Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants
Abstract
1. Introduction
2. Experimental Details
2.1. Study Area
2.2. PVT System Description
3. Nanofluid Preparation and Characterization
4. Analytical Methodology
Electrical Performance
5. Results & Discussions
5.1. Weather Data Analysis
5.2. Investigation of Liquid as a Coolant in a Photovoltaic Thermal Collector
5.3. Investigation of Liquid-Based MnO as a Coolant in Photovoltaic Thermal Collector
6. Conclusions
- Electrical efficiency was achieved in a spectrum of 8.2% to 12.1% for liquid-type PVT systems, and 9.4% to 14.2% for liquid-based MnO nanofluid PVT systems;
- Electrical thermal efficiency was achieved in a range of 22.9% to 33.3% for liquid-type PVT systems, while electrical thermal efficiency was achieved at a limit of 26.1% to 39.6% for liquid-based MnO nanofluid PVT systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-convention/the-convention (accessed on 6 March 2023).
- Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 6 March 2023).
- UNFCCC. The Kyoto Protocol. Available online: https://unfccc.int/process/the-kyoto-protocol (accessed on 6 March 2023).
- Al-Maamary, H.M.S.; Kazem, H.A.; Chaichan, M.T. Changing the energy profile of the GCC States: A review. Int. J. Appl. Eng. Res. 2016, 11, 1980–1988. [Google Scholar]
- Al-Maamary, H.M.S.; Kazem Hussein, A.; Chaichan Miqdam, T. Renewable energy and GCC States energy challenges in the 21st century: A review. Int. J. Comput. Appl. Sci. 2017, 2, 11–18. [Google Scholar] [CrossRef]
- Bahaidarah, H.M.; Baloch, A.A.; Gandhidasan, P. Uniform cooling of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2016, 57, 1520–1544. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renew. Sustain. Energy Rev. 2017, 73, 1342–1351. [Google Scholar] [CrossRef]
- Chauhan, A.; Tyagi, V.V.; Anand, S. Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Convers. Manag. 2018, 163, 314–354. [Google Scholar] [CrossRef]
- Nadda, R.; Kumar, A.; Maithani, R. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renew. Sustain. Energy Rev. 2018, 93, 331–353. [Google Scholar] [CrossRef]
- Shukla, A.; Kant, K.; Sharma, A.; Biwole, P.H. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Sol. Energy Mater. Sol. Cells 2017, 160, 275–286. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Malek, A.B.M.A.; Islam, M.M.; Pandey, A.K.; Rahim, N.A. Global advancement of cooling technologies for PV systems: A review. Sol. Energy 2016, 137, 25–45. [Google Scholar] [CrossRef]
- Chol, S.; Estman, J. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; Volume 231, pp. 99–106. [Google Scholar]
- Sridhara, V.; Satapathy, L.N. MnO-based nanofluids: A review. Nanoscale Res. Lett. 2011, 6, 456. [Google Scholar] [CrossRef]
- Esfe, M.H.; Karimipour, A.; Yan, W.-M.; Akbari, M.; Safaei, M.R.; Dahari, M. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing MnO nanoparticles. Int. J. Heat Mass Transf. 2015, 88, 728–734. [Google Scholar] [CrossRef]
- Ebrahimnia-Bajestan, E.; Moghadam, M.C.; Niazmand, H.; Daungthongsuk, W.; Wongwises, S. Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int. J. Heat Mass Transf. 2016, 92, 1041–1052. [Google Scholar] [CrossRef]
- Minea, A.A. Hybrid nanofluids based on MnO, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transf. 2017, 104, 852–860. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Chen, P. Pressure drop and heat transfer of MnO-H2O nanofluids through silicon microchannels. J. Micromech. Microeng. 2009, 19, 105020. [Google Scholar]
- Sardarabadi, M.; Passandideh-Fard, M.; Heris, S.Z. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 2014, 66, 264–272. [Google Scholar] [CrossRef]
- Ghadiri, M.; Sardarabadi, M.; Pasandideh-fard, M.; Moghadam, A.J. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers. Manag. 2015, 103, 468–476. [Google Scholar] [CrossRef]
- Sardarabadi, M.; Passandideh-Fard, M. Experimental and numerical study of metaloxides/ water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol. Energy Mater. Sol. Cells 2016, 157, 533–542. [Google Scholar] [CrossRef]
- Al-Shamani, A.N.; Sopian, K.; Mat, S.; Hasan, H.A.; Abed, A.M.; Ruslan, M.H. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers. Manag. 2016, 124, 528–542. [Google Scholar] [CrossRef]
- Soltani, S.; Kasaeian, A.; Hamid, S.; Wen, D. An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 2017, 155, 1033–1043. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Chaichan Miqdam, T.; Kazem, H.A.; Hasan, H.A.; Al-Shamani, A.N. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers. Manag. 2017, 142, 547–558. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A. Mixed convection heat transfer of nanofluids inside curved tubes: An experimental study. Appl. Therm. Eng. 2016, 108, 967–979. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J. Taiwan Inst. Chem. Eng. 2017, 71, 315–322. [Google Scholar] [CrossRef]
- Srimanickam, B.; Vijayalakshmi, M.M.; Natarajan, E. Energy and exergy efficiency of flat plate PVT collector with forced convection. J. Test. Eval. 2018, 46, 783–797. [Google Scholar] [CrossRef]
- Srimanickam, B.; Saranya, A. Thermal performance of single glazing flat plate photovoltaic thermal hybrid system with various air channels. J. Test. Eval. 2019, 49, 2119–2150. [Google Scholar] [CrossRef]
- Bergene, T.; Løvvik, O.M. Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol. Energy 1995, 55, 453–462. [Google Scholar] [CrossRef]
- Ibrahim, A.; Othman, M.Y.; Ruslan, M.H.; Mat, S.; Zaharim, A.; Sopian, K. Experimental studies on water based photovoltaic thermal collector (PVT). In Selected Topics in System Science and Simulation in Engineering; UTM Press: Johor Bahru, Malaysia, 2013. [Google Scholar]
- Alzaabi, A.A.; Badawiyeh, N.K.; Hantoush, H.O.; Hamid, A.K. Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. Int. J. Smart Grid Clean Energy 2014, 3, 385–389. [Google Scholar] [CrossRef]
- Hussain, F.; Othman, M.Y.H.; Yatim, B.; Ruslan, H.; Sopian, K.; Ibarahim, Z. A study of PV/T collector with honeycomb heat exchanger. AIP Conf. Proc. 2013, 1571, 10–16. [Google Scholar]
- Wang, G.; Quan, Z.; Zhao, Y.; Sun, C.; Tong, J. Performance Studies on a Novel Solar PV/T-air Dual Heat Source Heat Pump System. Procedia Eng. 2015, 121, 771–778. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Vicidomini, M. Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors. Energies 2016, 9, 497. [Google Scholar] [CrossRef]
- Sahin, A.D.; Dincer, I.; Rosen, M.A. Thermodynamic analysis of solar photovoltaic cell systems. Sol. Energy Mater. Sol. Cells 2007, 91, 153–159. [Google Scholar] [CrossRef]
- Gaur, A.; Ménézo, C.; Giroux, S. Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium. Renew. Energy 2017, 109, 168–187. [Google Scholar] [CrossRef]
- A Strategy for Growth of Electrical Energy in India, Document 10, Department of Atomic Energy, Government of India. Available online: https://dae.gov.in/node/123 (accessed on 15 January 2023).
- Srimanickam, B.; Vijayalakshmi, M.M.; Natarajan, E. Experimental Study of Exergy Analysis on Flat Plate Solar Photovoltaic Thermal (PV/T) Hybrid System. Appl. Mech. Mater. 2015, 787, 82–87. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.; Sopian, K.; Chaichan, M.T.; Kazem, H.A.; Ibrahim, A.; Mat, S.; Ruslan, M.H. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Convers. Manag. 2017, 151, 693–708. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Kazem, H.A.; Yousif, J.H.; Chaichan, M.T.; Ibrahim, A.; Mat, S.; Ruslan, M.H. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol. Energy 2018, 162, 378–396. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Chaichan, M.T.; Sopian, K.; Kazem, H.A.; Mahood, H.B.; Khadom, A.A. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 2019, 177, 178–191. [Google Scholar] [CrossRef]
- Kazem, H.A.; Yousif, J.H.; Chaichan, M.T. Modeling of daily solar energy system prediction using support vector machine for Oman. Int. J. Appl. Eng. Res. 2016, 11, 10166–10172. [Google Scholar]
- Yousif, J.H.; Kazem, H.A.; Boland, J. Predictive models for photovoltaic electricity production in hot weather conditions. Energies 2017, 10, 971. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Pmax | 260 W |
Amps in Pmax | 8.42 A |
Volts in Pmax | 30.9 V |
Current in Maximum Load | 8.89 A |
Voltage in Maximum Load | 37.7 V |
Weight | 18.2 Kg |
Parameter | Value |
---|---|
Brand | Lakshmi |
Model | SP 50 |
Phase | 1 |
Hp | 0.25 |
Wattage | 185 |
Flow Rate [Litres per Minute] | Solar Radiation [W/m2] | Wind Speed [m/s] | Ambient Temperature [°C] |
---|---|---|---|
1.0–4.0 LPM | 538.98–1017.27 | 1.2–5.8 | 26.84–33.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouel Nasr, E.; Mahmoud, H.A.; El-Meligy, M.A.; Awwad, E.M.; Salunkhe, S.; Naranje, V.; Swarnalatha, R.; Abu Qudeiri, J.E. Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants. Sustainability 2023, 15, 6136. https://doi.org/10.3390/su15076136
Abouel Nasr E, Mahmoud HA, El-Meligy MA, Awwad EM, Salunkhe S, Naranje V, Swarnalatha R, Abu Qudeiri JE. Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants. Sustainability. 2023; 15(7):6136. https://doi.org/10.3390/su15076136
Chicago/Turabian StyleAbouel Nasr, Emad, Haitham A. Mahmoud, Mohammed A. El-Meligy, Emad Mahrous Awwad, Sachin Salunkhe, Vishal Naranje, R. Swarnalatha, and Jaber E. Abu Qudeiri. 2023. "Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants" Sustainability 15, no. 7: 6136. https://doi.org/10.3390/su15076136
APA StyleAbouel Nasr, E., Mahmoud, H. A., El-Meligy, M. A., Awwad, E. M., Salunkhe, S., Naranje, V., Swarnalatha, R., & Abu Qudeiri, J. E. (2023). Electrical Efficiency Investigation on Photovoltaic Thermal Collector with Two Different Coolants. Sustainability, 15(7), 6136. https://doi.org/10.3390/su15076136