Next Article in Journal
Effects of Afforestation on Soil Bulk Density and pH in the Loess Plateau, China
Next Article in Special Issue
Flash Flood Simulation for Ungauged Catchments Based on the Distributed Hydrological Model
Previous Article in Journal
Groundwater Contamination, Subsurface Processes, and Remediation Methods: Overview of the Special Issue of Water on Groundwater Contamination and Remediation
Previous Article in Special Issue
Soil Erosion Modelling and Risk Assessment in Data Scarce Rift Valley Lake Regions, Ethiopia
Open AccessArticle

Use of WRF-Hydro over the Northeast of the US to Estimate Water Budget Tendencies in Small Watersheds

Butamallín Research Center for Global Change, Universidad de la Frontera, Temuco 4780000, Chile
DOI/USGS Northeast Climate Adaptation Science Center, Amherst, MA 01003, USA
Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
Author to whom correspondence should be addressed.
Water 2018, 10(12), 1709;
Received: 31 October 2018 / Revised: 12 November 2018 / Accepted: 14 November 2018 / Published: 22 November 2018
(This article belongs to the Special Issue Catchment Modelling)
PDF [8239 KB, uploaded 27 November 2018]
  |     |  


In the Northeast of the US, climate change will bring a series of impacts on the terrestrial hydrology. Observations indicate that temperature has steadily increased during the last century, including changes in precipitation. This study implements the Weather Research and Forecasting (WRF)-Hydro framework with the Noah-Multiparameterization (Noah-MP) model that is currently used in the National Water Model to estimate the tendencies of the different variables that compounded the water budget in the Northeast of the US from 1980 to 2016. We use North American Land Data Assimilation System-2 (NLDAS-2) climate data as forcing, and we calibrated the model using 192 US Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating Streamflow II (Gages II) reference stations. We study the tendencies determining the Kendall-Theil slope of streamflow using the maximum three-day average, seven-day minimum flow, and the monotonic five-day mean times series. For the water budget, we determine the Kendall-Theil slope for changes in monthly values of precipitation, surface and subsurface runoff, evapotranspiration, transpiration, soil moisture, and snow accumulation. The results indicate that the changes in precipitation are not being distributed evenly in the components of the water budget. Precipitation is decreasing during winter and increasing during the summer, with the direct impacts being a decrease in snow accumulation and an increase in evapotranspiration. The soil tends to be drier, which does not translate to a rise in infiltration since the surface runoff aggregated tendencies are positive, and the underground runoff aggregated tendencies are negative. The effects of climate change on streamflows are buffered by larger areas, indicating that more attention needs to be given to small catchments to adapt to climate change. View Full-Text
Keywords: US Northeast; WRF-Hydro; water budget tendency; regional hydrology US Northeast; WRF-Hydro; water budget tendency; regional hydrology

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Somos-Valenzuela, M.A.; Palmer, R.N. Use of WRF-Hydro over the Northeast of the US to Estimate Water Budget Tendencies in Small Watersheds. Water 2018, 10, 1709.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top