Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = water atomisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4789 KB  
Article
Flash-Boiling Effect on Water–Methanol Blends Sprays Generated Under Low Injection Pressure
by Łukasz Boruc and Łukasz Jan Kapusta
Appl. Sci. 2026, 16(1), 106; https://doi.org/10.3390/app16010106 - 22 Dec 2025
Viewed by 202
Abstract
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray [...] Read more.
This study presents experimental research on the injection of water–methanol mixtures under both subcooled and superheated conditions. Injecting superheated liquid results in the formation of flash-boiling sprays, generating smaller droplets compared to non-superheated conditions. This improved atomisation leads to a decrease in spray penetration and evaporation time. The mixture of water and methanol is a non-azeotropic mixture, meaning it exhibits different bubble and dew points. Non-azeotropic mixtures are the most common type of mixture. This study investigates the atomisation characteristics of water–methanol mixtures injected under low pressure (0.5 MPa) into a quiescent ambience. The experiments were conducted in an open environment at 1-atm absolute pressure and 22 °C temperature. Five different compositions were tested, including pure water, pure methanol (99.9%), and mixtures with water–methanol volume ratios of 75/25, 50/50, and 25/75. Using laser shadowgraphy with long-distance microscopy, droplet size distributions were measured at four distinct locations. Under high superheat conditions, the droplet distribution was similar for all mixtures. The Sauter mean diameter (SMD) rapidly decreased for all liquids when subjected to superheated injection. This led to the conclusion that the composition of non-azeotropic substances has little significance in terms of droplet diameter at high superheat. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

19 pages, 3999 KB  
Article
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
by Marvin Diamantopoulos and Christoph Hochenauer
Appl. Sci. 2025, 15(14), 7992; https://doi.org/10.3390/app15147992 - 17 Jul 2025
Cited by 1 | Viewed by 1043
Abstract
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic [...] Read more.
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter d32 of 570 × 10−6m, at an ALR of 8532 and a zero-shear viscosity of 15.9 Pa s. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions. Full article
Show Figures

Figure 1

19 pages, 1675 KB  
Article
Composition-Property Relationships of pH-Responsive Poly[(2-vinylpyridine)-co-(butyl methacrylate)] Copolymers for Reverse Enteric Coatings
by Kyle Brewer and Anton Blencowe
Pharmaceutics 2023, 15(2), 454; https://doi.org/10.3390/pharmaceutics15020454 - 30 Jan 2023
Cited by 3 | Viewed by 3985
Abstract
The taste-masking of bitter-tasting active pharmaceutical ingredients is key to ensuring patient compliance when producing oral pharmaceutical formulations. This is generally achieved via the incorporation of pH-responsive, reverse enteric polymers, that prevent the dissolution of the formulation in the oral environment, but rapidly [...] Read more.
The taste-masking of bitter-tasting active pharmaceutical ingredients is key to ensuring patient compliance when producing oral pharmaceutical formulations. This is generally achieved via the incorporation of pH-responsive, reverse enteric polymers, that prevent the dissolution of the formulation in the oral environment, but rapidly mediate it within the gastric environment. Reverse enteric polymers are commonly applied as coatings on oral dosage forms via spray atomisation (e.g., fluidised-bed spray coating), and generally exhibit the most efficient taste-masking. However, currently used reverse enteric coatings require high mass gains (% w/w) during coating to mediate taste-masking, and thereby exhibit delayed release within the gastric environment. Therefore, there remains a need for the development of new reverse enteric coatings, that can efficiently taste-mask at low mass gains and maintain rapid release characteristics within the gastric environment. Herein we report the synthesis and evaluation of a series of addition copolymers of 2-vinylpyridine and butyl methacrylate, methyl methacrylate and isobornyl methacrylate. The thermal, solubility, and water absorption properties of the copolymers were effectively tuned by altering the mol% fraction of the constitutive monomers. Based on their physical properties, selected copolymers were preliminarily evaluated for their compatibility with fluidised-bed spray coating, and effectiveness as taste-masking reverse enteric coatings. The copolymers poly[(2-vinylpyridine)-co-(butyl methacrylate)] (mol% ratio 40:60) and poly[(2-vinylpyridine)-co-(butyl methacrylate)-co-(methyl methacrylate)] (mol% ratio 40:50:10) were found to exhibit excellent taste-masking properties following fluidised-bed spray coating onto Suglets® sugar spheres. Suglets® bearing a film coating of either copolymer (5.2–6.5% w/w mass gain) were found to effectively impede the release of a model drug formulation for up to 72 h in a simulated salivary environment, and rapidly release it (<10 min) within a simulated gastric environment. The results demonstrated the potential of poly[(2-vinylpyridine)-co-(butyl methacrylate)] copolymers to form effectively taste-masked, reverse enteric dosage forms, and suggested that these copolymers may provide improved performance compared to currently available polymers. Full article
Show Figures

Graphical abstract

14 pages, 3625 KB  
Article
Influence of Micro- and Macrostructure of Atomised Water Jets on Ammonia Absorption Efficiency
by Wiktor Wąsik, Małgorzata Majder-Łopatka and Wioletta Rogula-Kozłowska
Sustainability 2022, 14(15), 9693; https://doi.org/10.3390/su14159693 - 6 Aug 2022
Cited by 3 | Viewed by 2401
Abstract
Ammonia has a very wide range of applications. Its worldwide production exceeds 230 million tonnes per year. Due to its properties, ammonia causes a serious threat to human life and health when released uncontrolled into the environment. Research carried out in the word [...] Read more.
Ammonia has a very wide range of applications. Its worldwide production exceeds 230 million tonnes per year. Due to its properties, ammonia causes a serious threat to human life and health when released uncontrolled into the environment. Research carried out in the word shows that this substance may be effectively neutralised by absorption in water. The aim of research described in this paper is to determine the influence of key parameters of the micro- and macrostructure of water streams on the course of the ammonia absorption process. During the studies, different types of water nozzles were used, with similar efficiency and supply pressure, but characterised by different parameters of the micro- and macrostructure of the produced stream. The experiments were divided into two stages. In the first one, the macro- and microparameters of the streams were measured, while in the second one, the changes in ammonia concentration were established during delivering spray jet generation by different nozzles. Among the basic parameters of the macrostructure, the spray angle and liquid distribution in the jet (spray intensity) were determined, while for the microstructure, the droplet size distribution and mean droplet diameters were measured. Ammonia concentration was measured by means of a photoionisation detector (PID). In order to evaluate the absorption efficiency of different water spray jets, the apparent absorption rate (kp) and the half-time of concentration reduction (t½) in the kinetic range were established. The study has confirmed that atomised water jets are an effective method for neutralising ammonia released into the environment. The research has a practical aspect and shows that the structure of atomised water streams influence the course of the absorption process. Increasing the spray angle in a conical stream leads to an improvement in the quality of water atomisation and helps increase ammonia absorption. Moreover, it was also observed that for the absorption of spatial ammonia clouds, use should be made of nozzles generating streams with full spray cones and high uniformity of spray and dispersion. Full article
Show Figures

Figure 1

14 pages, 4051 KB  
Article
Effect of Physical Properties of an Emulsion Pesticide on the Atomisation Process and the Spatial Distribution of Droplet Size
by Wanting Yang, Weidong Jia, Mingxiong Ou, Wei Zhong, Li Jiang and Xiaowen Wang
Agriculture 2022, 12(7), 949; https://doi.org/10.3390/agriculture12070949 - 30 Jun 2022
Cited by 24 | Viewed by 3038
Abstract
In the process of applying plant protection sprays, the atomisation process of complex pesticide components such as emulsion pesticides is different from that of water. Indeed, emulsion is often used as an additive to spray to reduce drift. Therefore, this study investigated the [...] Read more.
In the process of applying plant protection sprays, the atomisation process of complex pesticide components such as emulsion pesticides is different from that of water. Indeed, emulsion is often used as an additive to spray to reduce drift. Therefore, this study investigated the different morphological characteristics that occur between emulsions and water during atomisation at different pressures through visualisation experiments and interpreting the formation of structural differences between the two fragmentation mechanisms. The effect of liquid sheet structure on droplet size distribution was analysed in three-dimensional space, not only from one spatial perspective, but how it alters the morphological structures of liquid sheet leading to different potential droplet drift characteristics. It was found that the smaller the liquid sheet disturbance, the more concentrated the droplet size distribution, the more intense the liquid sheet disturbance, the more dispersed the droplet size distribution. The addition of 0.02% emulsion significantly reduced the proportion of V100 (the ratio of volume with drops smaller than 100 μm to the total volume of all droplets) from 21.33% to 10.24%, and the higher the emulsion concentration, the smaller the V100. The ability of the emulsion to increase V400 decreased with increasing pressure. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 6042 KB  
Article
A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission
by Koji Kakutani, Yoshinori Matsuda, Teruo Nonomura, Yoshihiro Takikawa, Takeshi Takami and Hideyoshi Toyoda
Int. J. Environ. Res. Public Health 2021, 18(9), 4934; https://doi.org/10.3390/ijerph18094934 - 6 May 2021
Cited by 19 | Viewed by 4911
Abstract
The purpose of this study was to develop a simple electrostatic apparatus to precipitate virus particles spread via droplet transmission, which is especially significant in the context of the recent coronavirus disease 2019 (COVID-19) pandemic. The bacteriophage φ6 of Pseudomonas syringae was used [...] Read more.
The purpose of this study was to develop a simple electrostatic apparatus to precipitate virus particles spread via droplet transmission, which is especially significant in the context of the recent coronavirus disease 2019 (COVID-19) pandemic. The bacteriophage φ6 of Pseudomonas syringae was used as a model of the COVID-19 virus because of its similar structure and safety in experiments. The apparatus consisted of a spiked, perforated stainless plate (S-PSP) linked to a direct-current voltage generator to supply negative charge to the spike tips and a vessel with water (G-water) linked to a ground line. The S-PSP and G-water surface were paralleled at a definite interval. Negative charge supplied to the spike tips positively polarised the G-water by electrostatic induction to form an electric field between them in which ionic wind and negative ions were generated. Bacteriophage-containing water was atomised with a nebuliser and introduced into the electric field. The mist particles were ionised by the negative ions and attracted to the opposite pole (G-water). This apparatus demonstrated a prominent ability to capture phage-containing mist particles of the same sizes as respiratory droplets and aerosols regardless of the phage concentration of the mist particles. The trapped phages were successfully sterilised using ozone bubbling. Thus, the present study provides an effective system for eliminating droplet transmission of viral pathogens from public spaces. Full article
Show Figures

Figure 1

21 pages, 13756 KB  
Article
Effects of Powder Atomisation on Microstructural and Mechanical Behaviour of L-PBF Processed Steels
by Marawan Abdelwahed, Riccardo Casati, Sven Bengtsson, Anna Larsson, Martina Riccio and Maurizio Vedani
Metals 2020, 10(11), 1474; https://doi.org/10.3390/met10111474 - 5 Nov 2020
Cited by 12 | Viewed by 3313
Abstract
In this research, steel alloys based on the Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni systems have been designed, produced by different atomisation techniques, and processed by laser powder bed fusion (L-PBF) to investigate their microstructural and mechanical behaviour. Both gas atomisation and water atomisation were [...] Read more.
In this research, steel alloys based on the Fe-Cr-Mo, Fe-Cr-Mn and Fe-Cr-Mo-Mn-Ni systems have been designed, produced by different atomisation techniques, and processed by laser powder bed fusion (L-PBF) to investigate their microstructural and mechanical behaviour. Both gas atomisation and water atomisation were considered for powder preparation. The resulting different flowability of powders, hence a different densification behaviour during processing, could be compensated by tuning the L-PBF parameters and by the application of a post treatment to improve flowability of the water atomised powders. In agreement with thermodynamic calculations, small-size oxide-based nonmetallic inclusions of the type SiO2, MnO-SiO2, Cr2O3-SiO2 were found within the steel matrix and on the fracture surfaces of the water atomised L-PBF alloys, featuring higher amounts of oxygen than the gas-atomised steels. Analyses on microstructure and hardness of the hardenable as-built steels suggested that during laser processing, the multilayer L-PBF structure undergoes an in-situ tempering treatment. Furthermore, the mechanical properties of the L-PBF steels could be widely tuned depending on the post-thermal treatment conditions. Full article
(This article belongs to the Special Issue Materials for Sustainable Beam-Based Additive Manufacturing)
Show Figures

Figure 1

17 pages, 7317 KB  
Article
Analysis of Iron Oxide Reduction Kinetics in the Nanometric Scale Using Hydrogen
by Swathi K. Manchili, Johan Wendel, Eduard Hryha and Lars Nyborg
Nanomaterials 2020, 10(7), 1276; https://doi.org/10.3390/nano10071276 - 30 Jun 2020
Cited by 27 | Viewed by 3679
Abstract
Iron nanopowder could be used as a sintering aid to water-atomised steel powder to improve the sintered density of metallurgical (PM) compacts. For the sintering process to be efficient, the inevitable surface oxide on the nanopowder must be reduced at least in part [...] Read more.
Iron nanopowder could be used as a sintering aid to water-atomised steel powder to improve the sintered density of metallurgical (PM) compacts. For the sintering process to be efficient, the inevitable surface oxide on the nanopowder must be reduced at least in part to facilitate its sintering aid effect. While appreciable research has been conducted in the domain of oxide reduction of the normal ferrous powder, the same cannot be said about the nanometric counterpart. The reaction kinetics for the reduction of surface oxide of iron nanopowder in hydrogen was therefore investigated using nonisothermal thermogravimetric (TG) measurements. The activation energy values were determined from the TG data using both isoconversional Kissinger–Akahira–Sunose (KAS) method and the Kissinger approach. The values obtained were well within the range of reported data. The reaction kinetics of Fe2O3 as a reference material was also depicted and the reduction of this oxide proceeds in two sequential stages. The first stage corresponds to the reduction of Fe2O3 to Fe3O4, while the second stage corresponds to a complete reduction of oxide to metallic Fe. The activation energy variation over the reduction process was observed and a model was proposed to understand the reduction of surface iron oxide of iron nanopowder. Full article
Show Figures

Figure 1

26 pages, 5949 KB  
Article
Microscopic Imaging Spray Diagnostics under High Temperature Conditions: Application to Urea–Water Sprays
by Christian Lieber, Rainer Koch and Hans-Jörg Bauer
Appl. Sci. 2019, 9(20), 4403; https://doi.org/10.3390/app9204403 - 17 Oct 2019
Cited by 15 | Viewed by 4899
Abstract
The quantitative investigation of droplet laden turbulent flows at high temperature conditions is of great importance for numerous applications. In this study, an experiment was set up for investigation of evaporating urea–water sprays, which are relevant for the effective reduction of nitrogen oxide [...] Read more.
The quantitative investigation of droplet laden turbulent flows at high temperature conditions is of great importance for numerous applications. In this study, an experiment was set up for investigation of evaporating urea–water sprays, which are relevant for the effective reduction of nitrogen oxide emissions of diesel engines using Selective Catalytic Reduction. A shadowgraphy setup is pushed to its limits in order to detect droplet diameters as small as 4 μ m and droplet velocities up to 250 m s 1 . In addition, the operating conditions of the gaseous flow of up to 873 K and 0.6 M Pa are an additional challenge. Due to the high temperature environment, image quality is prone to be compromised by Schlieren effects and astigmatism phenomena. A water-cooled window and an astigmatism correction device are installed in order to correct these problems. The results to be presented include characteristics of the turbulent gas flow as well as detailed spray characteristics at different positions downstream of the atomiser. It is demonstrated that the velocity of the gas can be approximated by the velocity of the smallest detectable droplets with sufficient accuracy. Furthermore, the statistical analysis of velocity fluctuations provides data for predicting the turbulent dispersion of the droplets. Full article
(This article belongs to the Special Issue Progress in Spray Science and Technology)
Show Figures

Graphical abstract

Back to TopTop