Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,926)

Search Parameters:
Keywords = water and N use efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1990 KB  
Article
Heavy Metal Adsorption and Desorption Behavior of Raw Sepiolite: A Study on Cd(II), Cu(II), and Ni(II) Ions
by Anna Bourliva
Minerals 2025, 15(11), 1110; https://doi.org/10.3390/min15111110 - 25 Oct 2025
Viewed by 326
Abstract
This study investigates the adsorption behavior of natural sepiolite for the removal of cadmium (Cd2+), copper (Cu2+), and nickel (Ni2+) ions from aqueous solutions under batch conditions. The sepiolite was extensively characterized prior to adsorption experiments. Mineralogical [...] Read more.
This study investigates the adsorption behavior of natural sepiolite for the removal of cadmium (Cd2+), copper (Cu2+), and nickel (Ni2+) ions from aqueous solutions under batch conditions. The sepiolite was extensively characterized prior to adsorption experiments. Mineralogical analysis confirmed the presence of crystalline sepiolite, while DTG-TGA revealed thermal stability with distinct weight loss linked to surface and structural water. BET analysis indicated a high surface area of 194 m2/g and a mesoporous structure favorable for adsorption. Batch experiments evaluated the effects of contact time, pH, adsorbent dosage, and initial metal concentration. Adsorption was highly pH-dependent, with maximum removal near-neutral pH values. Higher adsorbent dosages reduced in a lower adsorption capacity per unit mass, primarily because the fixed amount of solute was distributed over a larger number of available sites, leading to unsaturation of the adsorbent surface and possible particle agglomeration. Isotherm modeling revealed that the Langmuir model provided the best fit, indicating monolayer adsorption with maximum adsorption capacities of 15.95 mg/g for Cd(II), 37.31 mg/g for Cu(II), and 17.83 mg/g for Ni(II). Langmuir constants indicated favorable interactions. Kinetics showed rapid adsorption within the first hour, reaching equilibrium at 240 min through surface adsorption and intraparticle diffusion. Cu(II) exhibited the fastest uptake, while Ni(II) adsorbed more slowly, suggesting differences in diffusion rates among the metal ions. Desorption using 0.1 N HCl achieved over 80% efficiency for all metals, confirming sepiolite reusability. Overall, raw sepiolite is an effective, low-cost adsorbent for removing potentially toxic elements from water. Full article
Show Figures

Figure 1

17 pages, 1832 KB  
Article
Integrated Monitoring of Water Quality, Metal Ions, and Antibiotic Residues, with Isolation and Optimization of Enrofloxacin-Degrading Bacteria in American Shad (Alosa sapidissima) Aquaculture Systems
by Yao Zheng, Jiajia Li, Ampeire Yona, Xiaofei Wang, Xue Li, Julin Yuan and Gangchun Xu
J. Xenobiot. 2025, 15(6), 174; https://doi.org/10.3390/jox15060174 - 22 Oct 2025
Viewed by 218
Abstract
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, [...] Read more.
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, and ENR-degrading bacteria were isolated from the culture environment to explore their potential use in bioremediation. Findings showed that NH3-N and total suspended solids (TSS) exceeded recommended standards at all sampling sites. Elevated levels of Li, Na (except S1), Fe, Ni (except S2 and S4), Sr, and Cu were found at site S3. Site S5 recorded the highest concentrations of Al, As, and Pb, while Cd was most abundant at S6. In sediments, S5 showed higher levels of Mg, K (except S3), Ca, Cr, Mn, Fe, Ni, As, Pb, Cu, and Zn (except S3). ENR and CIP were detected in all water and sediment samples, with a 100% detection rate. The highest ENR (16.68–3215.95 mg·kg−1) and CIP (3.90–459.60 mg·kg−1) concentrations in water occurred at site S6, following a seasonal pattern of autumn > winter > summer > spring. In sediments, the maximum ENR (41.43–133.67 mg·kg−1) and CIP (12.36–23.71 mg·kg−1) levels were observed in spring. Two ENR-degrading bacterial strains were successfully isolated and identified as Enterococcus and Bacillus. Optimal degradation was achieved at 30 °C, pH 8.0, 6% inoculum, and 3000 Lux, resulting in a 64.2% reduction in ENR after 72 h. Under slightly different conditions (25 °C, pH 10), degradation reached 58.5%. This study provides an efficient strain resource for the bioremediation of ENR pollution in the aquaculture water of American shad. Full article
Show Figures

Graphical abstract

29 pages, 3223 KB  
Article
Injectable In Situ Thermoreversible Gel Depot System of Lidocaine Nanoemulsion for Prolonged Anesthetic Activity in Dental and Operative Procedures
by Shery Jacob, Fathima Sheik Kather, Shakta Mani Satyam, Sai H. S. Boddu, Firas Assaf, Tasnem H. Abdelfattah Allam and Anroop B. Nair
Pharmaceutics 2025, 17(10), 1355; https://doi.org/10.3390/pharmaceutics17101355 - 20 Oct 2025
Viewed by 456
Abstract
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit [...] Read more.
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit patient compliance and procedural efficiency. This study aimed to develop and evaluate a novel injectable nanoemulsion-based in situ gel depot system of LD to provide prolonged anesthetic activity. Methods: LD-loaded nanoemulsions were formulated by high-shear homogenization followed by probe sonication, employing Miglyol 812 N (oil phase), a combination of Tween 80 and soy lecithin (surfactant–co-surfactant), glycerin, and deionized water (aqueous phase). The selected nanoemulsion (S1) was dispersed in a thermoreversible poloxamer solution to form a nanoemulgel. The preparation was evaluated for globule diameter and uniformity, zeta potential, surface morphology, pH, drug content, stability, rheological behavior, injectability, and in vitro drug release. Analgesic efficacy was assessed via tail-flick and thermal paw withdrawal latency tests in Wistar rats. Cardiovascular safety was monitored using non-invasive electrocardiography and blood pressure measurements. Results: The developed nanoemulsions demonstrated a spherical shape, nanometer size (206 nm), high zeta-potential (−66.67 mV) and uniform size distribution, with a polydispersity index of approximately 0.40, while the nanoemulgel demonstrated appropriate thixotropic properties for parenteral administration. In vitro release profiles showed steady LD release (5 h), following the Higuchi model. In vivo studies showed significantly prolonged analgesic effects lasting up to 150 min (2.5 h) compared to standard LD-HCl injection (p < 0.001), with no adverse cardiovascular effects observed. Conclusions: The developed injectable LD in situ nanoemulgel offers a promising, patient-friendly alternative for prolonged anesthetic delivery in dental and operative procedures, potentially reducing the need for repeated injections and enhancing procedural comfort. Full article
Show Figures

Graphical abstract

22 pages, 9395 KB  
Article
Alteration of Nitrogen Fertilizer Forms Optimizes Nitrogen Balance in Drip-Irrigated Winter Wheat Systems of Northern China by Reducing Gaseous Nitrogen Losses
by Ruixuan Hao, Junyi Mu, Xiaoting Xie, Qiqi Ha, Yuanyuan Wang, Wenbo Zhai, Peng Wu, Aixia Ren, Zhiqiang Gao, Ru Guo and Min Sun
Agriculture 2025, 15(20), 2164; https://doi.org/10.3390/agriculture15202164 - 18 Oct 2025
Viewed by 257
Abstract
Winter wheat covers approximately 2.21 × 108 ha globally, making it the most widely cultivated cereal crop in the world. In recent years, integrated water and fertilizer management has significantly improved winter wheat yield and nitrogen use efficiency; however, quantitative assessments of [...] Read more.
Winter wheat covers approximately 2.21 × 108 ha globally, making it the most widely cultivated cereal crop in the world. In recent years, integrated water and fertilizer management has significantly improved winter wheat yield and nitrogen use efficiency; however, quantitative assessments of nitrogen cycling under different fertilizer forms in such high-yield systems remain limited. From 2022 to 2024, a two-year field experiment was conducted in drip-irrigated winter wheat fields in northern China. Four nitrogen fertilizer forms were applied: nitrate nitrogen fertilizer (NON), ammonium nitrogen fertilizer (NHN), amide nitrogen fertilizer (CON), and urea ammonium nitrate fertilizer (UAN), along with an unfertilized control (CK). Compared with NON, NHN, and CON, UAN reduced cumulative N2O emissions by 10.40–15.64% and NH3 volatilization by 2.04–9.33% (p < 0.05). It also increased the leaf area index and biomass accumulation at maturity, as well as grain yield (3.70–10.28%), nitrogen harvest index (4.58–12.88%), and nitrogen use efficiency (12.14–39.25%) (p < 0.05). Furthermore, UAN significantly decreased the net nitrogen surplus (24.18–45.70%) and nitrogen balance values (25.64–55.82%) (p < 0.05). Correlation analysis indicated that the reduction in nitrogen balance was primarily attributed to lower N2O emissions and improved nitrogen use efficiency (p < 0.05). In conclusion, the application of urea ammonium nitrate under integrated water–fertilizer management achieved higher yield, greater efficiency, and environmentally sustainable production in drip-irrigated winter wheat systems in northern China. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

23 pages, 9038 KB  
Article
Synergistic Effects of Nitrogen Application Enhance Drought Resistance in Machilus yunnanensis Seedlings
by Jiawei Zhou, Mei Luo, Peng Ning, Songyin Gong, Xiaomao Cheng and Xiaoxia Huang
Plants 2025, 14(20), 3194; https://doi.org/10.3390/plants14203194 - 17 Oct 2025
Viewed by 275
Abstract
Drought poses a severe challenge to ornamental tree growth under climate change. This study employed a 2 × 4 factorial design—with two soil moisture levels (80–85% vs. 50–55% field capacity) and four nitrogen treatments (NN: no nitrogen; NO: nitrate nitrogen; NH: ammonium nitrogen; [...] Read more.
Drought poses a severe challenge to ornamental tree growth under climate change. This study employed a 2 × 4 factorial design—with two soil moisture levels (80–85% vs. 50–55% field capacity) and four nitrogen treatments (NN: no nitrogen; NO: nitrate nitrogen; NH: ammonium nitrogen; MN: mixed nitrate-ammonium nitrogen)—to examine the efficacy of nitrogen addition in enhancing drought resistance in Machilus yunnanensis seedlings. Results revealed that (1) drought stress leads to the acidification of rhizosphere soil, resulting in a decrease of 7.67%, 29.51%, 14.07%, and 44.09% in the content of soil organic matter (SOM), available phosphorus (AP), available potassium (AK), and dissolved organic nitrogen (DON), respectively. This adverse change directly impacts plant growth; it is manifested by a significant reduction of 45% in total chlorophyll (T Chl), a 67.18% decrease in photosynthetic rate (Pn), as well as reductions of 10.61%, 27.59%, 14.81%, and 12.35% in plant height, leaf, stem, and total biomass, respectively. (2) The application of all three forms of nitrogen helps alleviate drought stress, as evidenced by the recovery of photosynthetic levels and the reduction in malondialdehyde (MDA) content, with ammonium-N exhibiting superior efficacy over nitrate-N across most metrics. (3) Strikingly, the mixed nitrogen form outperformed singular applications by demonstrating multifaceted advantages: It maintains soil pH levels and rhizosphere nutrient availability under drought conditions, particularly with a 10.99% and 33.44% increase in dissolved organic nitrogen and available phosphorus content, respectively. More importantly, under drought stress, it increased leaf water content by 20.31%, nitrogen use efficiency by 15.67%, and photosynthetic nitrogen use efficiency by 439.44%, promoted the accumulation of osmolytes, while upregulating antioxidant enzyme activity to counteract osmotic imbalance and alleviate oxidative damage. These findings highlight that nitrogen supplementation, particularly mixed nitrogen application, enhances drought resistance in M. yunnanensis, offering a viable management strategy to sustain urban tree landscapes in water-limited environments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

42 pages, 4891 KB  
Article
Numerical Study on the Effects of Surface Shape and Rotation on the Flow Characteristics and Heat Transfer Behavior of Tandem Cylinders in Laminar Flow Regime
by Yafei Li, Fan Shi, Changfa Wang, Jianjian Xin and Jiawang Li
Modelling 2025, 6(4), 132; https://doi.org/10.3390/modelling6040132 - 17 Oct 2025
Viewed by 258
Abstract
Tandem cylinders, widely used in heat exchangers, water storage units, and electronic cooling, require optimized flow and heat transfer to enhance engineering performance. However, the combined effects of various factors in tandem configurations remain insufficiently explored. This study proposes an innovative approach that [...] Read more.
Tandem cylinders, widely used in heat exchangers, water storage units, and electronic cooling, require optimized flow and heat transfer to enhance engineering performance. However, the combined effects of various factors in tandem configurations remain insufficiently explored. This study proposes an innovative approach that integrates multiple parameters to systematically investigate the influence of surface pattern characteristics and rotational speed on the fluid dynamics and heat transfer performance of tandem cylinders. Numerical simulations are conducted to evaluate the effects of various pattern dimensions (w/D = 0.12–0.18), surface shapes (square, triangular, and dimpled grooves), rotational speeds (|Ω| ≤ 1), and frequencies (N = 2–10) on fluid flow and heat transfer efficiency at Re = 200. The study aims to establish the relationship between the complexity of the coupling effects of the considered parameters and the heat transfer behavior as well as fluid dynamic variations. The results demonstrate that, under stationary conditions, triangular grooves exhibit larger vortex structures compared to square grooves. When a positive rotation is applied, coupled with increases in w/D and N, square grooves develop a separation vortex at the front. Furthermore, the square and dimpled grooves exhibit significant phase control capabilities in the time evolution of lift and drag forces. Under conditions of w/D = 0.12 and w/D = 0.18, the CL of the upstream cylinder decreases by 17.2% and 20.8%, respectively, compared to the standard smooth cylinder. Moreover, the drag coefficient CD of the downstream cylinder is reduced to half of the initial value of the upstream cylinder. As the surface amplitude increases, the CD of the smooth cylinder surpasses that of the other groove types, with an approximate increase of 8.8%. Notably, at Ω = −1, the downstream square-grooved cylinder’s CL is approximately 12.9% lower than that of other groove types, with an additional 6.86% reduction in amplitude during counterclockwise rotation. When N increases to 10, the of the upstream square-grooved cylinder at w/D = 0.18 decreases sharply by 20.9%. Conversely, the upstream dimpled-groove cylinder significantly enhances at w/D = 0.14 and N = 4. However, the upstream triangular-groove cylinder achieves optimal stability at w/D ≥ 0.16. Moreover, at w/D = 0.18 and N = 6, square grooves show the most significant enhancement in vortex mixing, with an increase of approximately 42.7%. Simultaneously, the local recirculation zones in dimpled grooves at w/D = 0.14 and N = 6 induce complex and geometry-dependent heat transfer behaviors. Under rotational conditions, triangular and dimpled grooves exhibit superior heat transfer performance at N = 6 and w/D = 0.18, with TPI values exceeding those of square grooves by 33.8% and 28.4%, respectively. A potential underlying mechanism is revealed, where groove geometry enhances vortex effects and heat transfer. Interestingly, this study proposes a correlation that reveals the relationship between the averaged Nusselt number and groove area, rotational speed, and frequency. These findings provide theoretical insights for designing high-efficiency heat exchangers and open up new avenues for optimizing the performance of fluid dynamic systems. Full article
20 pages, 4257 KB  
Article
Optimized High-Input Practice Enhances Wheat Productivity and Water Use Efficiency by Improving Root Distribution and Canopy Photosynthesis
by Haicheng Xu, Fei Zhao, Yuhai Tang, Qiqin Xue, Jingmin Zhang, Dianliang Peng and Xinglong Dai
Plants 2025, 14(20), 3176; https://doi.org/10.3390/plants14203176 - 16 Oct 2025
Viewed by 275
Abstract
Integrated agronomic optimization can synergistically enhance crop yields and resource use efficiency. This strategy incorporates suitable sowing date, planting density, and fertilization and irrigation management adapted to the local environment. However, there is a dearth of research on how integrated agronomic optimization practices [...] Read more.
Integrated agronomic optimization can synergistically enhance crop yields and resource use efficiency. This strategy incorporates suitable sowing date, planting density, and fertilization and irrigation management adapted to the local environment. However, there is a dearth of research on how integrated agronomic optimization practices enhance wheat productivity and water use efficiency (WUE) by improving population root distribution and canopy production capacity. Therefore, a two-year field experiment was conducted in the North China Plain. The experiment involved three integrated agronomic practice treatments with four replications: local farmer’s agronomic practice (FP); high-input agronomic practice (HP), which aimed to explore wheat yield potential regardless of resource input costs; and optimized high-input agronomic practice (OP), which was adapted to local conditions to revamp the wheat production system. Compared to FP and HP, OP involved a later sowing date, higher planting density, and lower N fertilizer or irrigation inputs. Results showed that OP significantly improved grain yield, WUE, N fertilizer productivity (NFP), and net profit compared to FP (p < 0.05). Although OP’s yield was 4.25% lower than that of HP, it achieved a 22.99% increase over FP. Compared to HP, OP increased average WUE, NFP, and net profit by 3.08%, 25.68%, and 9.12%, respectively. Over the 2 years, OP promoted deeper roots and higher root length density, which enhanced the uptake of soil water and N. Furthermore, the high transpiration under OP, required for canopy productivity, was sustained by efficient water extraction from deep soil. Additionally, the reduction in unproductive evaporation loss was attributed to increased population density and reduced irrigation. Moreover, OP sustained a higher canopy photosynthetic rate for a longer duration, facilitated by greater post-anthesis N uptake. These improvements in resource acquisition, combined with sustained photosynthetic capacity, ultimately led to more efficient water and N utilization and high grain yield. These indicate that integrated optimization of agronomic practices used under OP can synergistically enhance wheat yield, WUE, and NFP. This was achieved by enlarging and deepening population root distribution while supporting high canopy photosynthesis. Our findings may provide actionable insights into establishing high-yielding, efficient, and profitable wheat production systems in the region. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

21 pages, 13748 KB  
Article
Integrated Assessment of Anthropogenic Carbon, Nitrogen, and Phosphorus Inputs: A Panjin City Case Study
by Tianxiang Wang, Simiao Wang, Li Ye, Guangyu Su, Tianzi Wang, Rongyue Ma and Zipeng Zhang
Water 2025, 17(20), 2962; https://doi.org/10.3390/w17202962 - 15 Oct 2025
Viewed by 242
Abstract
Energy consumption and environmental pollution pose significant challenges to sustainable development. This study develops a comprehensive coupled framework model that advances the quantitative integration of carbon (C), nitrogen (N), and phosphorus (P) cycles driven by multiple anthropogenic pollution sources. This paper used Panjin [...] Read more.
Energy consumption and environmental pollution pose significant challenges to sustainable development. This study develops a comprehensive coupled framework model that advances the quantitative integration of carbon (C), nitrogen (N), and phosphorus (P) cycles driven by multiple anthropogenic pollution sources. This paper used Panjin city as a case study to analyze the dynamic changes and interconnections among C, N, and P. Results indicated that net anthropogenic carbon inputs (NAIC) increased by 33% from 2016–2020, while net anthropogenic nitrogen inputs (NAIN) and net anthropogenic phosphorus inputs (NAIP) decreased by 14% and 28%, respectively. The primary driver of NAIC was energy consumption, while wetlands were the dominant carbon sequestration sink. Agricultural production was identified as the primary source of NAIN and NAIP, and approximately 4.5% of NAIN and 2.9% of NAIP were discharged into receiving water bodies. We demonstrate that human activities and natural processes exhibit dual attributes, producing positive and negative environmental effects. The increase in carbon emissions drives economic growth and industrial restructuring; however, the enhanced economic capacity also strengthens the ability to mitigate pollution through environmental protection measures. Similarly, natural ecosystems, including forests and grasslands, contribute to carbon sequestration and the release of non-point source pollution. The comprehensive environmental impact assessment of C, N, and P revealed that the comprehensive environmental index for Panjin city exhibited an improved trend. The factors of energy structure, energy efficiency, and economic scale promoted NAIC growth, with the economic scale factor alone accounting for 93% of the total increment. Environmental efficiency factor and population size factor were the primary drivers in reducing NAIN and NAIP discharges into the receiving water bodies. We propose a novel management model, ecological restoration, clean energy utilization, resource recycling, and pollution source reduction to achieve systemic governance of C, N, and P inputs. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification, 2nd Edition)
Show Figures

Figure 1

16 pages, 1984 KB  
Article
Development and Evaluation of a Slow-Release Occluded Fertilizer Employing Functionalized Biosolids as a Support Matrix
by Rodrigo Ramírez Palacios, Nora Restrepo-Sánchez, Rosember Ramirez, Isabel Acevedo Restrepo and Carlos Peláez Jaramillo
Plants 2025, 14(20), 3154; https://doi.org/10.3390/plants14203154 - 13 Oct 2025
Viewed by 279
Abstract
In this study, a slow-release fertilizer (SRF) was obtained by occluding NPK 10–10–10 into two matrices and compared with the uncoated mineral fertilizer (F). The first matrix, FOMI, used biosolids/paper sludge at 3:1 (w/w); the second, FOMII, used biosolids/clay [...] Read more.
In this study, a slow-release fertilizer (SRF) was obtained by occluding NPK 10–10–10 into two matrices and compared with the uncoated mineral fertilizer (F). The first matrix, FOMI, used biosolids/paper sludge at 3:1 (w/w); the second, FOMII, used biosolids/clay at 1:1 (w/w). Materials and pellets were physiochemically and microbiologically characterized. Release kinetics were evaluated in water and in soil columns packed with acid-washed sand; matrix-only controls and sand blanks confirmed negligible background N, P, and K. The uncoated mineral fertilizer (F) showed a rapid burst, whereas occlusion slowed release. FOMII reduced release relative to F, and FOMI produced the slowest, controlled profiles: kinetic fits yielded lower k values for FOMI than for FOMII and F. FOMI also exhibited higher water-retention capacity (WRC) and cation-exchange capacity (CEC), consistent with its greater organic-matter content. In soil, FOMI released less than 15% at 48 h and no more than 75% at 30 d, meeting European Committee for Standardization (CEN) SRF criteria; FOMII released faster than FOMI but slower than F, which exceeded 90% within the test period. Therefore, FOMI is a biodegradable, low-cost SRF that improves fertilizer-use efficiency while returning organic matter to agricultural soils; FOMII shows intermediate yet beneficial performance. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

27 pages, 47363 KB  
Article
Spatial–Temporal Evolution and Influencing Factors of Land-Use Carbon Emissions: A Case Study of Jiangxi Province
by Tengfei Zhao, Xian Zhou, Zhiyu Jian, Jianlin Zhu, Mengba Liu and Shiping Yin
Appl. Sci. 2025, 15(20), 10986; https://doi.org/10.3390/app152010986 - 13 Oct 2025
Viewed by 252
Abstract
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon [...] Read more.
Land-use carbon emissions denote the release or sequestration of greenhouse gases (e.g., CO2, N2O) resulting from human land-use activities, with land-use changes exerting a major influence on land-use carbon emissions. Revealing the coupling mechanism between land-use changes and carbon emissions is of crucial theoretical significance for achieving “dual carbon” goals and mitigating global climate change. Based on the land-use change data of Jiangxi Province, this study explored the Spatial–temporal relationship between land-use carbon emissions and land-use changes in Jiangxi Province from 2000 to 2020 using a model of land-use dynamic degrees, a model of land-use transfer matrices, and the IPCC carbon emission accounting model. In this study, the factors influencing changes in land-use carbon emissions were comprehensively analyzed using an LMDI model and the Tapio decoupling model. The results indicated that: (1) Jiangxi Province’s land-use changes show a “two-increase, four-decrease” trend, with construction land and unused land experiencing the most significant shifts, while water, grassland, cropland, and forestland changes stayed near 1%. (2) Net land-use carbon emissions exhibit a rapid then gradual increase, with higher emissions in the north/south and lower levels in central regions. While overall land-use carbon emission intensity is declining, per capita emissions continue to rise. (3) Land-use carbon emission changes are primarily driven by emission intensity, land-use structure, efficiency, and economic level. In Jiangxi, economic growth mainly increases land-use carbon emissions, while land-use efficiency enhancement counters this trend. Jiangxi Province shows weak land-use carbon emission–economic growth decoupling, with land-use carbon emissions rising more slowly than economic growth. This study not only provides a typical case analysis and methodological framework for understanding the carbon emission effects of human–land relationships in rapidly urbanizing regions but also offers a specific scientific basis and policy insights for Jiangxi Province and other similar regions to formulate differentiated territorial spatial planning, promote ecological protection and restoration, and achieve green and low-carbon development pathways under the “dual carbon” goals. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

20 pages, 1316 KB  
Article
Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
by Chaoyin Dou, Chen Qian, Yuping Lv and Yidi Sun
Agronomy 2025, 15(10), 2372; https://doi.org/10.3390/agronomy15102372 - 10 Oct 2025
Viewed by 450
Abstract
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a [...] Read more.
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a promising solution for increasing rice yield and maintaining soil fertility. However, the success of this irrigation method largely depends on its scheduling. This study examined the threshold effects of AWD on rice growth, yield, and soil nutrient availability in the Sanjiang Plain, a representative black soil region in Northeast China. A two-year trial was conducted from 2023 to 2024 at the Qixing National Agricultural Science and Technology Park. “Longjing 31”, a local cultivar, was selected as the experimental material. The lower limit of soil water content under AWD was set as the experimental factor, with three levels: −10 kPa (LA), −20 kPa (MA), and −30 kPa (SA). The local traditional irrigation practice, continuous flooding, served as the control treatment (CK). Indicators of rice growth and soil nutrient content were measured and analyzed at five growth stages: tillering, jointing, heading, milk ripening, and yellow ripening. The results showed that, compared to CK, AWD had minimal impact on rice plant height and tiller number, with no significant differences (p > 0.05). However, AWD affected leaf area index (LAI), shoot dry matter (SDM), yield, and soil nutrient availability. In 2023, control had little effect on rice plant height and tiller number among the different irrigation treatments. The LAI of LA was 11.1% and 22.5% higher than that of MA and SA, respectively, while SDM in LA was 10.5% and 17.2% higher than in MA and SA. Significant differences were found between LA and MA, as well as between LA and SA, whereas no significant differences were observed between MA and SA. The light treatment is beneficial to the growth and development of rice, while the harsh growth environment caused by the moderate and severe treatments is unfavorable to rice growth. The average contents of nitrate nitrogen (NO3-N), available phosphorus (AP), and available potassium (AK) in LA were 11.4%, 8.4%, and 9.3% higher than in MA, and 16.7%, 11.5%, and 15.0% higher than in SA, respectively. Significant differences were observed between LA and SA. This is because the light treatment facilitates the release of available nutrients in the soil, while the moderate and severe treatments hinder this process. Although panicle number per unit area and grain number per panicle in LA were 7.5% and 2.3% higher than in MA, and 10.8% and 2.2% higher than in SA, these differences were not statistically significant. Seed setting rate and thousand-grain weight showed little variation across irrigation treatments. The yield of LA was 10,233.3 kg hm−2, 9.1% and 14.1% higher than that of MA and SA, respectively, with significant differences observed. Compared with the moderate and severe treatments, the light treatment increases indicators such as the number of panicles per unit area, grains per panicle, thousand-grain weight, and seed setting rate, resulting in significant differences among the treatments. Water use efficiency (WUE) decreased as the control level increased. The WUE of all AWD irrigation treatments was significantly higher than that of the control treatment (CK). Compared with CK, AWD reduces evaporation, percolation, and other water losses, leading to a significant decrease in water consumption. Meanwhile, the yield remains basically unchanged or even slightly increases, thus resulting in a higher WUE than CK. The trends in rice growth, soil nutrient indicators, and WUE in 2024 were generally consistent with those observed in 2023. In 2024, the yield of LA was 9832.7 kg hm−2, 14.9% and 17.3% higher than that of MA and SA, respectively, with significant differences observed. Based on the results, the following conclusions are drawn: (1) AWD irrigation can affect the growth of rice, alter the status of available nutrients in the soil, and thereby cause changes in yield and WUE; (2) LA is the optimal treatment for increasing rice yield, improving the availability of soil available nutrients, and improving WUE; (3) Both MA and SA enhanced WUE; however, these practices negatively impacted rice growth and the concentration of soil available nutrients, leading to a concurrent decline in yield. To increase rice yield and maintain soil fertility, LA, with an irrigation upper limit of 30 mm and a soil water potential threshold of −10 kPa, is recommended for the Sanjiang Plain region. Full article
Show Figures

Figure 1

16 pages, 8519 KB  
Article
The Oxidation and Corrosion Resistance of AlCrNbSiTiN Multi-Principal Element Nitride Coatings
by Zhenbo Lan, Jiangang Deng, Heng Xu, Zhuolin Xu, Zhengqi Wen, Wei Long, Lei Zhang, Ruoxi Wang, Jie Liu and Yanming Chen
Materials 2025, 18(20), 4663; https://doi.org/10.3390/ma18204663 - 10 Oct 2025
Viewed by 362
Abstract
Multi-principal element nitrides have great application potential in protective coatings. However, the investigation of the oxidation and corrosion resistance of multi-principal element nitride coatings is still insufficient. The synthesis and high-temperature performance of AlCrNbSiTiN multi-principal element nitride coatings fabricated through optimized arc ion [...] Read more.
Multi-principal element nitrides have great application potential in protective coatings. However, the investigation of the oxidation and corrosion resistance of multi-principal element nitride coatings is still insufficient. The synthesis and high-temperature performance of AlCrNbSiTiN multi-principal element nitride coatings fabricated through optimized arc ion plating (AIP) were explored. Leveraging the high ionization efficiency and ion kinetic energy characteristic of AIP, coatings with significantly fewer internal defects were obtained. These coatings demonstrate superior mechanical properties, including a maximum hardness of 36.5 GPa and critical crack propagation resistance (CPR) values approaching 2000 N2. Optimal coatings exhibited exceptional water vapor corrosion resistance (5.15 at% O after 200 h). The coatings prepared at −150 V had the optimal corrosion resistance, with the coating resistance and corrosion current density being 1.68 × 104 Ω·cm2 and 0.79 μA·cm−2, respectively. AlCrNbSiTiN coatings produced under these optimized AIP conditions exhibit remarkably high-temperature oxidation, highlighting their potential for use in demanding engineering applications. Full article
(This article belongs to the Special Issue Advanced Science and Technology of High Entropy Materials)
Show Figures

Figure 1

18 pages, 5469 KB  
Article
Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes
by Lijuan Wang, Hanbo Wang, Tieqiang Wang and Daozhi Gong
Agronomy 2025, 15(10), 2363; https://doi.org/10.3390/agronomy15102363 - 9 Oct 2025
Viewed by 481
Abstract
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments [...] Read more.
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments were implemented across two growing seasons: control (CK), high-N (H), medium-N (M), and low-N (L) nitrogen fertilizer applications in soil solution (SS) and autumn–winter (AW) systems. Results demonstrated that reduced nitrogen inputs significantly decreased soil electrical conductivity and soil nitrogen retention by 88% and 83% in SS and AW, respectively, while reducing soil residual nitrate nitrogen. The tomato yield decreased by 14–26% under low fertilizer treatment, while fruit quality was substantially enhanced, with soluble solid content increasing by 56% in SS and 217% in AW for the L treatment compared to the CK. Nitrogen-use efficiency improved by 54.7% and 34.78% in SS and AW, respectively, demonstrating superior resource utilization under reduced fertilizer applications. Principal component analysis revealed that fruit quality was primarily influenced by soluble solid content, organic acid, total soluble solids, and sugar–acid ratio. Gray relational analysis identified the L treatment (361.62 kg ha−1 in SS and 182.6 kg ha−1 in AW) as optimal for comprehensive performance evaluation. The findings demonstrate that strategic nitrogen reduction effectively balances production benefits with environmental sustainability, providing a practical framework for sustainable nitrogen management in controlled environment agriculture. Full article
Show Figures

Figure 1

19 pages, 2428 KB  
Article
OsPIP2;1 Positively Regulates Rice Tolerance to Water Stress Under Coupling of Partial Root-Zone Drying and Nitrogen Forms
by Chunyi Kuang, Ziying Han, Xiang Zhang, Xiaoyuan Chen, Zhihong Gao and Yongyong Zhu
Int. J. Mol. Sci. 2025, 26(19), 9782; https://doi.org/10.3390/ijms26199782 - 8 Oct 2025
Viewed by 377
Abstract
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In [...] Read more.
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In this study, gene cloning and CRISPR-Cas9 technologies were employed to construct overexpression and knockout vectors of the OsPIP2;1 gene, which were then transformed into rice (cv. Meixiangzhan 2). Three water treatments were set: normal irrigation (CK); partial root-zone drying (PRD); and 10% PEG-simulated water stress (PEG), combined with a nitrogen form ratio of ammonium nitrogen (NH4+) to nitrate nitrogen (NO3) at 50:50 (A50/N50) for the coupled treatment of rice seedlings. The results showed that under the coupled treatment of PRD and the aforementioned nitrogen form, the expression level of the OsPIP2;1 gene in roots was upregulated by 0.62-fold on the seventh day, while its expression level in leaves was downregulated by 1.84-fold. Overexpression of OsPIP2;1 enabled Meixiangzhan 2 to maintain a higher abscisic acid (ABA) level under different water conditions, which helped rice reduce water potential and enhance water absorption. Compared with the CK treatment, overexpression of OsPIP2;1 increased the superoxide dismutase (SOD) activity of rice under PRD by 26.98%, effectively alleviating tissue damage caused by excessive accumulation of O2. The physiological and biochemical characteristics of OsPIP2;1-overexpressing rice showed correlations under PRD and A50/N50 nitrogen form conditions, with WUE exhibiting a significant positive correlation with transpiration rate, chlorophyll content, nitrogen content, and Rubisco enzyme activity. Overexpression of OsPIP2;1 could promote root growth and increase the total biomass of rice plants. The application of the OsPIP2;1 gene in rice genetic engineering modification holds great potential for improving important agricultural traits of crops. This study provides new insights into the mechanism by which the AQP family regulates water use in rice and has certain significance for exploring the role of AQP genes in rice growth and development as well as in response to water stress. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 - 4 Oct 2025
Viewed by 672
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

Back to TopTop