Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = water budget tendency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3885 KiB  
Article
The Variation in the Water Level of Lake Baikal and Its Relationship with the Inflow and Outflow
by Valery N. Sinyukovich, Aleksandr G. Georgiadi, Pavel Y. Groisman, Oleg O. Borodin and Ilya A. Aslamov
Water 2024, 16(4), 560; https://doi.org/10.3390/w16040560 - 12 Feb 2024
Cited by 8 | Viewed by 4903
Abstract
Lake Baikal is the largest freshwater lake in the world, accounting for about 20% of the world’s fresh surface water. The lake’s outflow to the ocean occurs only via the Angara River, which has several hydroelectric power plants (HPPs) along its watercourse. The [...] Read more.
Lake Baikal is the largest freshwater lake in the world, accounting for about 20% of the world’s fresh surface water. The lake’s outflow to the ocean occurs only via the Angara River, which has several hydroelectric power plants (HPPs) along its watercourse. The first such HPP, Irkutsk HPP, was built in 1956 and is located 60 km from the Angara River’s source. After two years, the backwater from this HPP expanded to the lake shores and began raising the Baikal Lake level. Currently, there is a dynamic balance between the new lake level, the lake inflow from its tributaries, and the Angara River discharge through the Irkutsk HPP. However, both the Angara River discharge and the Baikal Lake level were distorted by the HPP construction. Thus, to understand the changes to the lake basin over the past century, we first needed to estimate naturalized lake levels that would be if no HPP was ever built. This was an important task that allowed (a) the actual impact of global changes on the regional hydrological processes to be estimated and (b) better management of the HPP itself to be provided through future changes. With these objectives in mind, we accumulated multi-year data on the observed levels of Lake Baikal, and components of its water budget (discharge of main tributaries and the Angara River, precipitation, and evaporation). Thereafter, we assessed the temporal patterns and degree of coupling of multi-year and intra-annual changes in the lake’s monthly, seasonal, and annual characteristics. The reconstruction of the average monthly levels of Lake Baikal and the Angara River water discharge after the construction of the Irkutsk HPP was based on the relationship of the fluctuations with the components of the Lake water budget before regulation. As a result, 123-year time series of “conditionally natural” levels of Lake Baikal and the Angara River discharge were reconstructed and statistically analyzed. Our results indicated high inertia in the fluctuations in the lake level. Additionally, we found a century-long tendency of increases in the lake level of about 15 cm per 100 years, and we quantified the low-frequency changes in Lake Baikal’s water levels, the discharge of the Angara River, and the main lake tributaries. An assessment of the impact of the Irkutsk HPP on the multi-year and intra-annual changes in the Lake Baikal water level and the Angara River discharge showed that the restrictions on the discharge through the HPP and the legislative limitations of the Lake Baikal level regime have considerably limited the fluctuations in the lake level. These fluctuations can lead to regulation violations and adverse regimes during low-water or high-water periods. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 5956 KiB  
Article
Radiative Regime According to the New RAD-MSU(BSRN) Complex in Moscow: The Roles of Aerosol, Surface Albedo, and Sunshine Duration
by Daria Piskunova, Natalia Chubarova, Aleksei Poliukhov and Ekaterina Zhdanova
Atmosphere 2024, 15(2), 144; https://doi.org/10.3390/atmos15020144 - 23 Jan 2024
Cited by 2 | Viewed by 1560
Abstract
The radiative budget is one of the key factors that influences climate change. The aim of this study was to analyze the radiative regime in Moscow using the RAD-MSU(BSRN) complex and to estimate the radiative effects of the main geophysical factors during the [...] Read more.
The radiative budget is one of the key factors that influences climate change. The aim of this study was to analyze the radiative regime in Moscow using the RAD-MSU(BSRN) complex and to estimate the radiative effects of the main geophysical factors during the 2021–2023 period. This complex is equipped and maintained according to the recommendations of the Baseline Surface Radiation Network; however, it is not a part of this network. In cloudless conditions, the decrease in global shortwave irradiance (Q) is about 18–22% due to the aerosol content with a pronounced change in the direct to diffuse ratio. In winter, the increase in Q is about 45 W/m2 (or 9%) at h = 30° due to a high surface albedo and reduced aerosol and water vapor contents, while the net shortwave irradiance (Bsh) demonstrates a significant decrease due to the prevailing effects of snow albedo. In cloudy conditions, a nonlinear dependence of Q and Bsh cloud transmittance on the relative sunshine duration is observed. The mean changes in Q for the 2021–2023 against the 1955–2020 period are characterized by negative anomalies (−22%) in winter and positive anomalies in summer (+3%) due to the changes in cloudiness. This is in line with the global tendencies in the long-term changes in shortwave irradiance in moderate climates in Europe in recent years. Full article
Show Figures

Figure 1

10 pages, 1598 KiB  
Article
Review of the Observed Energy Flow in the Earth System
by Chunlei Liu, Ni Chen, Jingchao Long, Ning Cao, Xiaoqing Liao, Yazhu Yang, Niansen Ou, Liang Jin, Rong Zheng, Ke Yang and Qianye Su
Atmosphere 2022, 13(10), 1738; https://doi.org/10.3390/atmos13101738 - 21 Oct 2022
Cited by 2 | Viewed by 2524
Abstract
The energy budget imbalance at the top of the atmosphere (TOA) and the energy flow in the Earth’s system plays an essential role in climate change over the global and regional scales. Under the constraint of observations, the radiative fluxes at TOA have [...] Read more.
The energy budget imbalance at the top of the atmosphere (TOA) and the energy flow in the Earth’s system plays an essential role in climate change over the global and regional scales. Under the constraint of observations, the radiative fluxes at TOA have been reconstructed prior to CERES (Clouds and the Earth’s Radiant Energy System) between 1985 and 2000. The total atmospheric energy divergence has been mass corrected based on ERA5 (the fifth generation ECMWF ReAnalysis) atmospheric reanalysis by a newly developed method considering the enthalpy removing of the atmospheric water vapor, which avoids inconsistencies due to the residual lateral total mass flux divergence in the atmosphere, ensuring the balances of the freshwater fluxes at the surface. The net surface energy flux (Fs) has been estimated using the residual method based on energy conservation, which is the difference between the net TOA radiative flux and the atmospheric energy tendency and divergence. The Fs is then verified directly and indirectly with observations, and results show that the estimated Fs in North Atlantic is superior to those from model simulations. This paper gives a brief review of the progress in the estimation of the observed energy flow in the Earth system, discusses some caveats of the existing method, and provides some suggestions for the improvements of the aforementioned data sets. Full article
(This article belongs to the Special Issue Advances in Atmospheric Sciences ‖)
Show Figures

Figure 1

19 pages, 5282 KiB  
Article
Forecasts of MJO during DYNAMO in a Coupled Tropical Channel Model: Impact of Planetary Boundary Layer Schemes
by Yun Hu, Xiaochun Wang, Jing-Jia Luo, Dongxiao Wang, Huiping Yan, Chaoxia Yuan and Xia Lin
Atmosphere 2022, 13(5), 666; https://doi.org/10.3390/atmos13050666 - 22 Apr 2022
Cited by 2 | Viewed by 2619
Abstract
It is challenging to predict the eastward-propagating Madden–Julian Oscillation (MJO) events across the Maritime Continent (MC) in models. We constructed an air–sea coupled numerical weather prediction model—a tropical channel model—to investigate the role of the planetary boundary layer (PBL) scheme on eastward-propagating and [...] Read more.
It is challenging to predict the eastward-propagating Madden–Julian Oscillation (MJO) events across the Maritime Continent (MC) in models. We constructed an air–sea coupled numerical weather prediction model—a tropical channel model—to investigate the role of the planetary boundary layer (PBL) scheme on eastward-propagating and non-propagating MJO precipitation events during the Dynamics of the MJO (DYNAMO) campaign period. Analysis of three hindcast experiments with different PBL schemes illustrates that the PBL scheme is crucial to simulating the eastward-propagating MJO events. The experiment with the University of Washington (UW) PBL scheme can predict the convection activity over the MC due to a good representation of moist static energy (MSE) tendency relatively well. The horizontal advection and the upward transport of moisture from the PBL to the free atmosphere play a major role in the MSE tendency ahead of MJO convection. The difference in the meridional component of MSE advection accounts for the different MSE budgets in the three hindcast experiments. A well-simulated meridional advection can transport the meridional water vapor to moisten the MC. Our results suggest that a proper PBL scheme with better simulated meridional water vapor distribution is crucial to predicting the eastward propagation of MJO events across the MC in the tropical channel model. Full article
Show Figures

Figure 1

20 pages, 3400 KiB  
Article
Integration of a Shallow Soda Lake into the Groundwater Flow System by Using Hydraulic Evaluation and Environmental Tracers
by Petra Baják, Katalin Hegedűs-Csondor, Mia Tiljander, Kirsti Korkka-Niemi, Heinz Surbeck, Bálint Izsák, Márta Vargha, Ákos Horváth, Tamás Pándics and Anita Erőss
Water 2022, 14(6), 951; https://doi.org/10.3390/w14060951 - 18 Mar 2022
Cited by 8 | Viewed by 3318
Abstract
Lake Velence is a shallow soda lake whose water level and water quality show a severely deteriorating tendency in recent years. Until recently, the groundwater component in the lake’s water budget has not been taken into consideration. To integrate the lake into the [...] Read more.
Lake Velence is a shallow soda lake whose water level and water quality show a severely deteriorating tendency in recent years. Until recently, the groundwater component in the lake’s water budget has not been taken into consideration. To integrate the lake into the groundwater flow system at the regional scale, methods of “basin hydraulics” were applied. In addition, 17 water samples were collected for δ2H and δ18O, and for ΣU, 226Ra and 222Rn activity measurements to use these parameters as environmental tracers of groundwater contribution. Groundwater mapping revealed that groundwater recharges in Velence Hills and the local elevations south of the lake, whereas discharge occurs by the lake’s shoreline and along surface watercourses. The results indicated that Lake Velence is the discharge point of local groundwater flow systems known to be more sensitive to climate changes and anthropogenic activities (e.g., contamination, overexploitation). Groundwater and lake water have similar uranium activity concentrations serving as another sign of groundwater inflow into the lake. Therefore, it is necessary to consider both the groundwater component in the lake’s water management and its vulnerability regarding local and short-term changes in the catchment area. Full article
Show Figures

Figure 1

14 pages, 4116 KiB  
Article
Tropical Atlantic Mixed Layer Buoyancy Seasonality: Atmospheric and Oceanic Physical Processes Contributions
by Ibrahima Camara, Juliette Mignot, Nicolas Kolodziejczyk, Teresa Losada and Alban Lazar
Atmosphere 2020, 11(6), 649; https://doi.org/10.3390/atmos11060649 - 18 Jun 2020
Viewed by 3220
Abstract
This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the [...] Read more.
This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the observed seasonal near-surface density tendencies. The results indicate that the heat flux is located poleward of 10° of latitude, which is at least three times greater than the freshwater flux that mainly controls mixed layer buoyancy. During boreal spring-summer of each hemisphere, the freshwater flux partly compensates the heat flux in terms of buoyancy loss while, during the fall-winter, they act together. Under the seasonal march of the Inter-tropical Convergence Zone and in coastal areas affected by the river, the contribution of ocean processes on the upper density becomes important. Along the north Brazilian coast and the Gulf of Guinea, horizontal and vertical processes involving salinity are the main contributors to an upper water change with a contribution of at least twice as much the temperature. At the equator and along the Senegal-Mauritanian coast, vertical processes are the major oceanic contributors. This is mainly due to the vertical gradient of temperature at the mixed layer base in the equator while the salinity one dominates along the Senegal-Mauritania coast. Full article
(This article belongs to the Special Issue Tropical Atlantic Variability)
Show Figures

Figure 1

17 pages, 17325 KiB  
Article
Measurement of Cloud Top Height: Comparison of MODIS and Ground-Based Millimeter Radar
by Juan Huo, Jie Li, Minzheng Duan, Daren Lv, Congzheng Han and Yongheng Bi
Remote Sens. 2020, 12(10), 1616; https://doi.org/10.3390/rs12101616 - 18 May 2020
Cited by 14 | Viewed by 4000
Abstract
Cloud top height (CTH) is an essential pareter for the general circulation model in understanding the impact of clouds on the Earth’s radiation budget and global climate change. This paper compares the CTH products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard [...] Read more.
Cloud top height (CTH) is an essential pareter for the general circulation model in understanding the impact of clouds on the Earth’s radiation budget and global climate change. This paper compares the CTH products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the Aqua and Terra satellites with ground-based Ka band radar data in Beijing from 2014 to 2017. The aim was to investigate the data accuracy and the difference in CTH measurements between passive satellite data and active ground-based radar data. The results show that MODIS, on average, underestimates CTH relative to radar by −1.08 ± 2.48 km, but with a median difference of −0.65 km and about 48% of differences are within 1 km. Statistically, MODIS CTHs which are greater than 6 km show lower discrepancy to radar CTH than those of MODIS CTHs less than 4 km. The CTH difference is independent of cloud fraction and cloud layer. It shows strong dependence on cloud depth, decreasing as cloud depth increases. There is a tendency for MODIS to underestimate high thin clouds but overestimate low thin clouds relative to radar. Total ozone, SO2, CO, NO2, aerosol PM10, total water vapor and temperature inversion show unobvious influences in the CTH discrepancy. It is shown that the MODIS CO2-slicing technique performs much better than IRW (infrared window) technique when cloud layer is higher than 2 km. The average difference calculated from all comparisons by CO2-slicing technique and IRW technique is 0.09 ± 1.58 km, and −2.20 ± 2.73 km, respectively. Full article
Show Figures

Graphical abstract

25 pages, 7124 KiB  
Article
Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters Region of China from Satellite and Meteorological Datasets
by Xiangyi Bei, Yunjun Yao, Lilin Zhang, Tongren Xu, Kun Jia, Xiaotong Zhang, Ke Shang, Jia Xu and Xiaowei Chen
Remote Sens. 2019, 11(14), 1633; https://doi.org/10.3390/rs11141633 - 10 Jul 2019
Cited by 12 | Viewed by 3375
Abstract
Terrestrial biophysical variables play an essential role in quantifying the amount of energy budget, water cycle, and carbon sink over the Three-River Headwaters Region of China (TRHR). However, direct field observations are missing in this region, and few studies have focused on the [...] Read more.
Terrestrial biophysical variables play an essential role in quantifying the amount of energy budget, water cycle, and carbon sink over the Three-River Headwaters Region of China (TRHR). However, direct field observations are missing in this region, and few studies have focused on the long-term spatiotemporal variations of terrestrial biophysical variables. In this study, we evaluated the spatiotemporal dynamics of biophysical variables including meteorological variables, vegetation, and evapotranspiration (ET) over the TRHR, and analyzed the response of vegetation and ET to climate change in the period from 1982 to 2015. The main input gridded datasets included meteorological reanalysis data, a satellite-based vegetation index dataset, and the ET product developed by a process-based Priestley–Taylor algorithm. Our results illustrate that: (1) The air temperature and precipitation over the TRHR increased by 0.597 °C and 41.1 mm per decade, respectively, while the relative humidity and surface downward shortwave radiation declined at a rate of 0.9% and 1.8 W/m2 per decade during the period 1982–2015, respectively. We also found that a ‘dryer warming’ tendency and a ‘wetter warming’ tendency existed in different areas of the TRHR. (2) Due to the predominant ‘wetter warming’ tendency characterized by the increasing temperature and precipitation, more than 56.8% of areas in the TRHR presented a significant increment in vegetation (0.0051/decade, p < 0.05), particularly in the northern and western meadow areas. When energy was the limiting factor for vegetation growth, temperature was a considerably more important driving factor than precipitation. (3) The annual ET of the TRHR increased by 3.34 mm/decade (p < 0.05) with an annual mean of 230.23 mm/year. More importantly, our analysis noted that ET was governed by terrestrial water supply, e.g., soil moisture and precipitation in the arid region of the western TRHR. By contrast, atmospheric evaporative demand derived by temperature and relative humidity was the primary controlling factor over the humid region of the southeastern TRHR. It was noted that land management activities, e.g., irrigation, also had a nonnegligible impact on the temporal and spatial variation of ET. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Monitoring of Protected Areas)
Show Figures

Graphical abstract

14 pages, 2534 KiB  
Article
Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China
by Jie Zeng, Guilin Han and Jian-Ming Zhu
Water 2019, 11(5), 1076; https://doi.org/10.3390/w11051076 - 23 May 2019
Cited by 15 | Viewed by 4337
Abstract
The dissolved molybdenum (Mo) contents and Mo isotope in water samples from the upper Xijiang River (XJR), draining the carbonate terrain, southwest China, are reported to investigate the seasonal and spatial variations, sources, ion budget, and isotopic fractionation of dissolved Mo. The results [...] Read more.
The dissolved molybdenum (Mo) contents and Mo isotope in water samples from the upper Xijiang River (XJR), draining the carbonate terrain, southwest China, are reported to investigate the seasonal and spatial variations, sources, ion budget, and isotopic fractionation of dissolved Mo. The results show that the Mo concentrations (5.3–18.9 nmol/L) exhibit an extensive variation along the mainstream without significant spatial pattern, but the Mo concentrations are slightly higher in the dry season than in the wet season caused by the dilution effect. There is a slight spatial tendency for δ98/95Mo to become higher along the mainstream (0.51–1.78%), while the seasonal variations in δ98/95Mo values of NPR (Nanpanjiang River) reach and BPR (Beipanjiang River) reach can be identified higher in the dry season but lower in the wet season. Based on the hydro-geochemical analysis, the sources of dissolved Mo are identified as the carbonates and sulfide/sulfate minerals weathering with a seasonal contribution. Moreover, our results suggest there is no significant Mo isotopic fractionation during weathering and riverine transportation. The calculation of Mo budget demonstrates that the dissolved δ98/95Mo of river draining the carbonate terrain is underestimated, which could significantly influence the redox history of oceans by Mo isotope model. Full article
(This article belongs to the Special Issue Hydraulic Behavior of Karst Aquifers)
Show Figures

Figure 1

17 pages, 8239 KiB  
Article
Use of WRF-Hydro over the Northeast of the US to Estimate Water Budget Tendencies in Small Watersheds
by Marcelo A. Somos-Valenzuela and Richard N. Palmer
Water 2018, 10(12), 1709; https://doi.org/10.3390/w10121709 - 22 Nov 2018
Cited by 15 | Viewed by 7359
Abstract
In the Northeast of the US, climate change will bring a series of impacts on the terrestrial hydrology. Observations indicate that temperature has steadily increased during the last century, including changes in precipitation. This study implements the Weather Research and Forecasting (WRF)-Hydro framework [...] Read more.
In the Northeast of the US, climate change will bring a series of impacts on the terrestrial hydrology. Observations indicate that temperature has steadily increased during the last century, including changes in precipitation. This study implements the Weather Research and Forecasting (WRF)-Hydro framework with the Noah-Multiparameterization (Noah-MP) model that is currently used in the National Water Model to estimate the tendencies of the different variables that compounded the water budget in the Northeast of the US from 1980 to 2016. We use North American Land Data Assimilation System-2 (NLDAS-2) climate data as forcing, and we calibrated the model using 192 US Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating Streamflow II (Gages II) reference stations. We study the tendencies determining the Kendall-Theil slope of streamflow using the maximum three-day average, seven-day minimum flow, and the monotonic five-day mean times series. For the water budget, we determine the Kendall-Theil slope for changes in monthly values of precipitation, surface and subsurface runoff, evapotranspiration, transpiration, soil moisture, and snow accumulation. The results indicate that the changes in precipitation are not being distributed evenly in the components of the water budget. Precipitation is decreasing during winter and increasing during the summer, with the direct impacts being a decrease in snow accumulation and an increase in evapotranspiration. The soil tends to be drier, which does not translate to a rise in infiltration since the surface runoff aggregated tendencies are positive, and the underground runoff aggregated tendencies are negative. The effects of climate change on streamflows are buffered by larger areas, indicating that more attention needs to be given to small catchments to adapt to climate change. Full article
(This article belongs to the Special Issue Catchment Modelling)
Show Figures

Figure 1

Back to TopTop