Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Measurements and Calculations
2.3.1. Measurement of Soil EC, Soil Nitrate Nitrogen and Calculation of NUE
2.3.2. Plant Height and Biomass
2.3.3. Measurement of Yield, Fruit Quality, and Economic Benefit
2.4. Data Analysis
3. Results
3.1. Soil EC and Soil Nitrate Nitrogen
3.2. Plant Height and Biomass
3.3. Yield, Fruit Quality, and Economic Benefit
3.4. Water and Nitrogen Utilization and Economic Benefit
4. Discussion
4.1. Effect of Irrigation and Nitrogen Fertilization on Soil Environment
4.2. Effect of Irrigation and Nitrogen Fertilization on Growth of Tomatoes
4.3. Effect of Irrigation and Nitrogen Fertilization on Yield and Quality of Tomatoes
4.4. Effect of Irrigation and Nitrogen Fertilization on NUE and Economic Benefit
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2022. [Google Scholar]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef]
- Jensen, A.; Mogensen, L.; van der Werf, H.M.G.; Xie, Y.; Kristensen, H.L.; Knudsen, M.T. Environmental Impacts and Potential Mitigation Options for Organic Open-Field Vegetable Production in Denmark Assessed through Life Cycle Assessment. Sustain. Prod. Consum. 2024, 46, 132–145. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of Nitrogen Application Rate and Irrigation Regime on Growth, Yield, and Water-Nitrogen Use Efficiency of Drip-Irrigated Winter Wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Noulas, C.; Torabian, S.; Qin, R. Crop Nutrient Requirements and Advanced Fertilizer Management Strategies. Agronomy 2023, 13, 2017. [Google Scholar] [CrossRef]
- He, F.; Chen, Q.; Jiang, R.; Chen, X.; Zhang, F. Yield and Nitrogen Balance of Greenhouse Tomato (Lycopersicum esculentum Mill.) with Conventional and Site-Specific Nitrogen Management in Northern China. Nutr. Cycl. Agroecosyst. 2007, 77, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Sheng, H.; Wang, X.; Zhao, H.; Feng, K. Excessive Nitrogen Fertilizer Application Causes Rapid Degradation of Greenhouse Soil in China. Pol. J. Environ. Stud. 2022, 31, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, Y.; Chen, Z.; Wang, X.; Huang, B. Comprehensive Assessments of Soil Fertility and Environmental Quality in Plastic Greenhouse Production Systems. Geoderma 2021, 385, 114899. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, Y.; Wang, Y.; Wan, L.; Wang, J.; Butterbach-Bahl, K.; Lin, S. Conventional Flooding Irrigation and over Fertilization Drives Soil pH Decrease Not Only in the Top- but Also in Subsoil Layers in Solar Greenhouse Vegetable Production Systems. Geoderma 2020, 363, 114156. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Bi, L.; Wang, Y.; Fan, J.; Zhang, F.; Hou, X.; Cheng, M.; Hu, W.; Wu, L.; et al. Multi-Objective Optimization of Water and Fertilizer Management for Potato Production in Sandy Areas of Northern China Based on TOPSIS. Field Crops Res. 2019, 240, 55–68. [Google Scholar] [CrossRef]
- He, Z.; Li, M.; Cai, Z.; Zhao, R.; Hong, T.; Yang, Z.; Zhang, Z. Optimal Irrigation and Fertilizer Amounts Based on Multi-Level Fuzzy Comprehensive Evaluation of Yield, Growth and Fruit Quality on Cherry Tomato. Agric. Water Manag. 2021, 243, 106360. [Google Scholar] [CrossRef]
- Jalpa, L.; Mylavarapu, R.; Hochmuth, G.; Wright, A.; van Santen, E. Apparent Recovery and Efficiency of Nitrogen Fertilization in Tomato Grown on Sandy Soils. HortTechnology 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of Growth, Fruit Yield, Quality and Water Productivity of Greenhouse Tomato to Deficit Drip Irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Chormova, D.; Kavvadias, V.; Okello, E.; Shiel, R.; Brandt, K. Nitrogen Application Can Be Reduced without Affecting Carotenoid Content, Maturation, Shelf Life and Yield of Greenhouse Tomatoes. Plants 2023, 12, 1553. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Liu, L.; Chen, S.; Bai, Y.; Li, N. Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato. Water 2022, 14, 3665. [Google Scholar] [CrossRef]
- Nie, K.; Bai, Q.; Chen, C.; Zhang, M.; Li, Y. DMPP and Polymer-Coated Urea Promoted Growth and Increased Yield of Greenhouse Tomatoes. Horticulturae 2022, 8, 472. [Google Scholar] [CrossRef]
- Wei, Z.; Du, T.; Li, X.; Fang, L.; Liu, F. Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes. Front. Plant Sci. 2018, 9, 328. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Liu, S.P.; Zhang, S.W.; Li, Y. Effects of the Coupling of Microbial Fertilizers and Chemical Nitrogen Fertilizers on Greenhouse Tomato (Solanum lycopersicum L.) Growth and Yield. Appl. Ecol. Environ. Res. 2025, 23, 5561–5596. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Luo, J.; Zhang, Y.; Jiang, N.; Khattak, W.A. Transcriptome Analysis of Sugar and Acid Metabolism in Young Tomato Fruits under High Temperature and Nitrogen Fertilizer Influence. Front. Plant Sci. 2023, 14, 1197553. [Google Scholar] [CrossRef]
- Mao, X.; Gu, J.; Wang, F.; Wang, K.; Liu, R.; Hong, Y.; Wang, Y.; Han, F. Yield, Quality, and Nitrogen Leaching of Open-Field Tomato in Response to Different Nitrogen Application Measures in Northwestern China. Plants 2024, 13, 924. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, B.; Zhang, Z.; Li, K.; Wang, J.; Chen, J.; Papadakis, G. A Critical Review of the Status of Current Greenhouse Technology in China and Development Prospects. Appl. Sci. 2024, 14, 5952. [Google Scholar] [CrossRef]
- DB 13/T 5668-2023; Fertilizer Application Limits for Vegetable Production. Hebei Provincial Administration for Market Regulation: Beijing, China, 2023.
- Wang, D.; Li, G.; Mo, Y.; Cai, M.; Bian, X. Evaluation of Optimal Nitrogen Rate for Corn Production under Mulched Drip Fertigation and Economic Benefits. Field Crops Res. 2018, 216, 225–233. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S.; Tong, Y. Optimising Nitrogen Fertilisation: A Key to Improving Nitrogen-Use Efficiency and Minimising Nitrate Leaching Losses in an Intensive Wheat/Maize Rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Luo, L.; Ma, Q.; Ma, Q.; Hui, X.; Wang, S.; Liu, J.; Wang, Z. Monitoring Wheat Nitrogen Requirement and Top Soil Nitrate for Nitrate Residue Controlling in Drylands. J. Clean. Prod. 2019, 241, 118372. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zhao, W.; Zheng, J.; Guo, J.; Xiang, Y.; Wu, L. Combined Effects of Irrigation Level and Fertilization Practice on Yield, Economic Benefit and Water-Nitrogen Use Efficiency of Drip-Irrigated Greenhouse Tomato. Agric. Water Manag. 2022, 262, 107401. [Google Scholar] [CrossRef]
- Hendricks, G.S.; Shukla, S.; Roka, F.M.; Sishodia, R.; Obreza, T.; Hochmuth, G.J.; Colee, J. Economic and Environmental Consequences of Overfertilization under Extreme Weather Conditions. J. Soil Water Conserv. 2019, 74, 160–171. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.; Li, F.; Sun, J.; Wang, Y.; Sun, C. Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing Irrigation Frequency and Amount to Balance Yield, Fruit Quality and Water Use Efficiency of Greenhouse Tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Bélanger, J.M.R.; Jocelyn Paré, J.R.; Sigouin, M. Chapter 2 High Performance Liquid Chromatography (HPLC): Principles and Applications. In Techniques and Instrumentation in Analytical Chemistry; Paré, J.R.J., Bélanger, J.M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 37–59. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Wang, Z.; Rangaiah, G.P. Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front Obtained by Multiobjective Optimization. Ind. Eng. Chem. Res. 2017, 56, 560–574. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the Effects of Irrigation and Fertilization on Tomato Fruit Yield and Quality: A Principal Component Analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef]
- Amin, A.E.E.A.Z. Effect of Co-Applying Different Nitrogen Fertilizers with Bone Char on Enhancing Phosphorus Release in Calcium Carbonate-Rich Soil: An Incubation Study. J. Soil Sci. Plant Nutr. 2023, 23, 1565–1575. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil Environmental Quality in Greenhouse Vegetable Production Systems in Eastern China: Current Status and Management Strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Lin, S.; Wang, Y.; Lian, X.; Zhao, Y.; Li, Y.; Du, J.; Wang, Z.; Wang, J.; Butterbach-Bahl, K. Drip Fertigation Significantly Reduces Nitrogen Leaching in Solar Greenhouse Vegetable Production System. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Kianpoor Kalkhajeh, Y.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Bruun Hansen, H.C. Environmental Soil Quality and Vegetable Safety under Current Greenhouse Vegetable Production Management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Behr, J.H.; Kuhl-Nagel, T.; Sommermann, L.; Moradtalab, N.; Chowdhury, S.P.; Schloter, M.; Windisch, S.; Schellenberg, I.; Maccario, L.; Sørensen, S.J.; et al. Long-Term Conservation Tillage with Reduced Nitrogen Fertilization Intensity Can Improve Winter Wheat Health via Positive Plant–Microorganism Feedback in the Rhizosphere. FEMS Microbiol. Ecol. 2024, 100, fiae003. [Google Scholar] [CrossRef]
- Muhammad, I.; Yang, L.; Ahmad, S.; Farooq, S.; Al-Ghamdi, A.A.; Khan, A.; Zeeshan, M.; Elshikh, M.S.; Abbasi, A.M.; Zhou, X.-B. Nitrogen Fertilizer Modulates Plant Growth, Chlorophyll Pigments and Enzymatic Activities under Different Irrigation Regimes. Agronomy 2022, 12, 845. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Wang, Y.; Wang, X.-C.; Rengel, Z.; Zhang, W.-J.; Shu, L.-Z. Alternate Partial Root-Zone Drip Irrigation with Nitrogen Fertigation Promoted Tomato Growth, Water and Fertilizer-Nitrogen Use Efficiency. Agric. Water Manag. 2020, 233, 106049. [Google Scholar] [CrossRef]
- Li, B.; Wim, V.; Shukla, M.K.; Du, T. Drip Irrigation Provides a Trade-off between Yield and Nutritional Quality of Tomato in the Solar Greenhouse. Agric. Water Manag. 2021, 249, 106777. [Google Scholar] [CrossRef]
- Song, Q.; Fu, H.; Shi, Q.; Shan, X.; Wang, Z.; Sun, Z.; Li, T. Overfertilization Reduces Tomato Yield under Long-Term Continuous Cropping System via Regulation of Soil Microbial Community Composition. Front. Microbiol. 2022, 13, 952021. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Liang, Y.; Dai, Z.; Zhao, Y.; Shi, Y.; Gao, J.; Hou, L.; Zhang, Y.; Ahammed, G.J. Improving the Yield and Quality of Tomato by Using Organic Fertilizer and Silicon Compared to Reducing Chemical Nitrogen Fertilization. Agronomy 2024, 14, 966. [Google Scholar] [CrossRef]
- Tanaka, Y.; Maruta, T.; Arima, K.; Nakayama, H.; Hamada, A.; Ishikawa, T. Simultaneous Knockout of VITAMIN C DEFECTIVE 2 and 3 Exacerbates Ascorbate Deficiency and Light Stress Sensitivity. J. Exp. Bot. 2025, eraf352. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán-Zuazo, V.H. Plant Water Use Efficiency for a Sustainable Agricultural Development. Agronomy 2022, 12, 1806. [Google Scholar] [CrossRef]
Soil Layer (cm) | Organic Matter (g/kg) | Total Nitrogen (g/kg) | Available P (mg/kg) | Available K (mg/kg) | Field Capacity (g/g) | pH | Bulk Density (g cm−3) |
---|---|---|---|---|---|---|---|
0–10 | 24.15 | 2.85 | 236.32 | 804.91 | 0.28 | 7.46 | 1.27 |
10–20 | 17.26 | 2.89 | 216.78 | 674.48 | 0.25 | 7.5 | 1.29 |
20–30 | 21.98 | 2.61 | 159.87 | 502.46 | 0.22 | 7.65 | 1.33 |
30–40 | 24.93 | 1.67 | 140.8 | 421.79 | 0.21 | 7.70 | 1.48 |
40–50 | 17.46 | 1.03 | 94.98 | 319.22 | 0.18 | 7.86 | 1.51 |
Soil Layer (cm) | Organic Matter (g/kg) | Total Nitrogen (g/kg) | Available P (mg/kg) | Available K (mg/kg) | Field Capacity (g/g) | pH | Bulk Density (g cm−3) |
---|---|---|---|---|---|---|---|
0–10 | 21.33 | 3.14 | 214.46 | 542.20 | 0.28 | 6.39 | 1.23 |
10–20 | 18.37 | 3.19 | 185.60 | 591.92 | 0.25 | 6.48 | 1.37 |
20–30 | 15.22 | 2.67 | 97.73 | 368.32 | 0.24 | 6.83 | 1.45 |
30–40 | 23.71 | 1.15 | 97.89 | 200.65 | 0.21 | 7.03 | 1.54 |
40–50 | 16.51 | 1.20 | 47.13 | 159.74 | 0.20 | 7.16 | 1.57 |
Treatment | SS | AW | ||
---|---|---|---|---|
N (kg ha−1) | Irrigation (mm) | N (kg ha−1) | Irrigation (mm) | |
CK | 657.5 | 276.81 | 336.09 | 171.42 |
H | 558.88 | 276.81 | 285.29 | 171.42 |
M | 460.25 | 276.81 | 217.85 | 171.42 |
L | 361.62 | 276.81 | 182.6 | 171.42 |
SNR (kg ha−1) | SS | AW |
---|---|---|
CK | 113.85 ± 4.66 a | 70.88 ± 2.16 a |
H | 62.42 ± 3.12 b | 43.74 ± 0.71 b |
M | 42.44 ± 1.29 c | 29.5 ± 1.63 c |
L | 13.81 ± 0.22 d | 12.47 ± 0.58 d |
Seasons | Treatments | SSC (%) | OA (%) | SSR | Vc (mg g−1) | TSS (%) |
---|---|---|---|---|---|---|
SS | CK | 1.75 ± 0.12 b | 7.54 ± 0.52 b | 2.61 ± 0.14 a | 0.56 ± 0.02 a | 3.45 ± 0.46 b |
H | 2.46 ± 0.33 a | 9.17 ± 0.57 b | 2.99 ±0.76 a | 0.65 ± 0.11 a | 3.78 ± 0.24 ab | |
M | 2.66 ± 0.15 a | 9.36 ± 1.01 ab | 3.98 ± 0.47 a | 0.74 ± 0.04 a | 3.99 ± 0.22 ab | |
L | 2.74 ± 0.04 a | 13.26 ± 2.57 a | 4.19 ± 0.67 a | 0.94 ± 0.28 a | 4.52 ± 0.12 a | |
AW | CK | 0.91 ± 0.04 c | 3.24 ± 0.12 c | 2.73 ± 0.61 a | 0.28 ± 0.05 a | 3.31 ± 0.53 b |
H | 1.16 ± 0.24 c | 4.61 ± 0.52 b | 2.36 ± 0.26 a | 0.35 ± 0.05 a | 3.58 ± 0.32 ab | |
M | 2.17 ± 0.22 b | 5.99 ± 0.13 a | 2.40 ± 0.27 a | 0.36 ± 0.02 a | 4.13 ± 0.14 ab | |
L | 2.89 ± 0.28 a | 6.03 ± 0.73 a | 2.46 ± 0.37 a | 0.39 ± 0.09 a | 4.68 ± 0.49 a |
Seasons | Principal Components | Eigenvalue | Variance Contribution Rate | Cumulative Variance Contribution Rate |
---|---|---|---|---|
SS | 1 | 1.78 | 63.81% | 63.81% |
2 | 1.12 | 25.25% | 89.07% | |
AW | 1 | 1.89 | 71.76% | 71.76% |
2 | 0.81 | 13.13% | 84.89% |
Seasons | Component | SSC (%) | OA (%) | SSR | V (mg g−1) | TSS (%) |
---|---|---|---|---|---|---|
SS | First principal component | 0.529 | 0.520 | −0.111 | 0.416 | 0.515 |
Second principal component | 0 | 0.217 | −0.845 | −0.473 | 0 | |
AW | First principal component | 0.460 | 0.427 | 0.456 | 0393 | 0.493 |
Second principal component | 0 | 0.386 | 0.433 | −0.805 | −0.119 |
Treatments | SS | AW |
---|---|---|
CK | 3.98 ± 0.27 b | 3.68 ± 0.38 b |
H | 4.86 ± 0.23 b | 4.21 ± 0.11 b |
M | 4.80 ± 0.53 b | 5.24 ± 0.08 a |
L | 6.48 ± 0.77 a | 5.71 ± 0.44 a |
Treatments | SS | AW | ||
---|---|---|---|---|
NUE (kg kg−1) | ROI | NUE (kg kg−1) | ROI | |
CK | 139.56 d | 13.39 bc | 221.68 b | 17.05 a |
H | 159.17 c | 13.65 a | 225.96 b | 15.18 b |
M | 182.60 b | 13.59 ab | 231.81 b | 13.25 c |
L | 215.99 a | 13.36 c | 302.49 a | 13.82 bc |
Yield | NUE | ROI | SNR | |
---|---|---|---|---|
Yield | 1 | −0.85 ** | −0.06 | 0.66 ** |
NUE | 1 | 0.23 | −0.74 ** | |
ROI | 1 | 0.19 | ||
SNR | 1 |
Treatments | SS | AW | ||
---|---|---|---|---|
Ri* | Rank | Ri* | Rank | |
CK | 0.602 | 2 | 0.667 | 2 |
H | 0.580 | 4 | 0.460 | 4 |
M | 0.585 | 3 | 0.477 | 3 |
L | 0.667 | 1 | 0.672 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, H.; Wang, T.; Gong, D. Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes. Agronomy 2025, 15, 2363. https://doi.org/10.3390/agronomy15102363
Wang L, Wang H, Wang T, Gong D. Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes. Agronomy. 2025; 15(10):2363. https://doi.org/10.3390/agronomy15102363
Chicago/Turabian StyleWang, Lijuan, Hanbo Wang, Tieqiang Wang, and Daozhi Gong. 2025. "Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes" Agronomy 15, no. 10: 2363. https://doi.org/10.3390/agronomy15102363
APA StyleWang, L., Wang, H., Wang, T., & Gong, D. (2025). Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes. Agronomy, 15(10), 2363. https://doi.org/10.3390/agronomy15102363