Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = waste lubrication oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 323
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

17 pages, 4356 KiB  
Article
Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines
by Enrui Zhao, Guichen Zhang, Qiuyu Li and Saihao Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1189; https://doi.org/10.3390/jmse13061189 - 18 Jun 2025
Viewed by 1082
Abstract
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In [...] Read more.
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 5180 KiB  
Article
Nano-Enhanced Cactus Oil as an MQL Cutting Fluid: Physicochemical, Rheological, Tribological, and Machinability Insights into Machining H13 Steel
by Nada K. ElBadawy, Mohamed G. A. Nassef, Ibrahem Maher, Belal G. Nassef, Mohamed A. Daha, Florian Pape and Galal A. Nassef
Lubricants 2025, 13(6), 267; https://doi.org/10.3390/lubricants13060267 - 15 Jun 2025
Viewed by 845
Abstract
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with [...] Read more.
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with 0.025 wt.%, 0.05 wt.%, and 0.1 wt.% activated carbon nanoparticles (ACNPs) from recycled plastic waste. Plain cactus oil exhibited a 34% improvement in wettability over commercial soluble oil, further enhanced by 60% with 0.05 wt.% ACNPs. Cactus oil displayed consistent Newtonian behavior with a high viscosity index (283), outperforming mineral-based cutting fluid in thermal stability. The addition of ACNPs enhanced the dynamic viscosity by 108–130% across the temperature range of 40–100 °C. The presence of nano-additives reduced the friction coefficient in the boundary lubrication zone by a maximum reduction of 32% for CO2 compared to plain cactus oil. The physical and rheological results translated directly to the observed improvements in surface finish and tool wear during machining operations on H13 steel. Cactus oil with 0.05 wt.% ACNP outperformed conventional fluids, reducing surface roughness by 35% and flank wear by 57% compared to dry. This work establishes cactus oil-based nanofluids as a sustainable alternative, combining recycled waste-derived additives and non-edible feedstock for greener manufacturing. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials and Active Control of Friction Behavior)
Show Figures

Figure 1

13 pages, 477 KiB  
Article
Decoloration of Waste Cooking Oil by Maghnia Algerian Clays via Ion Exchange and Surface Adsorption
by Abdelhak Serouri, Zoubida Taleb, Alberto Mannu, Chahineze Nawel Kedir, Cherifa Hakima Memou, Sebastiano Garroni, Andrea Mele, Oussama Zinai and Safia Taleb
ChemEngineering 2025, 9(3), 50; https://doi.org/10.3390/chemengineering9030050 - 16 May 2025
Viewed by 805
Abstract
The purification of waste cooking oils (WCOs) through clay-based adsorption is an established recycling method, yet the relationship between clay composition and adsorption efficiency remains an area of active research. The aim of the present research work was to assess the performance of [...] Read more.
The purification of waste cooking oils (WCOs) through clay-based adsorption is an established recycling method, yet the relationship between clay composition and adsorption efficiency remains an area of active research. The aim of the present research work was to assess the performance of Maghnia bentonite in WCO decoloration and to gain information about the specific refining process. Thus, natural bentonite from the Maghnia region (Algeria) was investigated as an adsorbent for WCO refining for biolubricant production. The adsorption efficiency was evaluated under different conditions, achieving up to 70% decolorization at 10 wt% clay after 4 h of treatment. Structural characterization of the bentonite before and after adsorption was conducted using FT-IR spectroscopy, powder X-ray diffraction (XRD), and X-ray fluorescence (XRF) to assess compositional and morphological changes. FT-IR analysis confirmed the adsorption of organic compounds, XRD indicated minor alterations in interlayer spacing, and XRF revealed ion exchange mechanisms, including a reduction in sodium and magnesium and an increase in calcium and potassium. Adsorption kinetics followed a pseudo-second-order model, with desorption effects observed at prolonged contact times. The pHPZC of 8.3 suggested that bentonite adsorption efficiency is enhanced under acidic conditions. The high decoloration capacity of Maghnia bentonite, combined with the availability and the low cost of the material, suggests a possible industrial application of this material for WCO refinement, especially in lubricant production. Full article
Show Figures

Graphical abstract

25 pages, 8216 KiB  
Article
Influence of a Walnut Shell Biochar Additive on the Tribological and Rheological Properties of Vegetable Lubricating Grease
by Rafal Kozdrach and Pawel Radulski
Lubricants 2025, 13(5), 213; https://doi.org/10.3390/lubricants13050213 - 13 May 2025
Viewed by 733
Abstract
This paper presents the results of a study on the effect of a biochar additive produced via pyrolysis at 400 °C and 500 °C from waste biomass, i.e., walnut shells, on the tribological and rheological properties of vegetable lubricating compositions. Sunflower oil and [...] Read more.
This paper presents the results of a study on the effect of a biochar additive produced via pyrolysis at 400 °C and 500 °C from waste biomass, i.e., walnut shells, on the tribological and rheological properties of vegetable lubricating compositions. Sunflower oil and amorphous silica, used as a thickener, were used to prepare the lubricants. To the base lubricant prepared in this way, 1 and 5% biochar additive were introduced, and for comparison, we took the same amounts of graphite. Tests were carried out on the anti-wear properties, coefficient of friction, and changes in dynamic viscosity during the tribological test, as well as on the anti-scuffing properties for the tested lubricant compositions. The effect of the applied modifying additive on the lubricating and rheological properties of the prepared lubricating greases was evaluated. On the basis of the study of vegetable greases, it was found that the addition of 5% biochar from walnut shells produced during pyrolysis in 500 °C had the most favorable effect on the anti-wear properties of the tested greases, while the 5% biochar from walnuts shell prepared via pyrolysis at 400 °C had the best anti-scuffing protection. The use of the biochar additive in vegetable greases resulted in a reduction in the dynamic viscosity of the tested greases, particularly for greases modified with 5% walnut shell biochar produced at 500 °C, which is particularly important with respect to the work of steel friction nodes, as well as in central lubrication systems. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

16 pages, 638 KiB  
Review
A Review on Global Recovery Policy of Used Lubricating Oils and Their Effects on the Environment and Circular Economy
by Catherine Cabrera-Escobar, Juan Moreno-Gutiérrez, Rubén Rodríguez-Moreno, Emilio Pájaro-Velázquez, Fátima Calderay-Cayetano and Vanesa Durán-Grados
Environments 2025, 12(5), 135; https://doi.org/10.3390/environments12050135 - 23 Apr 2025
Viewed by 1556
Abstract
This manuscript underscores the significance of converting and reusing lubricating oils for dual purposes as both lubricants and fuels. This approach not only benefits the environment, but also contributes to the circular economy. To this end, this article conducts a review and delves [...] Read more.
This manuscript underscores the significance of converting and reusing lubricating oils for dual purposes as both lubricants and fuels. This approach not only benefits the environment, but also contributes to the circular economy. To this end, this article conducts a review and delves into the applications and re-refining techniques employed to recover lubricating oil from waste lubricating oil (WLO). A global overview of waste oil recycling and political feasibility in the marketplace is presented, highlighting country-specific preferences for reusing such oils. Moreover, this manuscript analyzes several studies that utilize recycled oil as fuel in thermal equipment, including diesel engines. The findings indicate that CO emissions increased incrementally under both low- (from 3.22% to 21.23%) and high-load conditions (from 6.6% to 18.2%) compared to diesel fuel. Another study reveals that 10% and 20% blends of transformer oil and diesel exhibit lower fuel consumption than diesel fuel at high loads. In all the cases examined, WLO demonstrated slightly higher emission levels than marine diesel oil (MDO), yet lower than those observed with heavy fuel oil (HFO). Full article
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
Development of Oil-Free Lubricants for Cold Rolling of Low-Carbon Steel
by Leon Jacobs, Delphine Rèche, Andreas Bán, Valentina Colla, Orlando Toscanelli, Martin Raulf, Martin Schlupp, Bas Smeulders, Mike Cook and Wim Filemon
Processes 2025, 13(4), 1234; https://doi.org/10.3390/pr13041234 - 18 Apr 2025
Viewed by 567
Abstract
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production [...] Read more.
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production steps and waste disposal. In some application areas, Oil-Free Lubricants (OFL’s) have been shown to be at least equally effective in decreasing friction and wear as conventional oil-based lubricants, while resulting in benefits related to waste disposal. In 2023, a project named “Transfer of aqueous oil free lubricants into steel cold rolling practice” (acronym ‘RollOilFreeII’) began, with it receiving funding from the Research Fund for Coal and Steel (RFCS). This project aims at an industrial application of Oil-Free Lubricants in the steel cold rolling process. The project builds on the work of the ‘RollOilFree’ project (also carried out in the RFCS-framework). This article briefly recapitulates the findings in the RollOilFree project and describes the objectives, benefits, activities and first results of the RollOilFreeII project. Notably, a pilot mill trial at high speed has been carried out, showing a good performance of the investigated OFLs. Back-calculated friction values were equal to, or even slightly lower than, reference O/W emulsions. The strip cleanliness with OFLs is much better than it is with the reference O/W emulsions. Only for a very thin product, as is the case in tinplate rolling, does the direct application of a conventional O/W dispersion (a high-particle-sized O/W emulsion) give a better performance than the investigated OFLs. Further development of OFLs should focus on this aspect. Full article
Show Figures

Figure 1

17 pages, 3249 KiB  
Article
An Integrated Methodological Approach for Interpreting Used Oil Analysis in Diesel Engines
by Reinaldo Ramirez Camba, Cristian Garcia Garcia, Milton Garcia Tobar and Jorge Fajardo Merchan
Lubricants 2025, 13(4), 169; https://doi.org/10.3390/lubricants13040169 - 8 Apr 2025
Viewed by 1226
Abstract
This study develops an integrated methodological approach for interpreting used oil analysis results in diesel engines, focusing on optimizing maintenance strategies. The methodology combines a literature review with a quantitative assessment of 156 lubricant analysis reports from a fleet of diesel waste collection [...] Read more.
This study develops an integrated methodological approach for interpreting used oil analysis results in diesel engines, focusing on optimizing maintenance strategies. The methodology combines a literature review with a quantitative assessment of 156 lubricant analysis reports from a fleet of diesel waste collection trucks operating in Cuenca, Ecuador, a high-altitude city. The framework includes critical limits for key lubricant parameters, correlation analysis, and Principal Component Analysis (PCA) to identify dominant degradation mechanisms. The Binary Segmentation (BS) algorithm is also used for Change-Point Detection. The findings indicate four primary degradation pathways: thermal–chemical degradation influenced by sulfur, oxidation, and soot; metallic wear and base depletion, involving iron, chromium, and copper; external contamination linked to silica and copper; and viscosity alteration due to lubricant aging. Significant degradation shifts were identified at approximately 346 and 444 service hours, suggesting critical points for condition-based maintenance interventions. This study highlights the effectiveness of multivariate statistical tools in enhancing the interpretation of used oil analysis and optimizing predictive maintenance strategies. The integration of Change-Point Detection and multivariate analysis provides a robust framework for defining oil change intervals based on lubricant condition rather than fixed time- or mileage-based criteria. This approach offers practical benefits for fleet operations, enabling the reduction in operational costs, enhancing engine reliability, and minimizing the environmental impact of unnecessary lubricant changes. Full article
(This article belongs to the Special Issue Intelligent Algorithms for Triboinformatics)
Show Figures

Figure 1

16 pages, 21443 KiB  
Article
Investigations on the Thermal Stability and Kinetics of Biolubricants Synthesized from Different Types of Vegetable Oils
by Majher I. Sarker, Kalidas Mainali and Brajendra K. Sharma
Lubricants 2025, 13(3), 105; https://doi.org/10.3390/lubricants13030105 - 27 Feb 2025
Cited by 1 | Viewed by 1316
Abstract
Petroleum-based lubricants raise environmental concerns due to their non-biodegradability and toxicity, whereas biobased lubricants underperform owing to low thermal stability. This study examined and compared three vegetable oils, along with their chemically modified versions, to better understand their suitability as biolubricants. High oleic [...] Read more.
Petroleum-based lubricants raise environmental concerns due to their non-biodegradability and toxicity, whereas biobased lubricants underperform owing to low thermal stability. This study examined and compared three vegetable oils, along with their chemically modified versions, to better understand their suitability as biolubricants. High oleic soybean oil (HOSOY), regular soybean oil (RSOY), and waste cooking oil (WCO) were subjected to chemical modification, where isopropyl groups were attached to the fatty acid chains of the oils to produce branched oils, i.e., b-HOSOY, b-RSOY, and b-WCO. The detailed kinetic study of each regular and modified sample was investigated using thermogravimetric analysis. The kinetic parameters, such as the activation energies, reaction rate, and pre-exponential factor, were generated via Friedman methods. The differential thermal gravimetric (DTG) analysis showed low volatilization at the onset temperature in each modified oil as compared with the unmodified samples under an oxidative environment. Furthermore, the comparative kinetic studies demonstrated the enhanced thermoxidative stability of the modified products relative to their unaltered counterparts. Among the tested oils, the b-RSOY showed an average activation energy of 325 kJ/mol, followed by the b-WCO: 300 kJ/mol and the b-HOSOY: 251 kJ/mol, indicating the most stable modified product under an oxidative environment. For all the samples, the pre-exponential factors were in good agreement with the activation energies, which validates that finding the pre-exponential components is crucial to the kinetic analysis. Full article
Show Figures

Figure 1

20 pages, 12877 KiB  
Article
Viable Use of Tire Pyrolysis Oil as an Additive to Conventional Motor Oil: A Tribological and Physical Study
by Abdullah A. Alazemi, Abdullah F. Alajmi and Sultan M. Al-Salem
Lubricants 2025, 13(2), 64; https://doi.org/10.3390/lubricants13020064 - 3 Feb 2025
Cited by 1 | Viewed by 1673
Abstract
Stockpiled end-of-life tires (ELTs) pose a serious environmental concern. In the current investigation, ELT pyrolysis oil (i.e., pyro-oil) was studied as a potential additive to conventional motor oil. The pyro-oil samples were mixed in different concentrations of 10 to 50 wt.% with commercial [...] Read more.
Stockpiled end-of-life tires (ELTs) pose a serious environmental concern. In the current investigation, ELT pyrolysis oil (i.e., pyro-oil) was studied as a potential additive to conventional motor oil. The pyro-oil samples were mixed in different concentrations of 10 to 50 wt.% with commercial virgin motor oil to obtain a lubricant mixture. Chemical analyses were performed for the tire-recycled derivative material, as a potential route to utilize pyro-oils, valorize ELT waste, and reduce production costs of motor oil lubricants. Rheological examinations were performed to explore the impact of the pyro-oil on the rheological properties of the motor oil under several shearing rates and temperatures. Tribological analyses of the lubricant mixtures and the pure motor oil were accomplished to study the influence of the pyro-oil additive on the tribological behavior of motor oils. Lastly, thermal stability and wettability examinations were executed to assess the thermal and wetting properties of lubricant mixtures. The obtained results showed that adding a low concentration of the pyro-oil (≤10%) will sustain the motor oil’s chemical, wettability, thermal stability, rheological, and tribological properties, signifying a viable application of recycled ELTs and helping to reduce their environmental and economic impact. These findings offer a feasible route of use in the future to obtain low-cost oils with market specifications, utilizing pyro-oil as a sustainable and environmental oil additive. Full article
(This article belongs to the Special Issue Advances in Molecular Rheology and Tribology)
Show Figures

Figure 1

32 pages, 2314 KiB  
Review
Strategies for the Transformation of Waste Cooking Oils into High-Value Products: A Critical Review
by Valentina Beghetto
Polymers 2025, 17(3), 368; https://doi.org/10.3390/polym17030368 - 29 Jan 2025
Cited by 2 | Viewed by 3034
Abstract
Waste cooking oils (WCOs) are generated globally from households, the hospitality industry, and other sectors. Presently, WCOs are mainly employed as feedstock for biodiesel and energy production, strongly depending on the availability of WCOs, which are often imported from other countries. The objective [...] Read more.
Waste cooking oils (WCOs) are generated globally from households, the hospitality industry, and other sectors. Presently, WCOs are mainly employed as feedstock for biodiesel and energy production, strongly depending on the availability of WCOs, which are often imported from other countries. The objective of this review is to give an overall comprehensive panorama of the impacts, regulations, and restrictions affecting WCOs, and their possible uses for producing high-value products, such as bio lubricants, bio surfactants, polymer additives, road and construction additives, and bio solvents. Interestingly, many reviews are reported in the literature that address the use of WCOs, but a comprehensive review of the topic is missing. Published studies, industry reports, and regulatory documents were examined to identify trends, challenges, production statistics, environmental impacts, current regulations, and uses for high-value polymer production. The data collected show that WCOs hold immense potential as renewable resources for sustainable industrial applications that are in line with global carbon neutrality goals and circular economy principles. However, achieving this shift requires addressing regulatory gaps, enhancing collection systems, and optimizing conversion technologies. This comprehensive review underlines the need for collaborative efforts among policymakers, industry stakeholders, and researchers to maximize the potential of WCOs and contribute to sustainable development. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

21 pages, 6806 KiB  
Article
Increasing the Wear Resistance of Stamping Tools for Coordinate Punching of Sheet Steel Using CrAlSiN and DLC:Si Coatings
by Sergey N. Grigoriev, Marina A. Volosova, Ilya A. Korotkov, Vladimir D. Gurin, Artem P. Mitrofanov, Sergey V. Fedorov and Anna A. Okunkova
Technologies 2025, 13(1), 30; https://doi.org/10.3390/technologies13010030 - 12 Jan 2025
Viewed by 1973
Abstract
The punching of holes or recesses on computer numerical control coordinate presses occurs in sheets at high speeds (up to 1200 strokes/min) with an accuracy of ~0.05 mm. One of the most effective approaches to the wear rate reduction of stamping tools is [...] Read more.
The punching of holes or recesses on computer numerical control coordinate presses occurs in sheets at high speeds (up to 1200 strokes/min) with an accuracy of ~0.05 mm. One of the most effective approaches to the wear rate reduction of stamping tools is the use of solid lubricants, such as wear-resistant coatings, where the bulk properties of the tool are combined with high microhardness and lubricating ability to eliminate waste disposal and remove oil contaminants from liquid lubricants. This work describes the efficiency of complex CrAlSiN/DLC:Si coatings deposited using a hybrid unit combining physical vapor deposition and plasma-assisted chemical vapor deposition technologies to increase the wear resistance of a punch tool made of X165CrMoV12 die steel during coordinate punching of 4.0 mm thick 41Cr4 carbon structural steel sheets. The antifriction layer of DLC:Si allows for minimizing the wear under thermal exposure of 200 °C. The wear criterion of the lateral surface was 250 μm. The tribological tests allow us to consider the CrAlSiN/DLC:Si coatings as effective in increasing the wear resistance of stamping tools (21,000 strokes for the uncoated tool and 48,000 strokes for the coated one) when solving a wide range of technological problems in sheet stamping of structural steels. Full article
Show Figures

Figure 1

30 pages, 3521 KiB  
Article
Proactive Maintenance and Data-Driven Optimization of Mineral Lubricating Oil in a Gas Engine Cogeneration System Extending Oil Change Intervals for Cost Savings and a Reduced Environmental Footprint
by Krzysztof Pytel, Roman Filipek, Adam Kalwar, Małgorzata Piaskowska-Silarska, Wiktor Hudy, Jana Depešová and Franciszek Kurdziel
Energies 2025, 18(1), 154; https://doi.org/10.3390/en18010154 - 2 Jan 2025
Viewed by 1052
Abstract
This study investigates the operational properties of mineral lubricating oil in gas engines used in cogeneration systems, with a focus on factors contributing to the degradation of lubricating properties critical for energy efficiency and system management. The research was conducted on a 4.3 [...] Read more.
This study investigates the operational properties of mineral lubricating oil in gas engines used in cogeneration systems, with a focus on factors contributing to the degradation of lubricating properties critical for energy efficiency and system management. The research was conducted on a 4.3 MW gas engine operating for about 90,000 machine hours, using natural gas as fuel. Data obtained from SCADA (Supervisory Control and Data Acquisition) systems and laboratory analysis were utilized to establish oil quality criteria, enabling the prediction of oil degradation and optimization of oil change intervals. Parameters including viscosity, contamination levels, Total Base Number (TBN), and Total Acid Number (TAN), were identified as significant indicators of oil performance and engine reliability. The findings revealed that oil change intervals could be extended by an average of 37% compared to standard schedules, thereby minimizing unnecessary maintenance downtimes, enhancing system availability, and increasing electrical and thermal energy output. Optimized oil utilization reduced material costs for oil and filter replacements, lowering expenditures from 3021 to 1887 EUR per machine hour. Additionally, the predicted Global Warming Potential (GWP) for prematurely consumed oil amounted to 68 × 103 kg CO2 eq., while avoidable waste generation reached 18.2 m3 of mineral oil. Regular oil analysis conducted every 1000 operating hours proved critical for early detection of oil degradation, supporting proactive maintenance strategies and ensuring optimal engine performance and longevity. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

14 pages, 5492 KiB  
Article
Study on the Tribological Performance of Regenerated Gear Oil with Composite Additives
by Hongbin Yang, Sensen Du, Yanhe Li, Ye Zhang, Hongbin Rui and Dongya Zhang
Coatings 2024, 14(12), 1508; https://doi.org/10.3390/coatings14121508 - 29 Nov 2024
Viewed by 737
Abstract
In this study, a comprehensive regeneration process was employed to enhance the recycling efficiency and performance of waste gear oil. The process began with the waste gear oil subjected to extraction flocculation, which was then followed by vacuum distillation for solvent removal. Then, [...] Read more.
In this study, a comprehensive regeneration process was employed to enhance the recycling efficiency and performance of waste gear oil. The process began with the waste gear oil subjected to extraction flocculation, which was then followed by vacuum distillation for solvent removal. Then, catalytic hydrogenation was performed, and HiTEC 3339 additive was incorporated at concentrations that ranged from 0.25% to 1.5%, thus resulting in the regenerated gear oil. The tribological properties of the regenerated gear oil were investigated under various load conditions using a friction and wear testing apparatus. When a load of 10 N was applied, the filtered oil (Oil 2) exhibited an average friction coefficient of 0.092 and a volumetric wear rate of 8.25 × 10−8 mm3/Nm, which represented reductions of 8.23% and 42.7%, respectively, when compared to the unfiltered oil (Oil 1). As the load was increased to 50 N, Oil 2 demonstrated a wear rate of 23.4 × 10−8 mm3/Nm, indicating a 20.9% improvement in wear resistance. As the concentration of the additive increased, the following trends were observed: (i) Under a load of 10 N, the friction coefficients demonstrated a gradual decreasing trend, while at 50 N, the friction coefficients were remarkably similar and significantly lower than those at 10 N. (ii) The wear rates initially decreased and then increased. Among the tested lubricants, Oil 4 (containing 0.5% HiTEC 3339) exhibited the shallowest wear scar depth under various loads, which indicated superior anti-wear performance. When Oil 4 was thoroughly evaluated through bench tests, it indicated excellent extreme pressure and anti-wear properties, as well as superior rust and corrosion prevention capabilities and high–low temperature performance. The overall performance indicators of Oil 4 were discovered to be similar to those of fresh oil. Full article
(This article belongs to the Special Issue Wear-Resistance and Corrosion-Resistance Coatings)
Show Figures

Figure 1

16 pages, 12567 KiB  
Article
A Novel-Potential Wave-Bump Yarn of Plain Weave Fabric for Fog Harvesting
by Luc The Nguyen, Luu Hoang, Le Thuy Hang and Jiansheng Guo
Molecules 2024, 29(21), 4978; https://doi.org/10.3390/molecules29214978 - 22 Oct 2024
Cited by 2 | Viewed by 1276
Abstract
With the variety of fibers and fabrics, the studies of the surface structure of the textile yarns, the weave fabric, and their surface wettability are still potential factors to improve and optimize the fog harvesting efficiency. In this work, inspired by the fog [...] Read more.
With the variety of fibers and fabrics, the studies of the surface structure of the textile yarns, the weave fabric, and their surface wettability are still potential factors to improve and optimize the fog harvesting efficiency. In this work, inspired by the fog harvesting behavior of the desert beetle dorsal surface, a wavy–bumpy structure of post-weave yarn (obtained from woven fabric) was reported to improve large droplet growth (converge) efficiency. In which, this study used tetrabutyl titanate (Ti(OC4H9)4) to waterproof, increase hydrophobicity, and stabilize the surface of yarns and fabric (inspired by the feather structure and lotus leaf surface). Moreover, PDMS oil was used (lubricated) to increase hydrophobicity and droplet shedding on the yarns (inspired by the slippery surface of the pitcher plant) and at the same time, enhance the fog harvesting efficiency of the warp yarn woven fabric (Warp@fabric). In addition, a three-dimensional adjacent yarn structure was arranged by two non-parallel fabric layers. The yarns of the inner and outer layers were intersected at an angle decreasing to zero (mimicking the water transport behavior of Shorebird’s beaks). This method helped large droplets quickly form and shed down easily. More than expected, the changes in fabric texture and fiber surface yielded an excellent result. The OBLWB-Warp@fabric’s water harvesting rate was about 700% higher than that of the original plain weave fabric (Original@fabric). OBLWB-Warp@fabric’s water harvesting rate was about 160% higher than that of Original–Warp@fabric. This shows the great practical application potential of woven fabrics with a low cost and large scale, or you can make use of textile wastes to collect fog, suitable for the current circular economy model. This study hopes to further enrich the materials used for fog harvesting. Full article
Show Figures

Figure 1

Back to TopTop