Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = volumetric visualisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3252 KB  
Article
Analysis of Bone Phenotype Differences in MEN1-Related and Sporadic Primary Hyperparathyroidism Using 3D-DXA
by Anna K. Eremkina, Svetlana V. Pylina, Alina R. Elfimova, Anna M. Gorbacheva, Ludovic Humbert, Mirella López Picazo, Angelina V. Hajrieva, Ekaterina N. Solodovnikova, Liliya D. Kovalevich, Ekaterina A. Vetchinkina, Ekaterina V. Bondarenko, Natalia V. Tarbaeva and Natalia G. Mokrysheva
J. Clin. Med. 2024, 13(21), 6382; https://doi.org/10.3390/jcm13216382 - 25 Oct 2024
Cited by 3 | Viewed by 1470
Abstract
Background: The rarity and variability of MEN1-related primary hyperparathyroidism (mPHPT) has led to contradictory data regarding the bone phenotype in this patient population. Methods: A single-center retrospective study was conducted among young age- and sex-matched patients with mPHPT and sporadic hyperparathyroidism (sPHPT). The [...] Read more.
Background: The rarity and variability of MEN1-related primary hyperparathyroidism (mPHPT) has led to contradictory data regarding the bone phenotype in this patient population. Methods: A single-center retrospective study was conducted among young age- and sex-matched patients with mPHPT and sporadic hyperparathyroidism (sPHPT). The main parameters of calcium–phosphorus metabolism, bone remodeling markers, and bone mineral density (BMD) measurements were obtained during the active phase of hyperparathyroidism before parathyroidectomy (PTE) and 1 year after. Trabecular Bone Score (TBS) and 3D-DXA analysis of the proximal femur were used to evaluate the differences in bone architecture disruption between groups. Results: Patients with mPHPT had significant lower preoperative BMD compared to sPHPT at lumbar spine—LS (p = 0.002); femur neck—FN (p = 0.001); and total hip—TH (p = 0.002). 3D-DXA analysis showed the prevalence of cortical rather than trabecular bone damage in mPHPT compared to sPHPT: cortical thickness (p < 0.001); cortical surface BMD (p = 0.001); cortical volumetric BMD (p = 0.007); and trabecular volumetric BMD (p = 0.029). One year after, PTE DXA and 3D-DXA parameters were similar between groups, while 3D-visualisation showed more extensive regeneration in cortical sBMD and cortical thickness in mPHPT. Conclusions: mPHPT is associated with lower preoperative BMD values with predominant architecture disruption in the cortical bone. The absence of differences in DXA and 3D-DXA parameters 1 year after PTE between mPHPT/sPHPT combined with significantly lower BMD in mPHPT at the initial stage may indicate faster bone recovery after surgery in mPHPT than in sPHPT. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

19 pages, 11831 KB  
Article
Evolution of Soil Pore Structure and Shear Strength Deterioration of Compacted Soil under Controlled Wetting and Drying Cycles
by Kanishka S. Turrakheil, Syed Samran Ali Shah and Muhammad Naveed
Atmosphere 2024, 15(7), 843; https://doi.org/10.3390/atmos15070843 - 17 Jul 2024
Cited by 6 | Viewed by 2252
Abstract
This study investigates the evolution of soil pore structure and shear strength deterioration in compacted clayey soil under controlled wetting and drying (wd) cycles, which are expected to become more frequent due to climate change. Thirty soil samples were compacted at optimal moisture [...] Read more.
This study investigates the evolution of soil pore structure and shear strength deterioration in compacted clayey soil under controlled wetting and drying (wd) cycles, which are expected to become more frequent due to climate change. Thirty soil samples were compacted at optimal moisture content and 90% maximum dry density. These samples were then subjected to 0, 1, 5, 10, and 15 controlled wd cycles from saturation to the wilting point, and volumetric changes were recorded during each cycle. After the wd treatment, the soil samples were scanned using X-ray computed tomography (CT) at 50 μm resolution and then sheared under unconsolidated–undrained and consolidated–undrained conditions in a triaxial test. Significant shrinkage and swelling of soil samples were observed during wd cycles, with average volumetric strain fluctuating between +12% at saturation and −5% at the wilting point. X-ray CT visualisation and analysis revealed higher porosity, more prominent pores, and increased pore length in soil samples with increasing wd cycles. Both undrained and effective soil shear strength markedly decreased with increasing wd cycles. CT-derived macroporosity and pore length were significant predictors of the soil’s undrained and effective shear strength when exposed to wd cycles. The findings emphasise the considerable impact of climate change, specifically wd cycles, on clayey soil, highlighting the need for consideration in the design of earth-based infrastructure. Full article
(This article belongs to the Special Issue Land-Atmosphere Interactions)
Show Figures

Figure 1

21 pages, 22648 KB  
Article
3D Ultrasound Mosaic of the Whole Shoulder: A Feasibility Study
by Ahmed Sewify, Maria Antico, Marian Steffens, Jacqueline Roots, Ashish Gupta, Kenneth Cutbush, Peter Pivonka and Davide Fontanarosa
Appl. Sci. 2024, 14(5), 2152; https://doi.org/10.3390/app14052152 - 4 Mar 2024
Cited by 2 | Viewed by 3361
Abstract
A protocol is proposed to acquire a tomographic ultrasound (US) scan of the musculoskeletal (MSK) anatomy in the rotator cuff region. Current clinical US imaging techniques are hindered by occlusions and a narrow field of view and require expert acquisition and interpretation. There [...] Read more.
A protocol is proposed to acquire a tomographic ultrasound (US) scan of the musculoskeletal (MSK) anatomy in the rotator cuff region. Current clinical US imaging techniques are hindered by occlusions and a narrow field of view and require expert acquisition and interpretation. There is limited literature on 3D US image registration of the shoulder or volumetric reconstruction of the full shoulder complex. We believe that a clinically accurate US volume reconstruction of the entire shoulder can aid in pre-operative surgical planning and reduce the complexity of US interpretation. The protocol was used in generating data for deep learning model training to automatically register US mosaics in real-time. An in vivo 3D US tomographic reconstruction of the entire rotator cuff region was produced by registering 53 sequential 3D US volumes acquired by an MSK sonographer. Anatomical surface thicknesses and distances in the US mosaic were compared to their corresponding MRI measurements as the ground truth. The humeral head surface was marginally thicker in the reconstructed US mosaic than its original thickness observed in a single US volume by 0.65 mm. The humeral head diameter and acromiohumeral distance (ACHD) matched with their measured MRI distances with a reconstruction error of 0 mm and 1.2 mm, respectively. Furthermore, the demonstration of 20 relevant MSK structures was independently graded between 1 and 5 by two sonographers, with higher grades indicating poorer demonstration. The average demonstration grade for each anatomy was as follows: bones = 2, muscles = 3, tendons = 3, ligaments = 4–5 and labrum = 4–5. There was a substantial agreement between sonographers (Cohen’s Weighted kappa of 0.71) on the demonstration of the structures, and they both independently deemed the mosaic clinically acceptable for the visualisation of the bony anatomy. Ligaments and the labrum were poorly observed due to anatomy size, location and inaccessibility in a static scan, and artefact build-up from the registration and compounding approaches. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

15 pages, 14826 KB  
Article
Achieving Better Energy Efficiency in Volume Analysis and Direct Volume Rendering Descriptor Computation
by Jacob D. Hauenstein and Timothy S. Newman
Computers 2024, 13(2), 51; https://doi.org/10.3390/computers13020051 - 13 Feb 2024
Cited by 1 | Viewed by 1969
Abstract
Approaches aimed at achieving improved energy efficiency for determination of descriptors—used in volumetric data analysis and one common mode of scientific visualisation—in one x86-class setting are described and evaluated. These approaches are evaluated against standard approaches for the computational setting. In all, six [...] Read more.
Approaches aimed at achieving improved energy efficiency for determination of descriptors—used in volumetric data analysis and one common mode of scientific visualisation—in one x86-class setting are described and evaluated. These approaches are evaluated against standard approaches for the computational setting. In all, six approaches for improved efficiency are considered. Four of them are computation-based. The other two are memory-based. The descriptors are classic gradient and curvature descriptors. In addition to their use in volume analyses, they are used in the classic ray-casting-based direct volume rendering (DVR), which is a particular application area of interest here. An ideal combination of the described approaches applied to gradient descriptor determination allowed them to to be computed with only 80% of the energy of a standard approach in the computational setting; energy efficiency was improved by a factor of 1.2. For curvature descriptor determination, the ideal combination of described approaches achieved a factor-of-two improvement in energy efficiency. Full article
(This article belongs to the Special Issue Selected Papers from Computer Graphics & Visual Computing (CGVC 2023))
Show Figures

Figure 1

12 pages, 1501 KB  
Article
Tractography-Enhanced Biopsy of Central Core Motor Eloquent Tumours: A Simulation-Based Study
by Harishchandra Lalgudi Srinivasan, Jose Pedro Lavrador, Kantharuby Tambirajoo, Graeme Pang, Sabina Patel, Richard Gullan, Francesco Vergani, Ranjeev Bhangoo, Jonathan Shapey, Ahilan Kailaya Vasan and Keyoumars Ashkan
J. Pers. Med. 2023, 13(3), 467; https://doi.org/10.3390/jpm13030467 - 3 Mar 2023
Cited by 1 | Viewed by 1668
Abstract
Safe Trajectory planning for navigation guided biopsy (nBx) of motor eloquent tumours (METs) is important to minimise neurological morbidity. Preliminary clinical data suggest that visualisation of the corticospinal tract (CST) and its relation to the tumour may aid in planning a safe trajectory. [...] Read more.
Safe Trajectory planning for navigation guided biopsy (nBx) of motor eloquent tumours (METs) is important to minimise neurological morbidity. Preliminary clinical data suggest that visualisation of the corticospinal tract (CST) and its relation to the tumour may aid in planning a safe trajectory. In this article we assess the impact of tractography in nBx planning in a simulation-based exercise. This single centre cross-sectional study was performed in March 2021 including 10 patients with METs divided into 2 groups: (1) tractography enhanced group (T-nBx; n = 5; CST merged with volumetric MRI); (2) anatomy-based group (A-nBx; n = 5; volumetric MRI only). A biopsy target was chosen on each tumour. Volunteer neurosurgical trainees had to plan a suitable biopsy trajectory on a Stealth S8® workstation for all patients in a single session. A trajectory safety index (TSI) was devised for each trajectory. Data collection and analysis included a comparison of trajectory planning time, trajectory/lobe changes and TSI. A total of 190 trajectories were analysed based on participation from 19 trainees. Mean trajectory planning time for the entire cohort was 225.1 ± 21.97 s. T-nBx required shorter time for planning (p = 0.01). Mean trajectory changes and lobe changes made per biopsy were 3.28 ± 0.29 and 0.45 ± 0.08, respectively. T-nBx required fewer trajectory/lobe changes (p = 0.01). TSI was better in the presence of tractography than A-nBx (p = 0.04). Neurosurgical experience of trainees had no significant impact on the measured parameters despite adjusted analysis. Irrespective of the level of neurosurgical training, surgical planning of navigation guided biopsy for METs may be achieved in less time with a safer trajectory if tractography imaging is available. Full article
(This article belongs to the Section Personalized Therapy in Clinical Medicine)
Show Figures

Figure 1

12 pages, 1160 KB  
Article
Cardiovascular Magnetic Resonance Imaging Findings in Africans with Idiopathic Dilated Cardiomyopathy
by Nqoba Tsabedze, Andre du Plessis, Dineo Mpanya, Anelia Vorster, Quinn Wells, Leonie Scholtz and Pravin Manga
Diagnostics 2023, 13(4), 617; https://doi.org/10.3390/diagnostics13040617 - 8 Feb 2023
Cited by 2 | Viewed by 2429
Abstract
In sub-Saharan Africa, idiopathic dilated cardiomyopathy (IDCM) is a common yet poorly investigated cause of heart failure. Cardiovascular magnetic resonance (CMR) imaging is the gold standard for tissue characterisation and volumetric quantification. In this paper, we present CMR findings obtained from a cohort [...] Read more.
In sub-Saharan Africa, idiopathic dilated cardiomyopathy (IDCM) is a common yet poorly investigated cause of heart failure. Cardiovascular magnetic resonance (CMR) imaging is the gold standard for tissue characterisation and volumetric quantification. In this paper, we present CMR findings obtained from a cohort of patients with IDCM in Southern Africa suspected of having a genetic cause of cardiomyopathy. A total of 78 IDCM study participants were referred for CMR imaging. The participants had a median left ventricular ejection fraction of 24% [interquartile range, (IQR): 18–34]. Late gadolinium enhancement (LGE) was visualised in 43 (55.1%) participants and localised in the midwall in 28 (65.0%) participants. At the time of enrolment into the study, non-survivors had a higher median left ventricular end diastolic wall mass index of 89.4 g/m2 (IQR: 74.5–100.6) vs. 73.6 g/m2 (IQR: 51.9–84.7), p = 0.025 and a higher median right ventricular end-systolic volume index of 86 mL/m2 (IQR:74–105) vs. 41 mL/m2 (IQR: 30–71), p < 0.001. After one year, 14 participants (17.9%) died. The hazard ratio for the risk of death in patients with evidence of LGE from CMR imaging was 0.435 (95% CI: 0.259–0.731; p = 0.002). Midwall enhancement was the most common pattern, visualised in 65% of participants. Prospective, adequately powered, and multi-centre studies across sub-Saharan Africa are required to determine the prognostic significance of CMR imaging parameters such as late gadolinium enhancement, extracellular volume fraction, and strain patterns in an African IDCM cohort. Full article
(This article belongs to the Special Issue Advances in Cardiovascular Magnetic Resonance)
Show Figures

Graphical abstract

20 pages, 40874 KB  
Article
Exploring Ephemeral Features with Ground-Penetrating Radar: An Approach to Roman Military Camps
by Jesús García Sánchez, José Manuel Costa-García, João Fonte and David González-Álvarez
Remote Sens. 2022, 14(19), 4884; https://doi.org/10.3390/rs14194884 - 30 Sep 2022
Cited by 5 | Viewed by 4504
Abstract
This paper addresses an experimental approach to the archaeological study of Roman camps in NW Iberia using ground-penetrating radar (henceforth GPR). The main goal is to explore the capabilities of GPR to extract datasets from ephemeral features, such as temporary camps or siege [...] Read more.
This paper addresses an experimental approach to the archaeological study of Roman camps in NW Iberia using ground-penetrating radar (henceforth GPR). The main goal is to explore the capabilities of GPR to extract datasets from ephemeral features, such as temporary camps or siege works, among others. This information aims to maximise the data available before excavation, orienting it to areas that could provide good results in terms of feature detection and contrast between soil matrix and archaeological deposits. This paper explores the potential of the GPR approach and volumetric data visualisation to improve our understanding of four ephemeral sites: Alto da Raia (Montalegre, Portugal–Calvos de Randín, Spain), Sueros de Cepeda (Villamejil, Spain), Los Andinales (Villsandino, Spain), and Villa María (Sasamón, Spain). Despite the focus of this paper, other survey techniques (namely LiDAR, aerial photography, and magnetometry) were used in combination with GPR. Further excavation of the sites provided ground truthing for all data remotely gathered. Full article
(This article belongs to the Special Issue Advances in Ground-Penetrating Radar for Archaeology)
Show Figures

Figure 1

14 pages, 3265 KB  
Article
X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy)
by Roberto Zonta, Giorgio Fontolan, Daniele Cassin and Janusz Dominik
J. Mar. Sci. Eng. 2021, 9(3), 323; https://doi.org/10.3390/jmse9030323 - 15 Mar 2021
Cited by 5 | Viewed by 3654
Abstract
Lagoon sediments have heterogeneous structure and texture, contain shells and plants and are often highly bioturbated and disturbed by human activities. In such sediments, the selection of representative cores and the choice of a subsampling strategy are important but difficult. In this study, [...] Read more.
Lagoon sediments have heterogeneous structure and texture, contain shells and plants and are often highly bioturbated and disturbed by human activities. In such sediments, the selection of representative cores and the choice of a subsampling strategy are important but difficult. In this study, we examine the usefulness of X-ray computed tomography (CT) for inferring sediment features that will help in making optimal decisions prior to core opening (24 cores from seven lagoons). Various algorithms (intensity projections, slice thickness, axial and sagittal images, CT number profiles and volumetric region of interest) are tested to visualise low- and high-density volumes or objects and to quantify the relations between the average volumetric CT number and the bulk density of the sediment matrix. The CT number is related mainly to water content and indirectly to total nitrogen and <16-μm grain-size fraction (model R2 = 0.94). The outliers are attributed to a weak correspondence between the fraction of sediment sampled for water content determination and the volume of sediment matrix used for CT number measurements in highly heterogeneous sediment slices. In conclusion, CT is a powerful tool for the initial screening of cores recovered from heterogeneous lagoon sediments. The adequate use of available algorithms may provide quantitative information on various sediment features, allowing the purposeful selection of cores and subsamples for further investigation. Full article
Show Figures

Figure 1

19 pages, 7428 KB  
Article
A Comparative Study about Data Structures Used for Efficient Management of Voxelised Full-Waveform Airborne LiDAR Data during 3D Polygonal Model Creation
by Milto Miltiadou, Neill D. F. Campbell, Darren Cosker and Michael G. Grant
Remote Sens. 2021, 13(4), 559; https://doi.org/10.3390/rs13040559 - 4 Feb 2021
Cited by 5 | Viewed by 6166
Abstract
In this paper, we investigate the performance of six data structures for managing voxelised full-waveform airborne LiDAR data during 3D polygonal model creation. While full-waveform LiDAR data has been available for over a decade, extraction of peak points is the most widely used [...] Read more.
In this paper, we investigate the performance of six data structures for managing voxelised full-waveform airborne LiDAR data during 3D polygonal model creation. While full-waveform LiDAR data has been available for over a decade, extraction of peak points is the most widely used approach of interpreting them. The increased information stored within the waveform data makes interpretation and handling difficult. It is, therefore, important to research which data structures are more appropriate for storing and interpreting the data. In this paper, we investigate the performance of six data structures while voxelising and interpreting full-waveform LiDAR data for 3D polygonal model creation. The data structures are tested in terms of time efficiency and memory consumption during run-time and are the following: (1) 1D-Array that guarantees coherent memory allocation, (2) Voxel Hashing, which uses a hash table for storing the intensity values (3) Octree (4) Integral Volumes that allows finding the sum of any cuboid area in constant time, (5) Octree Max/Min, which is an upgraded octree and (6) Integral Octree, which is proposed here and it is an attempt to combine the benefits of octrees and Integral Volumes. In this paper, it is shown that Integral Volumes is the more time efficient data structure but it requires the most memory allocation. Furthermore, 1D-Array and Integral Volumes require the allocation of coherent space in memory including the empty voxels, while Voxel Hashing and the octree related data structures do not require to allocate memory for empty voxels. These data structures, therefore, and as shown in the test conducted, allocate less memory. To sum up, there is a need to investigate how the LiDAR data are stored in memory. Each tested data structure has different benefits and downsides; therefore, each application should be examined individually. Full article
(This article belongs to the Special Issue Lidar Remote Sensing in 3D Object Modelling)
Show Figures

Graphical abstract

11 pages, 1746 KB  
Article
Towards a Dynamic Model of the Kangaroo Knee for Clinical Insights into Human Knee Pathology and Treatment: Establishing a Static Biomechanical Profile
by Manaal Fatima, Corey J. Scholes, Emily Zhong and Lawrence Kohan
Biomimetics 2019, 4(3), 52; https://doi.org/10.3390/biomimetics4030052 - 25 Jul 2019
Cited by 2 | Viewed by 5387
Abstract
There is limited understanding of how patella realignment or patellectomy to surgically manage patellofemoral pain (PFP) affects knee biomechanics. By analysing marsupials like kangaroos that lack an ossified patella, actionable biomimetic insight for the management of end-stage PFP could be gained. This study [...] Read more.
There is limited understanding of how patella realignment or patellectomy to surgically manage patellofemoral pain (PFP) affects knee biomechanics. By analysing marsupials like kangaroos that lack an ossified patella, actionable biomimetic insight for the management of end-stage PFP could be gained. This study aimed to provide the foundation of a multi-stage approach, by establishing a static biomechanical profile of the kangaroo stifle that informs the inputs and factors requiring consideration for future dynamic analyses. Volumetric CT and MRI sequences were obtained for four hindlimbs from two Macropus giganteus specimens, from which three-dimensional models of the stifles were created. Two limbs were dissected to visualise the insertion points, origins and lines of action of the quadriceps muscles and the knee extensor mechanism. Static measurements were obtained from the three-dimensional models to establish the biomechanical profile. The results confirmed structural differences in the kangaroo stifle with lack of an ossified patella, a prominent tuberosity and a shorter femur, which functionally affect the mechanical advantage and the torque-generating capability of the joint. The data reported in this study can be used to inform the inputs and constraints of future comparative analyses from which important lessons can be learned for the human knee. Full article
Show Figures

Figure 1

24 pages, 1571 KB  
Article
A Systematic Review of the Clinical Value and Applications of Three-Dimensional Printing in Renal Surgery
by Catalina Lupulescu and Zhonghua Sun
J. Clin. Med. 2019, 8(7), 990; https://doi.org/10.3390/jcm8070990 - 8 Jul 2019
Cited by 43 | Viewed by 6177
Abstract
The purpose of this systematic review is to collate and analyse the current literature which examines clinical applications of 3D printing for renal disease, alongside cost and time duration factors associated with the printing process. A comprehensive search of the literature was performed [...] Read more.
The purpose of this systematic review is to collate and analyse the current literature which examines clinical applications of 3D printing for renal disease, alongside cost and time duration factors associated with the printing process. A comprehensive search of the literature was performed across five different databases to identify studies that qualitatively and quantitatively assessed the value of 3D-printed kidney models for renal disease. Twenty-seven studies met the selection criteria for inclusion in the review. Twenty-five were original studies, and two were case reports. Of the 22 studies reporting a qualitative evaluation, the analysis of findings demonstrated the value of the 3D-printed models in areas of clinician and patient education, and pre-surgical simulation for complex cases of renal disease. Of five studies performing a quantitative analysis, the analysis of results displayed a high level of spatial and anatomical accuracy amongst models, with benefits including reducing estimated blood loss and risk of intra-operative complications. Fourteen studies evaluated manufacturing costs and time duration, with costs ranging from USD 1 to 1000 per model, and time duration ranging from 15 min to 9 days. This review shows that the use of customised 3D-printed models is valuable in the education of junior surgeons as well as the enhancement of operative skills for senior surgeons due to a superior visualisation of anatomical networks and pathologic morphology compared to volumetric imaging alone. Furthermore, 3D-printed kidney models may facilitate interdisciplinary communication and decision-making regarding the management of patients undergoing operative treatment for renal disease. It cannot be suggested that a more expensive material constitutes a higher level of user-satisfaction and model accuracy. However, higher costs in the manufacturing of the 3D-printed models reported, on average, a slightly shorter time duration for the 3D-printing process and total manufacturing time. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

Back to TopTop