Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = waste marble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3371 KiB  
Article
Life Cycle Assessment and Performance Evaluation of Self-Compacting Concrete Incorporating Waste Marble Powder and Aggregates
by Masoud Ahmadi, Erfan Abdollahzadeh, Mohammad Kashfi, Behnoosh Khataei and Marzie Razavi
Materials 2025, 18(13), 2982; https://doi.org/10.3390/ma18132982 - 24 Jun 2025
Viewed by 501
Abstract
This study systematically investigates the utilization of marble industry waste—waste marble powder (WMP) as partial cement replacement and waste marble aggregates (WMA) as partial fine aggregate replacement—in self-compacting concrete (SCC). A detailed experimental program evaluated the effects of various replacement levels (5%, 10%, [...] Read more.
This study systematically investigates the utilization of marble industry waste—waste marble powder (WMP) as partial cement replacement and waste marble aggregates (WMA) as partial fine aggregate replacement—in self-compacting concrete (SCC). A detailed experimental program evaluated the effects of various replacement levels (5%, 10%, and 20% for WMP; 20%, 30%, and 40% for WMA) on compressive strength and durability, particularly resistance to aggressive sulfuric acid environments. Results indicated that a 5% WMP replacement increased compressive strength by 4.9%, attributed primarily to the filler effect, whereas higher levels (10–20%) led to strength reductions due to limited pozzolanic activity and cement dilution. In contrast, WMA replacement consistently enhanced strength (maximum increase of 11.5% at 30% substitution) due to improved particle packing and aggregate-paste interface densification. Durability tests revealed significantly reduced compressive strength losses and mass loss in marble-containing mixtures compared to control samples, with optimal acid resistance observed at 20% WMP and 40% WMA replacements. A comprehensive life cycle assessment demonstrated notable reductions in environmental impacts, including up to 20% decreases in Global Warming Potential (GWP) at 20% WMP replacement. A desirability-based eco-cost-mechanical optimization—simultaneously integrating mechanical strength, environmental indicators, and production cost—identified the 10% WMP substitution mix as the most sustainable option, achieving optimal balance among key performance criteria. These findings underscore the significant potential for marble waste reuse in SCC, promoting environmental sustainability, resource efficiency, and improved concrete durability in chemically aggressive environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2917 KiB  
Article
A Water Consumption Assessment in the Production of Marble, Granite, and Quartz-Based Composites Using Life Cycle Assessment: A Case Study in Bahia, Brazil
by José Oduque Nascimento de Jesus, Luciano José da Silva, Virginia Parente, Karla Patricia Oliveira Esquerre, Oz Sahin and Wanderbeg Correia de Araujo
Water 2025, 17(10), 1438; https://doi.org/10.3390/w17101438 - 10 May 2025
Viewed by 769
Abstract
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using [...] Read more.
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using 1 m3 blocks as the unit of analysis. This study was conducted in Bahia, a state with significant ornamental stone production, located in a semi-arid region with limited water availability. The methodology included data collection from participating companies, combined with sectorial information and the Ecoinvent version 3.3 database, modeled using the SimaPro 8.0 software. The impact assessment was carried out using the AWaRE (Water Scarcity Footprint) and ReCiPe Endpoint methods, following the guidelines of Life Cycle Assessment (LCA), as per ABNT NBR ISO 14040 standards. The results showed that marble and granite have lower water demand and environmental impact in the categories of particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification when compared to quartz composites. The highest environmental impact occurred during the processing stage, which requires a large amount of water and generates effluents, losses, and particulate matter. The results indicate that marble and granite demand less water and exhibit lower environmental impacts—across categories like particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification—than quartz composites. Notably, the processing stage incurred the highest environmental burden due to its intensive water use and consequent generation of effluents, losses, and particulate matter. These findings highlight the necessity of efficient water management and the adoption of circular economy principles—including water reuse and waste valorization—to promote long-term sustainability in the ornamental stone industry. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

16 pages, 7577 KiB  
Article
Eco-Fired Bricks from Phosphate Mine Waste Rocks: The Effects of Marble Waste Powder on the Physical and Microstructural Properties
by Ayoub Bayoussef, Samira Moukannaa, Mohamed Loutou, Yassine Taha, Mostafa Benzaazoua and Rachid Hakkou
Ceramics 2025, 8(2), 48; https://doi.org/10.3390/ceramics8020048 - 1 May 2025
Viewed by 828
Abstract
Nowadays, the global brick industry utilizes billions of cubic meters of clay soil annually, resulting in the massive consumption of non-renewable resources. This study explores the viability of utilizing red marl from phosphate mining waste rocks for fired brick production. Ecofriendly fired bricks [...] Read more.
Nowadays, the global brick industry utilizes billions of cubic meters of clay soil annually, resulting in the massive consumption of non-renewable resources. This study explores the viability of utilizing red marl from phosphate mining waste rocks for fired brick production. Ecofriendly fired bricks produced from 100% side streams (red marly clays (RM) and marble waste powder (MWP)) were prepared, pressed, dried at 105 °C, and then fired at 1100 °C for 1 h. The effects of marble waste powder addition (up to 30 wt%) on the physical, mechanical, mineralogical, and microstructural properties of the fired bricks were explored. The main results show that fired bricks with high compressive strength of a maximum of 39 MPa could be prepared with a mixture of red marl and 10 wt% of marble waste powder. The thermal conductivity was decreased by marble waste addition (from 0 to 30%) and was reduced from 0.93 W/m.k to 0.53 W/m.k; however, the compressive strength was also decreased to reach a minimum of 17 MPa. The firing shrinkage and density were also reduced with 30% marble waste by 41% and 18%, respectively. Therefore, red marly clays and marble waste could be promising raw materials for eco-fired brick production. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

22 pages, 4718 KiB  
Article
Marble and Glass Waste Powder in Cement Mortar
by Mamaru Yenesew Alemu, Mitiku Damtie Yehualaw, Wallelign Mulugeta Nebiyu, Mulu Derbie Nebebe and Woubishet Zewdu Taffese
Appl. Sci. 2025, 15(7), 3930; https://doi.org/10.3390/app15073930 - 3 Apr 2025
Cited by 3 | Viewed by 683
Abstract
The growing demand for cement in construction contributes significantly to environmental degradation due to its high energy consumption and carbon emissions. As a result, there is a pressing need for sustainable alternatives to reduce the environmental footprint of cement production. This study explores [...] Read more.
The growing demand for cement in construction contributes significantly to environmental degradation due to its high energy consumption and carbon emissions. As a result, there is a pressing need for sustainable alternatives to reduce the environmental footprint of cement production. This study explores the use of marble and glass waste powders as supplementary cementitious materials in mortar production to reduce the environmental impact of cement. By partially replacing cement with varying percentages (0–30%) of marble and glass waste powders, the research evaluates their effects on workability, mechanical properties (compressive strength, density, ultrasonic pulse velocity), and durability (sulfate attack, water absorption, porosity). The results show that a 10% replacement of cement with marble and glass waste powder (MGWP) enhances compressive strength by 25.6% at 28 days and 17.26% at 56 days while improving microstructure and durability through compacted morphology and secondary C-S-H formation. The findings suggest that using MGWP up to 10% is optimal for enhancing the performance of mortar, providing a sustainable alternative to traditional cement with practical implications for greener construction practices. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

21 pages, 2572 KiB  
Article
Rice Husk Ash and Waste Marble Powder as Alternative Materials for Cement
by Mezgebu Debas Yeshiwas, Mitiku Damtie Yehualaw, Betelhem Tilahun Habtegebreal, Wallelign Mulugeta Nebiyu and Woubishet Zewdu Taffese
Infrastructures 2025, 10(4), 78; https://doi.org/10.3390/infrastructures10040078 - 29 Mar 2025
Viewed by 698
Abstract
Concrete, a cornerstone of modern construction, owes its widespread adoption to global industrialization and urbanization, with mortar being an essential component. However, the cement production process is energy-intensive and generates significant CO2 emissions. This study explores the use of agricultural (rice husk [...] Read more.
Concrete, a cornerstone of modern construction, owes its widespread adoption to global industrialization and urbanization, with mortar being an essential component. However, the cement production process is energy-intensive and generates significant CO2 emissions. This study explores the use of agricultural (rice husk ash, RHA) and industrial (waste marble powder, WMP) waste materials as partial cement replacements in mortar. Despite extensive research on RHA and WMP individually, studies examining their combined effects remain scarce. This research assessed cement replacement levels from 0% to 30% in 5% increments, evaluating the fresh, mechanical, durability, and microstructural properties of the mortar. The findings showed that replacing 20% of cement with RHA and WMP increased compressive strength by 20.65% after 28 days, attributed to improved homogeneity and pozzolanic reactions that produced more calcium silicate hydrate. Water absorption decreased from 8.3% to 6.34%, indicating lower porosity and enhanced uniformity. Microstructural analyzes showed a denser mortar with 13% less mass loss at 20% replacement level. However, higher replacement levels reduced workability due to the increased surface area of RHA and WMP. Generally, using RHA and WMP as partial replacements of up to 20% significantly enhances mortar properties and supports sustainability. Full article
Show Figures

Figure 1

13 pages, 5599 KiB  
Article
The Valorization of Marble Waste to Synthesize a Novel Calcium Niobate–Magnesium Niobate Composite and an Investigation of Its Thermophysical Properties
by Pedro Guilherme Sousa Passalini, Andrey Escala Alves, Thallis Custódia Cordeiro, Roberto da Trindade Faria and José Nilson França Holanda
Processes 2025, 13(4), 1014; https://doi.org/10.3390/pr13041014 - 28 Mar 2025
Viewed by 396
Abstract
Marble waste is produced on a large scale in many countries, resulting in serious pollution problems. This investigation aimed to study the valorization potential of marble waste from the ornamental rock industry used in the synthesis of a novel calcium niobate–magnesium niobate composite [...] Read more.
Marble waste is produced on a large scale in many countries, resulting in serious pollution problems. This investigation aimed to study the valorization potential of marble waste from the ornamental rock industry used in the synthesis of a novel calcium niobate–magnesium niobate composite powder prepared by a solid-state reaction between 1000 °C and 1200 °C. The chemical and mineralogical characteristics of the marble waste were determined. Structural and morphological characterizations of the synthesized calcium niobate–magnesium niobate composite powders were conducted by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The thermophysical properties were measured using open photoacoustic cell and photothermal techniques. Structurally, at all synthesis temperatures, the calcium niobate–magnesium niobate powders were found to be composed of a complex mixture of CaNb2O6/Ca2Nb2O7/MgNb2O6/CaMg0.33Nb0.67O3. In addition, the calcium niobate–magnesium niobate composite powders exhibited low values of thermal diffusivity (1.88–2.15 × 10−7 m2/s) and thermal conductivity (0.12–0.16 W/mK). The findings of this investigation highlight the potential of marble waste as a promising sustainable source of carbonate for obtaining calcium niobate–magnesium niobate composite powder, which has thermophysical properties that should be explored in low-thermal-conductivity applications. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Figure 1

23 pages, 12270 KiB  
Article
Optimizing of Self-Compacting Concrete (SCC): Synergistic Impact of Marble and Limestone Powders—A Technical and Statistical Analysis
by Mourad Boutlikht, Abdellah Douadi, Nour El Houda Khitas, Abderraouf Messai, Kamel Hebbache, Cherif Belebchouche, Piotr Smarzewski and Taher A. Tawfik
Buildings 2025, 15(7), 1043; https://doi.org/10.3390/buildings15071043 - 24 Mar 2025
Cited by 1 | Viewed by 797
Abstract
The disposal and recycling of industrial by-products such as marble and limestone powders pose pressing environmental challenges due to the substantial amounts of waste generated annually by marble processing plants and limestone quarries. The integration of these by-products into concrete production is justified [...] Read more.
The disposal and recycling of industrial by-products such as marble and limestone powders pose pressing environmental challenges due to the substantial amounts of waste generated annually by marble processing plants and limestone quarries. The integration of these by-products into concrete production is justified by their widespread availability and the potential to alleviate the environmental burden. This study used a statistical mixture design approach to systematically assess the effects of limestone and marble powders, with varying fineness levels, as partial cement replacements (up to 17%) on the rheological and mechanical properties of self-compacting concrete (SCC). The experimental findings revealed that the density of the SCC mixtures ranged from 2475 to 2487 kg/m3. Mixtures incorporating limestone powder exhibited superior flowability, achieving a slump flow of up to 69 cm, an 8% improvement compared to those containing marble powder. However, marble powder with a specific surface area of 330 m2/kg demonstrated significant improvements in compressive and tensile strengths, with increases of 18%. Statistical analysis using analysis of variance (ANOVA) validated the reliability of the predictive models developed, which demonstrated coefficients of determination (R2) that exceeded 0.94 and p-values below 0.05. These models enable precise predictions of critical performance metrics, including density, slump flow, box flow, compressive strength, and tensile strength, thus reducing the need for extensive experimental procedures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2289 KiB  
Article
From Marble Waste to Eco-Friendly Filament for 3D Printing to Help Renaturalization of Quarries
by Daniela Fico, Daniela Rizzo, Valentina De Carolis, Francesca Lerario, Annalisa Di Roma and Carola Esposito Corcione
Sustainability 2025, 17(5), 1977; https://doi.org/10.3390/su17051977 - 25 Feb 2025
Viewed by 963
Abstract
The excessive use of materials that are generally difficult to discard, such as stone materials, has caused growing ecological concern. Among these, marble is extracted from quarries, but when the raw material is exhausted, these places are deserted. For this reason, several measures [...] Read more.
The excessive use of materials that are generally difficult to discard, such as stone materials, has caused growing ecological concern. Among these, marble is extracted from quarries, but when the raw material is exhausted, these places are deserted. For this reason, several measures have been adopted in recent years to requalify these areas. In addition, recent technological developments involve the creation of innovative green materials that privilege the circular economy and waste recycling. This research presents the development of innovative, sustainable filaments for the fused filament fabrication (FFF) printing technique from recycled marble waste (MW) and biocompostable and biodegradable polylactic acid (PLA) matrix. MW was added to the polymer in concentrations of 10 wt.%, 20 wt.%, and 30 wt.%, and the blends were extruded to develop innovative green filaments. The chemical/structural properties of the raw materials and the thermal and mechanical features of the new composites were investigated. Composites containing 10 and 20 wt.% of MW showed good printability. In contrast, extrusion and printing difficulties were observed with 30 wt.% of MW. Finally, this paper proposes a project to renaturalize and requalify a disused marble quarry located in Trani (Apulia, Italy) with 3D printing devices using the newly produced eco-filaments, which have better features. The main purpose of this article is to propose a concrete, economic, and sustainable application of 3D printing involving processes such as waste and by-product recycling and renaturalization of disused quarries, with both economic and environmental benefits. Full article
Show Figures

Figure 1

16 pages, 6704 KiB  
Article
Marble Waste Dump Yard in Rajasthan, India Revealed as a Potential Asbestos Exposure Hazard
by Raja Singh, Sean Fitzgerald, Rima Dada and Arthur L. Frank
Int. J. Environ. Res. Public Health 2025, 22(2), 215; https://doi.org/10.3390/ijerph22020215 - 4 Feb 2025
Viewed by 2431
Abstract
Asbestos is a fibrous variety of certain minerals, some of which occur naturally as an accessory to a wide variety of mineral resources. Although asbestos itself has been historically mined for various useful properties, the negative health effects of asbestos dust have greatly [...] Read more.
Asbestos is a fibrous variety of certain minerals, some of which occur naturally as an accessory to a wide variety of mineral resources. Although asbestos itself has been historically mined for various useful properties, the negative health effects of asbestos dust have greatly diminished it as a useful earth material, as many countries have banned the use of these fibrous minerals based on those health concerns. Resulting regulations of asbestos have focused primarily on intentionally mined material used in product manufacturing, such as building materials made with beneficiated asbestos and their derivative exposures, e.g., airborne asbestos in schools with asbestos-containing materials. The hazards of asbestos as unintended byproducts have not been as extensively considered, although this “contamination” has been repeatedly observed in common earth materials including talc, vermiculite, sand, and gravel. This study reveals such contamination of ornamental and dimension stone commonly referred to as “marble”. Asbestos types that can be associated with certain Indian marble reserves include asbestiform tremolite, actinolite, anthophyllite, and chrysotile asbestos. This case reveals such contamination in a marble reserve in Rajsamand, Rajasthan. At this location, marble dust in slurry is disposed at waste collection points, unfortunately including a location now open to the public that has become a tourist destination. Using Transmission Electron Microscopy (TEM) in this study, dust from this location revealed abundant tremolite asbestos fibres in the disaggregated dust. This poses potential health risks to the workers, bystanders, and tourists that may be exposed to this recognized carcinogen, a known cause of mesothelioma, lung cancer, and other asbestos-related diseases. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

28 pages, 2345 KiB  
Review
Marble Powder as a Sustainable Cement Replacement: A Review of Mechanical Properties
by Moutaman M. Abbas and Radu Muntean
Sustainability 2025, 17(2), 736; https://doi.org/10.3390/su17020736 - 17 Jan 2025
Cited by 7 | Viewed by 2816
Abstract
The sudden increase in industrialization has reduced the availability of natural building materials and triggered the growing awareness of sustainable practices within the construction industry. The study presented here deals with marble powder, which is one of the by-products obtained from the marble [...] Read more.
The sudden increase in industrialization has reduced the availability of natural building materials and triggered the growing awareness of sustainable practices within the construction industry. The study presented here deals with marble powder, which is one of the by-products obtained from the marble industry, as a cement replacement in concrete mixtures. The main aims will be to investigate the impact of marble powder waste materials on the mechanical properties of concrete and to promote the recycling of various industrial wastes for environmental sustainability. Material testing was conducted with the levels of substitution of marble powder for cement ranging from 0% to 50%, and the resulting concrete was evaluated for compressive and tensile strength over different curing periods. The results show that concrete compressive strength and tensile strength are most efficiently improved when marble powder replacement is up to 10–15%, attaining its full potential after 28 days. Beyond this replacement level of 15%, the mechanical properties decrease, suggesting that higher substitution levels may not be effective. This paper consolidates findings, provides a novel comparative analysis, and addresses key challenges regarding the use of marble powder, providing room for the future industrial development of supplementary cementitious materials (SCMs), eventually leading to sustainability in the construction sector. Full article
Show Figures

Figure 1

39 pages, 34879 KiB  
Article
Recycling Marble Waste from Afghan Mining Sites as a Replacement for Cement and Sand
by Mohammad Rafi Rafi, Safiullah Omary, Amanullah Faqiri and Elhem Ghorbel
Buildings 2025, 15(2), 164; https://doi.org/10.3390/buildings15020164 - 8 Jan 2025
Viewed by 2835
Abstract
The marble industry in Afghanistan generates significant waste due to a lack of skilled labor and advanced machinery, which is often discarded in landfills. Previous studies suggest that marble waste can be utilized in construction, particularly in cement-based structures. This research investigates using [...] Read more.
The marble industry in Afghanistan generates significant waste due to a lack of skilled labor and advanced machinery, which is often discarded in landfills. Previous studies suggest that marble waste can be utilized in construction, particularly in cement-based structures. This research investigates using marble waste in concrete as a replacement for cement and sand to address environmental concerns and promote sustainability. A comparative study replaced marble waste with a calcareous filler from Omya SAS. The marble waste, collected from a mining site in Nangarhar, Afghanistan, consisted of 29% particles smaller than 63 μm and 71% sand particles. The waste marble (WM) was added to concrete as a replacement for cement and sand at 3.5%, 4%, and 4.5% by volume. Limestone filler (LF) replaced only cement in the concrete mix. The reference concrete mix aimed for a C25/30 strength. The results showed slight improvements in concrete workability with increasing waste marble content. The optimal WM dosage was 4%, which led to a 9% reduction in compressive strength and a 7% drop in splitting tensile strength. However, this dosage reduced concrete density, improving transfer properties and resulting in cheaper, lighter concrete. The 4% WM dosage corresponds to 7.5% cement and 12% sand replacement. Full article
Show Figures

Figure 1

23 pages, 3175 KiB  
Article
Utilizing Crushed Recycled Marble Stone Powder as a Sustainable Filler in SBS-Modified Asphalt Containing Recycled Tire Rubber
by Byungsik Ohm, Sang Yum Lee and Tri Ho Minh Le
Polymers 2025, 17(1), 70; https://doi.org/10.3390/polym17010070 - 30 Dec 2024
Viewed by 1054
Abstract
The increasing demand for sustainable construction materials has driven the exploration of alternative fillers in asphalt production. Traditional asphalt mixtures rely heavily on natural aggregates and petroleum-based binders, contributing to environmental degradation. This study proposes an innovative solution by utilizing Crushed Recycled Marble [...] Read more.
The increasing demand for sustainable construction materials has driven the exploration of alternative fillers in asphalt production. Traditional asphalt mixtures rely heavily on natural aggregates and petroleum-based binders, contributing to environmental degradation. This study proposes an innovative solution by utilizing Crushed Recycled Marble Stone Powder (CRMSP) as a sustainable filler in SBS polymer-modified asphalt containing high volumes of recycled tire rubber, addressing both resource depletion and waste management concerns. A total of 10 asphalt mixes were formulated with varying CRMSP content (0–100% as a replacement for conventional filler) and SBS polymer (3–5%), and their performance was evaluated through Marshall stability, flow, volumetric properties, and dynamic modulus tests. The results demonstrate that incorporating CRMSP up to 75% significantly enhances asphalt’s mechanical properties. The 75% CRMSP mix showed superior stability (19.2 kN, 24.1% improvement), flow (4.6 mm, 4.5% improvement), and resistance to rutting (lowest rut depth: 0.18 mm, 16.7% reduction) compared to the control mixture. Dynamic modulus testing further confirmed the improved resistance to deformation, with the 75% CRMSP mix exhibiting the highest modulus (6.9 GPa, 15.0% improvement). This research highlights the potential of CRMSP as an innovative and eco-friendly alternative filler, improving asphalt performance while reducing environmental impact. By offering a sustainable way to recycle marble waste and tire rubber, this study paves the way for greener, cost-effective asphalt formulations. Future studies should focus on real-world applications, durability, and long-term performance to validate the potential of CRMSP-modified asphalt in commercial use. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials, 3rd Edition)
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Development of a Fire-Retardant and Sound-Insulating Composite Functional Sealant
by Shiwen Li, Mingyu Wang, Jinchun Tu, Bingrong Wang, Xiaohong Wang and Kexi Zhang
Materials 2025, 18(1), 62; https://doi.org/10.3390/ma18010062 - 27 Dec 2024
Viewed by 837
Abstract
The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler [...] Read more.
The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA. The CNTs/LDHs framework provides structural support and enhances thermal stability, while the ADP layer acts as a protective barrier and releases non-combustible gases during combustion. AMWP particles contribute to sound insulation by creating impedance mismatches. The resulting composite functional sealant exhibits improved mechanical properties. In terms of flame retardancy, it boasts the lowest peak heat release rate (PHRR) of 224.83 kW/m2 and total smoke release (TSR) of 981.14 m2/m2, achieving the V-0 classification. Furthermore, its thermal degradation characteristics reveal a notably higher carbon residue rate. Additionally, the sound insulation capability has been significantly enhanced, with an average sound insulation level of 43.48 dB. This study provides a promising solution for enhancing the fire safety and acoustic properties of building sealing materials. Full article
Show Figures

Graphical abstract

18 pages, 8062 KiB  
Article
Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste
by Rahima Baghloul, Laidi Babouri, Houria Hebhoub, Fouad Boukhelf and Yassine El Mendili
Buildings 2024, 14(12), 3877; https://doi.org/10.3390/buildings14123877 - 3 Dec 2024
Cited by 1 | Viewed by 1416
Abstract
The quarrying and utilization of natural stones such as marble and granite are growing rapidly in developing countries. However, the processing, cutting, sizing, and shaping of these stones to render them functional generates huge quantities of waste and dust. These materials are often [...] Read more.
The quarrying and utilization of natural stones such as marble and granite are growing rapidly in developing countries. However, the processing, cutting, sizing, and shaping of these stones to render them functional generates huge quantities of waste and dust. These materials are often disposed of openly in the environment, and their potentially hazardous nature has negative repercussions on both the environment and human health. In this study, marble waste (MW) was used as a filler in the unsaturated polyester resin (UPR) matrix to enhance performance and characteristics while adding value to the waste and minimizing manufacturing costs. For this purpose, samples of UPR/MW composites were produced with 0, 5, 10, 15, and 20 wt.% of MW incorporated into the UPR. A full characterization that focused on the microstructure, thermal stability, and physical and mechanical properties was carried out. The results revealed that the use of 10 to 15% of MW improves mechanical performance, with increases from 17 to 26 kJ/m2, 14 to 17 MPa, and 794 to 1522 GPa in impact strength, tensile strength, and elastic modulus, respectively. By introducing a 20% MW filler, the composite loses its performance, particularly Shore D hardness, and becomes very brittle. Thermogravimetric analysis (TGA) indicated significant thermal stabilization, with a delay in the start decomposition temperature of 28 °C for 20 UPR/MW compared to 0 UPR/MW. Additionally, morphological and microstructural tests, namely, FT-IR, XRD, and SEM analysis, show a microstructural change, including the formation of crystalline phases, enhancing matrix-filler interactions due to the creation of Mg-O and Ca-O chemical bonds and the forming of filler agglomeration at high introduction rates that lead to defects in the microstructure. These results confirmed the mechanical results of the UPR/MW composites. Full article
(This article belongs to the Collection Utilization of Waste Materials in Building Engineering)
Show Figures

Figure 1

14 pages, 4131 KiB  
Article
Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment
by Johnny Oliver Corcho Puche, Brian William Bodah, Karen Esther Muñoz Salas, Hugo Hernández Palma, Suzi Huff Theodoro, Alcindo Neckel, Andrea Liliana Moreno-Ríos, Giana Mores, Caliane Christie Oliveira de Almeida Silva, Leila Dal Moro, Grace Tibério Cardoso and Claudete Gindri Ramos
Sustainability 2024, 16(22), 10076; https://doi.org/10.3390/su162210076 - 19 Nov 2024
Viewed by 1522
Abstract
Agricultural industrial waste has demonstrated potential as a soil acidity corrector and fertilizer, in addition to reducing environmental impacts caused by inadequate waste disposal. Ornamental rock waste is a sustainable alternative as it contains essential elements for plant growth. (1) Background: this study [...] Read more.
Agricultural industrial waste has demonstrated potential as a soil acidity corrector and fertilizer, in addition to reducing environmental impacts caused by inadequate waste disposal. Ornamental rock waste is a sustainable alternative as it contains essential elements for plant growth. (1) Background: this study aims to evaluate using marble waste in SENA and the Gallo Crudo Quarry in Colombia as an acidity mitigator in soils cultivated with maize (Zea mays) in a greenhouse. (2) Method: four treatments were applied: T0: without marble dust—MD; three doses of MD (T1: 1.1 Mg of MD ha−1; T2: 2.2 Mg of MD ha−1; and T3: 3.3 Mg of MD ha−1). After 70 days, soil fertility analyses were carried out. (3) Results: The results show that the chemical properties of the soil improved with all treatments, mainly with T2, influencing the calcium (Ca), carbon (C), sulfur (S), and magnesium (Mg) contents. MD’s pH and Al + H values were higher than conventional treatments. The T2 treatment reduced soil acidity from 0.2 cmol + kg−1 to 0.0 cmol + kg−1 and increased pH to 7.91 compared to the control (5.4). The maize plants in the T2 treatment developed better, indicating that the dose of 2.2 Mg of MD ha−1 can replace commercial limestone. (4) Conclusions: This agroecological technique is an innovative alternative in Colombia, replicable in areas with ornamental rock reserves, benefiting the agricultural economy and contributing to target the Sustainable Development Goals, which promote sustainability, responsible management of natural resources, and a reduction in environmental impacts. Full article
Show Figures

Figure 1

Back to TopTop