate of 0.0031 to 0.0034 kg·s−1. The test was conducted under a partially clouded sky from 9 a.m. to 5 p.m., with solar irradiance between 105 and 1003 W·m−2 and an ambient air temperature of 27–36 °C. This SWH system produced outlet hot water at 65 °C by midday and maintained the storage temperature at 63 °C until the end of the test period. Photothermal energy conversion was recorded, showing a maximum value of 23%. Results indicate that a flat-plate solar water heater with a polymer thermal absorber in an RSioaf design can be an effective alternative to an SWH with a metal thermal absorber. Its performance can be improved with glazing and optimized tube sizing. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

19 pages, 8192 KiB  
Article
Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
by Hanna Koshlak, Borys Basok, Anatoliy Pavlenko, Svitlana Goncharuk, Borys Davydenko and Jerzy Piotrowski
Sustainability 2024, 16(21), 9374; https://doi.org/10.3390/su16219374 - 29 Oct 2024
Cited by 2 | Viewed by 2066
Abstract
This paper presents experimental and theoretical studies of heat transfer through single- and double-glazed windows with electrical heating of the internal surfaces. Heating is achieved by applying a voltage to the low emissivity coating of the inner glass. A thermophysical model has been [...] Read more.
This paper presents experimental and theoretical studies of heat transfer through single- and double-glazed windows with electrical heating of the internal surfaces. Heating is achieved by applying a voltage to the low emissivity coating of the inner glass. A thermophysical model has been developed to simulate the heat transfer through these units, allowing us to determine their thermal characteristics. Experimental data are used to validate the numerical model. The resulting heat flux and temperature distributions on the external and internal surfaces of electrically heated double-glazed units are analysed. According to the results of experimental and numerical studies, it was found that the adopted electric heating scheme allows 83–85% of the heat to enter the room and 15–17% is removed to the outside. This makes it possible to increase the radiation component of the heat flow from the window to the room and improve the thermal comfort in the room. In general, this article shows that existing industrial windows with low-emissivity glass surface coating can be upgraded with simple and inexpensive modernisation, without compromising the main function of the window—efficient transmission of visible light—and create an additional (backup) heating device that can work effectively together with the existing heating system in the event of a sudden cold snap at low temperatures (below −20 °C), to prevent condensation of water vapour in the windows, and to prevent condensation on the surface of the window facade wall. Formally, a back-up (emergency) heating system is created in the room, which contributes to the energy sustainability of the building and therefore to energy security in general. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

17 pages, 2170 KiB  
Article
Investigation of Used Water Sediments from Ceramic Tile Fabrication
by Simona Elena Avram, Bianca Violeta Birle, Lucian Barbu Tudoran, Gheorghe Borodi and Ioan Petean
Water 2024, 16(7), 1027; https://doi.org/10.3390/w16071027 - 2 Apr 2024
Cited by 19 | Viewed by 2216
Abstract
Used water treatment is one of the most important aspects of environmental protection regarding industrial processes. Particulate matter dispersions affect water parameters; for example, increased pH values such as 10.21 are found for used floor tile water, and values of 10.84 are found [...] Read more.
Used water treatment is one of the most important aspects of environmental protection regarding industrial processes. Particulate matter dispersions affect water parameters; for example, increased pH values such as 10.21 are found for used floor tile water, and values of 10.84 are found for used wall tile water. However, pH decreases to about 9.42 after the sediment filtration process. This influences water turbidity, which is higher for used wall tile water due to its finer suspensions, and it is considerably decreased after the filtration process. Thus, the main aim of the present research is to investigate particulate matter dispersion into the water flows that are involved in ceramic tile technological processes before and after treatment at used water treatment facilities. X-ray diffraction (XRD) coupled with mineralogical optical microscopy (MOM) reveals that waters from wall tiles and floor tiles have similar mineral dispersions, containing mineral particles of quartz (5–50 μm), kaolinite (1–30 μm), and mullite (5–125 μm). Glass particles (having a dark appearance at MOM investigation) were also found in both samples in a size range of 20–55 μm. High-resolution SEM imaging coupled with the EDS elemental analysis confirms the XRD and MOM observations. Water samples collected after treatment at the treatment facility reveal a significant reduction in the particulate matter MOM, evidencing only small traces of quartz, kaolinite, and mullite in a size range of 1–15 μm, with most of the particles being attached to the filters, as confirmed by XRD. Atomic force microscopy (AFM) effectuated on this sample reveals the presence of kaolinite nanoparticles with a tabular–lamellar aspect and sizes ranging from 40 to 90 nm. The obtained results prove the efficacy of the filtering system regarding targeted particulate matters, ensuring water recirculation into the technological processes. The sludge resulting from the filtration process presents with a dense grainy structure of sediment particles containing quartz, mullite, and kaolinite, along with traces of iron hydroxide crystallized as goethite. Therefore, it cannot be reused in the technological flux, as the iron causes glaze staining; but the observed microstructure, along with the mineralogical composition, indicates that it could be used for other applications, such as ecological bricks or plasters, which will be further investigated. Full article
Show Figures

Figure 1

19 pages, 10801 KiB  
Article
Structural Behavior of Water Flow Glazing: Stress and Elastic Deformation Considering Hydrostatic Pressure
by Fernando Del Ama Gonzalo, Belén Moreno Santamaría, Javier Escoto López and Juan Antonio Hernández Ramos
Sustainability 2023, 15(20), 14695; https://doi.org/10.3390/su152014695 - 10 Oct 2023
Cited by 1 | Viewed by 1350
Abstract
The fluid inside a Water Flow Glazing (WFG) panel creates a linear pressure distribution along the vertical dimension. Tension stress can cause problems with the sealant; compression stress can cause deflections in the glass panel. Increasing the glass thickness until the deflection is [...] Read more.
The fluid inside a Water Flow Glazing (WFG) panel creates a linear pressure distribution along the vertical dimension. Tension stress can cause problems with the sealant; compression stress can cause deflections in the glass panel. Increasing the glass thickness until the deflection is below the required limit implies more weight and cost of the glazing. Another solution is to limit glass deflection by inserting pillars or stripes into the cavity between two glass panes. The novelty of this article was to test a High-Order Finite Difference Method for linear and non-linear models to evaluate the effect of hydrostatic pressure produced by the fluid chamber on WFG panels. The methodology was tested on two case studies to assess the tension and deflection of the glass panes to guarantee the structural stability of WFG. The main conclusion drawn was that a linear plate model was sufficient to dimension the width, length, and thickness of the WFG panel. Furthermore, the mathematical model provided criteria to keep the glass tension below 45 MPa for tempered glass and the maximum deflection as the minimum between 1‰ of the glass height and 10% of the water chamber thickness. Introducing pillars or stripes solved hydrostatic pressure problems when the panel’s height was above 1.5 m. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

24 pages, 11804 KiB  
Article
Extensive Analysis of a Reinvigorated Solar Water Heating System Using Low-Density Polyethylene Glazing
by Balamurali Duraivel, Natarajan Muthuswamy, Saboor Shaik, Erdem Cuce, Abdulhameed Babatunde Owolabi, Hong Xian Li and Miroslava Kavgic
Energies 2023, 16(16), 5902; https://doi.org/10.3390/en16165902 - 9 Aug 2023
Cited by 6 | Viewed by 2038
Abstract
Solar energy is one of the most promising forms of alternative energy because it has no adverse effects on the environment and is entirely free. Converting solar energy into thermal energy is the most common and straightforward method; the efficiency of solar thermal [...] Read more.
Solar energy is one of the most promising forms of alternative energy because it has no adverse effects on the environment and is entirely free. Converting solar energy into thermal energy is the most common and straightforward method; the efficiency of solar thermal conversion is approximately 70 percent. The intermittent nature of solar energy availability affects the performance of solar water heaters (SWH), which lowers the usefulness of solar energy in residential and commercial settings, particularly for water heating. Even at low temperatures, the performance of a collector can be improved by using low-density polyethylene (LDPE) glazing instead of traditional glass because it is less expensive and lighter than glass. Using a comprehensive experimental-simulative study, the Glass Solar water heater (glass SWH) and the low-density polyethylene solar water heater (LDPE SWH) are analyzed, examined, and compared in this work. These solar water heaters have galvanized iron (GI) as their absorber material. The SWHs were operated in a closed loop at a constant mass flow rate of 0.013 kg/s, and a 4E analysis (which stands for energy, exergy, economics, and efficiency recovery ratio) was carried out. This analysis included a look at the dynamic time, uncertainty, weight reduction, carbon footprint, and series connection. An LDPE SWH has an energy efficiency that is 5.57% and an exergy efficiency that is 3.2% higher than a glass SWH. The weight of the LDPE SWH is 32.56% lower than that of the glass SWH. Compared to the price of a conventional geyser, installing our SWH results in a cost savings of 40.9%, and monthly energy costs are reduced by an average of 25.5%. Compared to October, September has the quickest dynamic time to reach the desired temperature, while October has the most significant dynamic time. The efficiency recovery ratio (ERR) of a glass SWH is 0.0239% lower than that of an LDPE SWH. LDPE SWHs had a carbon credit worth INR 294.44 more than glass SWHs. The findings of these tests demonstrate that the LDPE SWH is a practical replacement for traditional means of heating water, such as SWHs and geysers. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

14 pages, 7699 KiB  
Article
Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants
by Emad Abouel Nasr, Haitham A. Mahmoud, Mohammed A. El-Meligy, Emad Mahrous Awwad, Sachin Salunkhe, Vishal Naranje, R. Swarnalatha and Jaber E. Abu Qudeiri
Sustainability 2023, 15(7), 6136; https://doi.org/10.3390/su15076136 - 3 Apr 2023
Cited by 4 | Viewed by 2515
Abstract
The design and development of a photovoltaic thermal (PVT) collector were developed in this study, and electrical and electrical thermal efficiency were assessed. To improve system performance, two types of coolants were employed, liquid and liquid-based MnO nanofluid. Flow rates ranging from 1 [...] Read more.
The design and development of a photovoltaic thermal (PVT) collector were developed in this study, and electrical and electrical thermal efficiency were assessed. To improve system performance, two types of coolants were employed, liquid and liquid-based MnO nanofluid. Flow rates ranging from 1 to 4 liters per minute (LPM) for the interval of 1.0 LPM were employed, together with a 0.1% concentration of manganese oxide (MnO) nanofluid. Various parametric investigations, including electrical power generation, glazing surface temperature, electrical efficiency, and electrical thermal efficiency, were carried out on testing days, which were clear and sunny. Outdoor studies for the aforementioned nanofluids and liquids were carried out at volume flow rates ranging from 1 to 4 LPM, which can be compared for reference to a freestanding PV system. The research of two efficiency levels, electrical and electrical thermal, revealed that MnO water nanofluid provides better photovoltaic energy conversion than water nanofluid and stand-alone PV systems. In this study, three different domains were examined: stand-alone PV, liquid-based PVT collector, and liquid-based MnO nanofluids. The stand-alone PV system achieved a lower performance, the liquid-based MnO performed better, and the liquid-based PVT achieved an intermediate level. Full article
Show Figures

Figure 1

21 pages, 5129 KiB  
Article
Assessment of Water Flow Glazing as Building-Integrated Solar Thermal Collector
by Fernando del Ama Gonzalo, Belén Moreno Santamaría and Juan A. Hernández Ramos
Sustainability 2023, 15(1), 644; https://doi.org/10.3390/su15010644 - 30 Dec 2022
Cited by 4 | Viewed by 2379
Abstract
In buildings with ambitious energy goals or limited roof areas for on-site energy generation, building-integrated solar thermal collectors are one of the main strategies to provide on-site renewable energy to the built environment. In addition, designing large glazing facades is a challenge to [...] Read more.
In buildings with ambitious energy goals or limited roof areas for on-site energy generation, building-integrated solar thermal collectors are one of the main strategies to provide on-site renewable energy to the built environment. In addition, designing large glazing facades is a challenge to achieving the goal of zero-energy buildings due to the thermal load produced by standard double or triple glazing. This research shows that Water Flow Glazing (WFG) can produce domestic hot water as a building-integrated solar thermal collector by flowing water through the chamber between glass panes and can help reduce thermal loads through facades. In this article, the solar collector’s efficiency was defined according to the UNE-EN 12975-2 standard and then applied to the Water Flow Glazing. As a result, the transparent Water Flow Glazing’s optical efficiency η0 varies from 0.648 to 0.742, whereas the thermal loss coefficient a1 ranges from 9.51 to 4.16. Those values are like those of commercial plate collectors. Afterward, the model to predict the efficiency of WFG was tested in an existing facility by calculating the Normalized Root Mean Square Error (NRMSE) to assess the deviations between the simulation and measured values. Using building-integrated solar collectors can improve the integration of renewable energies in facades and roofs but also increase the uncertainties that affect their efficiencies, such as internal heat loads and heating, cooling, and ventilation systems. Therefore, testing existing facilities can help understand the impact of these technologies in the Zero Energy Building paradigm. Full article
(This article belongs to the Special Issue Sustainable Development: The Need for Technological Change)
Show Figures

Graphical abstract

22 pages, 4298 KiB  
Article
Utilization of Solar Energy for Water Heating Application to Improve Building Energy Efficiency: An Experimental Study
by Chandan Swaroop Meena, Amit Nandan Prajapati, Ashwani Kumar and Manoj Kumar
Buildings 2022, 12(12), 2166; https://doi.org/10.3390/buildings12122166 - 7 Dec 2022
Cited by 37 | Viewed by 3397
Abstract
The manuscript is written for flow escalation based on an experimental data for a Solar Assisted Heat Pump Water Heater (SAHPWH) increasing building energy efficiency. For the investigation, a Solar Assisted Heat Pump (SAHP) was conceived, manufactured, and tested in real time. The [...] Read more.
The manuscript is written for flow escalation based on an experimental data for a Solar Assisted Heat Pump Water Heater (SAHPWH) increasing building energy efficiency. For the investigation, a Solar Assisted Heat Pump (SAHP) was conceived, manufactured, and tested in real time. The findings of the experiments shows that single glazing with average sun radiation of 600–750 W/m2, COP of approx. 6 can be obtained with identical heat gains. This study shows that when a flat plate collector of area 1.83 m (L) × 1.22 m (W) × 0.1 m (T) with a 0.5-mm-thick black copper plate absorber with clear glazing as a cover receives average radiation of 700 W/m2, then setup can supply 60 litres of water for residential use from 15 °C to 45 °C in approx. 70 min. In addition, the study finds that the collector efficiency factor F’ is likewise shown to have a direct connection with the absorber and an inverse relationship of tube spacing. The findings indicated that the technology has significant commercial potential, particularly in sectors such as with solar resources for improving building energy efficiency. Full article
(This article belongs to the Special Issue Sustainable Buildings, Resilient Cities and Infrastructure Systems)
Show Figures

Figure 1

17 pages, 3407 KiB  
Article
Developing an Advanced PVT System for Sustainable Domestic Hot Water Supply
by Behnam Roshanzadeh, Levi Reyes Premer and Gowtham Mohan
Energies 2022, 15(7), 2346; https://doi.org/10.3390/en15072346 - 23 Mar 2022
Cited by 9 | Viewed by 3265
Abstract
Energy consumption is steadily increasing with the ever-growing population, leading to a rise in global warming. Building energy consumption is one of the major sources of global warming, which can be controlled with renewable energy installations. This paper deals with an advanced evacuated [...] Read more.
Energy consumption is steadily increasing with the ever-growing population, leading to a rise in global warming. Building energy consumption is one of the major sources of global warming, which can be controlled with renewable energy installations. This paper deals with an advanced evacuated hybrid solar photovoltaic–thermal collector (PVT) for simultaneous production of electricity and domestic hot water (DHW) with lower carbon emissions. Most PVT projects focus on increasing electricity production by cooling the photovoltaic (PV). However, in this research, increasing thermal efficiency is investigated through vacuum glass tube encapsulation. The required area for conventional unglazed PVT systems varies between 1.6–2 times of solar thermal collectors for similar thermal output. In the case of encapsulation, the required area can decrease by minimizing convective losses from the system. Surprisingly, the electrical efficiency was not decreased by encapsulating the PVT system. The performance of evacuated PVT is compared to glazed and unglazed PVTs, and the result shows a 40% increase in thermal performance with the proposed system. All three systems are simulated in ANSYS 18.1 (Canonsburg, PA, USA) at different mass flow rates and solar irradiance. Full article
(This article belongs to the Special Issue Hybrid Solar Collector)
Show Figures

Figure 1

24 pages, 11470 KiB  
Article
Numerical Modeling of Ice Accumulation on Three-Dimensional Bridge Cables under Freezing Rain and Natural Wind Conditions
by Dalei Wang, Mengjin Sun, Rujin Ma and Xiang Shen
Symmetry 2022, 14(2), 396; https://doi.org/10.3390/sym14020396 - 16 Feb 2022
Cited by 3 | Viewed by 3165
Abstract
In order to accurately predict the ice accumulation on bridge cables under two typical freezing rain conditions, rime and glaze ice, this paper proposes a numerical simulation framework based on the three-dimensional Messinger theory. Two technical challenges of determining the flow direction of [...] Read more.
In order to accurately predict the ice accumulation on bridge cables under two typical freezing rain conditions, rime and glaze ice, this paper proposes a numerical simulation framework based on the three-dimensional Messinger theory. Two technical challenges of determining the flow direction of unfrozen water and solving three-dimensional Messinger equations are solved in this research. Based on the outflow, mass was calculated according to the three-dimensional Messinger theory, and the flow direction of unfrozen water in each cell was determined by the resultant force of air shear stress and water film gravity. To solve the three-dimensional equations, an iterative method without finding the stagnation line was introduced. The final iced geometries were determined when the inflow mass ratio was satisfied with the converge criteria. Moreover, this modified numerical model was programmed and embedded into computational fluid software. For both two typical freezing rain conditions, the effects of temperature and wind speed on iced geometries were studied. The aerodynamic characteristics and galloping instability of bridge cables with different iced geometries were also investigated. These preliminary aerodynamic simulations can provide the basis for the wind-induced vibration analysis of the whole structure. Full article
Show Figures

Figure 1

28 pages, 15305 KiB  
Article
Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications
by Adrián Vicente, Pedro J. Rivero, Paloma García, Julio Mora, Francisco Carreño, José F. Palacio and Rafael Rodríguez
Polymers 2021, 13(23), 4164; https://doi.org/10.3390/polym13234164 - 28 Nov 2021
Cited by 18 | Viewed by 3701
Abstract
Anti-icing or passive strategies have undergone a remarkable growth in importance as a complement for the de-icing approaches or active methods. As a result, many efforts for developing icephobic surfaces have been mostly dedicated to apply superhydrophobic coatings. Recently, a different type of [...] Read more.
Anti-icing or passive strategies have undergone a remarkable growth in importance as a complement for the de-icing approaches or active methods. As a result, many efforts for developing icephobic surfaces have been mostly dedicated to apply superhydrophobic coatings. Recently, a different type of ice-repellent structure based on slippery liquid-infused porous surfaces (SLIPS) has attracted increasing attention for being a simple and effective passive ice protection in a wide range of application areas, especially for the prevention of ice formation on aircrafts. In this work, the electrospinning technique has been used for the deposition of PVDF-HFP coatings on samples of the aeronautical alloy AA7075 by using a thickness control system based on the identification of the proper combination of process parameters such as the flow rate and applied voltage. In addition, the influence of the experimental conditions on the nanofiber properties is evaluated in terms of surface morphology, wettability, corrosion resistance, and optical transmittance. The experimental results showed an improvement in the micro/nanoscale structure, which optimizes the superhydrophobic and anticorrosive behavior due to the air trapped inside the nanotextured surface. In addition, once the best coating was selected, centrifugal ice adhesion tests (CAT) were carried out for two types of icing conditions (glaze and rime) simulated in an ice wind tunnel (IWT) on both as-deposited and liquid-infused coatings (SLIPs). The liquid-infused coatings showed a low water adhesion (low contact angle hysteresis) and low ice adhesion strength, reducing the ice adhesion four times with respect to PTFE (a well-known low-ice-adhesion material used as a reference). Full article
(This article belongs to the Special Issue Advances in Polymer-Based Materials for Corrosion Protection)
Show Figures

Graphical abstract

14 pages, 1408 KiB  
Article
Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface
by Koji Fukudome, Yuki Tomita, Sho Uranai, Hiroya Mamori and Makoto Yamamoto
Aerospace 2021, 8(10), 294; https://doi.org/10.3390/aerospace8100294 - 12 Oct 2021
Cited by 5 | Viewed by 3507
Abstract
Heating devices on airfoil surfaces are widely used as an anti-icing technology. This study investigated the aerodynamic performance with a static heating surface based on the modified extended Messinger model. The predicted ice shape was validated through a comparison with the experimental results [...] Read more.
Heating devices on airfoil surfaces are widely used as an anti-icing technology. This study investigated the aerodynamic performance with a static heating surface based on the modified extended Messinger model. The predicted ice shape was validated through a comparison with the experimental results for HAARP-II. A reasonable agreement was found for both the icing area and the ice mass on the suction surface. Then, the prediction method was adopted for an NACA0012 airfoil at an attack angle of 4.0 under a glaze ice condition. An asymmetric heating area was imposed on the suction and pressure surfaces considering a temperature of 10C near the leading edge. As a result of heating, the round ice formation when was no longer observed, and the formed ice volume decreased. However, bump-shaped pieces of ice were formed downstream of the heater owing to runback water; these bump-shaped pieces of ice formed on the suction surface significantly increased the flow drag and reduced the lift. The results indicated that extending the heating area on the suction surface can improve the aerodynamic performance. Consequently, the overall aerodynamic performance is deteriorated by adding static heating compared to the case without heating. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume II))
Show Figures

Figure 1

Back to TopTop