Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = void swelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 17087 KiB  
Article
Assessment of Premature Failures in Concrete Railway Ties: A Case Study from Brazil
by Eliane Betânia Carvalho Costa, Maria Eduarda Guedes Coutinho, Rondinele Alberto Dos Reis Ferreira, Antonio Carlos Dos Santos and Luciano Oliveira
Materials 2025, 18(13), 2994; https://doi.org/10.3390/ma18132994 - 24 Jun 2025
Viewed by 371
Abstract
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian [...] Read more.
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian rail line after ten years of natural exposure, emphasizing critical implications for infrastructure maintenance. Two groups of ties, separated by 30 km, were analyzed through physical property assessments, petrography, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The results reveal that deterioration was driven by the combined effects of alkali–silica reaction (ASR) and sulfate attack, confirmed by the presence of (N, C)ASH gels, ettringite crystallization, and cryptocrystalline materials within cracks and voids. Prestressing-induced stresses and environmental moisture further accelerated degradation, leading to a 66% reduction in mechanical strength in the T1 group. These findings demonstrate that internal swelling reactions and moisture exposure synergistically accelerate deterioration in prestressed concrete ties, particularly in low-prestress, poorly drained zones. Full article
(This article belongs to the Special Issue Performance and Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

17 pages, 1459 KiB  
Article
Development of Electrospun Quaternized Poly(vinyl alcohol)/Poly(acrylamide-co-diallyldimethylammonium chloride) Anion Exchange Membranes for Alkaline Fuel Cells
by Asep Muhamad Samsudin and Viktor Hacker
Nanomaterials 2025, 15(12), 907; https://doi.org/10.3390/nano15120907 - 11 Jun 2025
Viewed by 434
Abstract
Anion exchange membrane fuel cells (AEMFCs) have garnered significant attention for their potential to advance fuel cell technology. In this study, we developed and characterized anion exchange membranes (AEMs) composed of quaternized poly(vinyl alcohol) (QPVA) electrospun nanofiber mats with poly(acrylamide-co-diallyldimethylammonium chloride) (PAADDA) as [...] Read more.
Anion exchange membrane fuel cells (AEMFCs) have garnered significant attention for their potential to advance fuel cell technology. In this study, we developed and characterized anion exchange membranes (AEMs) composed of quaternized poly(vinyl alcohol) (QPVA) electrospun nanofiber mats with poly(acrylamide-co-diallyldimethylammonium chloride) (PAADDA) as a matrix filler for interfiber voids. The objective was to investigate the effect of varying PAADDA concentrations as a matrix filler for interfiber voids on the structural, mechanical, and electrochemical properties of QPVA-based electrospun AEMs. Membranes with various concentrations of PAADDA were fabricated and extensively characterized using FTIR, SEM, tensile strength, water uptake, swelling degree, ion exchange capacity (IEC), and hydroxide ion conductivity (σ). FTIR confirmed the successful incorporation of PAADDA into the membrane structure, while SEM images showed that PAADDA effectively filled the voids between the QPVA fibers, resulting in denser membranes. The results indicated that the eQPAD5.0 membrane, with the highest PAADDA content, exhibited the best overall performance. The incorporation of PAADDA into QPVA-based electrospun AEMs significantly enhanced their mechanical strength, achieving a tensile strength of 23.9 MPa, an IEC of 1.25 mmol g−1, and hydroxide conductivity of 19.49 mS cm−1 at 30 °C and 29.29 mS cm−1 at 80 °C, making them promising candidates for fuel cell applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

14 pages, 4280 KiB  
Article
Dynamic Microstructural Changes in Bentonite During Hydration: A Micro-CT Investigation
by Kui Liu, Jing Hu, Quanchang Zhang and Chaofeng Zeng
Water 2025, 17(9), 1348; https://doi.org/10.3390/w17091348 - 30 Apr 2025
Viewed by 416
Abstract
Bentonite is widely used as an engineering barrier in radioactive waste disposal. This study examined the hydromechanical behavior and microstructural evolution of a bentonite mixture under controlled hydration, utilizing real-time X-ray micro-CT imaging to capture transitions from granular to dense homogeneous states. The [...] Read more.
Bentonite is widely used as an engineering barrier in radioactive waste disposal. This study examined the hydromechanical behavior and microstructural evolution of a bentonite mixture under controlled hydration, utilizing real-time X-ray micro-CT imaging to capture transitions from granular to dense homogeneous states. The results demonstrated that, during the early stages of hydration, bentonite pellets experienced substantial swelling, filling inter-pellet voids and transforming from a loosely packed granular structure to a compact, homogeneous matrix. This transformation significantly reduced the porosity from an initial value of 20% to below 0.1% after 60 days, thereby substantially lowering the material’s permeability. Particle displacement analysis, employing digital image correlation techniques, revealed axial displacements of up to 2.6 mm and radial displacements of up to 0.9 mm, highlighting pronounced void closure and structural reorganization. The study also examined the influence of initial dry density heterogeneities on swelling pressure and permeability, providing insights for optimizing barrier design. The findings affirm that hydrated bentonite serves as a highly effective low-permeability barrier for sealing deep geological repositories. Its capacity for environmental adaptation, demonstrated through self-healing and densification, further reinforces its suitability for critical and long-term engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Groundwater Control in Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 3518 KiB  
Article
Study on Mechanism of Mechanical Property Enhancement of Expansive Soil by Alkali-Activated Slag
by Quan Shen, Chaohui Wang, Yuan Yan, Shiyuan Yi, Ke Teng and Chaojun Li
Materials 2025, 18(4), 800; https://doi.org/10.3390/ma18040800 - 12 Feb 2025
Cited by 1 | Viewed by 812
Abstract
Expansive soil poses significant challenges for engineering due to its susceptibility to swelling and shrinkage. This study aims to explore effective methods for improving its mechanical properties using single alkaline activators, single slag, and their combination. Laboratory experiments were conducted to evaluate the [...] Read more.
Expansive soil poses significant challenges for engineering due to its susceptibility to swelling and shrinkage. This study aims to explore effective methods for improving its mechanical properties using single alkaline activators, single slag, and their combination. Laboratory experiments were conducted to evaluate the unconfined compressive strength (UCS) and analyze curing mechanisms through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results demonstrate that all three treatments enhance soil strength, with the combination of alkali-activated slag being the most effective, followed by the single alkaline activator and single slag. Optimal dosages were determined as 15% for the activator and slag individually and 15% activator combined with 20% slag, yielding the densest structure and highest UCS. The activator’s modulus of 1.5 was found to be optimal, and strength improved further with extended curing time. A microscopic analysis revealed that alkaline activation formed gel-like substances and dense needle-like structures, while slag generated CaCO3 and Ca(OH)2. The combination produces a synergistic effect, creating substantial amounts of C-S-H, C-A-S-H gel, and dense needle-like structures, which enhance soil compactness and strength by binding particles and filling voids. These findings provide insights into the curing mechanisms and offer practical solutions for improving expansive soil in engineering applications. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures (Second Edition))
Show Figures

Figure 1

36 pages, 15000 KiB  
Article
Modeling Soil Behavior with Machine Learning: Static and Cyclic Properties of High Plasticity Clays Treated with Lime and Fly Ash
by Gebrail Bekdaş, Yaren Aydın, Sinan Melih Nigdeli, İnci Süt Ünver, Wook-Won Kim and Zong Woo Geem
Buildings 2025, 15(2), 288; https://doi.org/10.3390/buildings15020288 - 19 Jan 2025
Cited by 3 | Viewed by 1431
Abstract
Soils may not always be suitable to fulfill their intended function. Soil improvement can be achieved by mechanical or chemical methods, especially in transportation facilities. L and FA additives are frequently used as chemical improvement additives. In this study, two natural clay samples [...] Read more.
Soils may not always be suitable to fulfill their intended function. Soil improvement can be achieved by mechanical or chemical methods, especially in transportation facilities. L and FA additives are frequently used as chemical improvement additives. In this study, two natural clay samples with extreme and very high plasticity were improved by using L and FA admixtures, and their properties under static and repeated loads were investigated by ML methods. Two soil samples from two different sites were analyzed. In this study, eight datasets were used. There are 14 inputs, including specific gravity (Gs), void ratio (eo), sieve analysis (+No.4, −No.200), clay size, LL, plastic limit (PL), plasticity index (PI), linear shrinkage (Ls), shrinkage limit (SL), cure day, agent, clay type, and agent percentage. The outputs are index and swelling properties (compressive, percent), compressive strengths, modulus of elasticity, and compressibility properties in soaked and non-soaked conditions. Prediction is attempted with different ML (ML) techniques. ML techniques used for regression (such as Decision Tree Regression (DTR) and K-nearest neighbors (KNN)). SHapley Additive Explanations (SHAP), the impact of inputs on outputs were observed, and it was generally found that PL and LL had the highest impact on outputs. Different performance metrics are used for evaluation. The results showed that these ML techniques can predict the static and cyclic properties of extremely high plasticity clays with high performance (R2 > 0.99). These results highlight the general applicability of the used ML models on different datasets containing soil properties. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 1438 KiB  
Article
Swell Magnitude of Unsaturated Clay as Affected by Different Wetting Conditions
by Shay Nachum
Standards 2025, 5(1), 1; https://doi.org/10.3390/standards5010001 - 6 Jan 2025
Cited by 1 | Viewed by 704
Abstract
The wetting of compacted clays and their subsequent swelling often result in damage to structures and infrastructures. Estimations of the swell that is expected to develop during wetting are usually based on standard laboratory tests. The standard procedure requires inundating the test specimens; [...] Read more.
The wetting of compacted clays and their subsequent swelling often result in damage to structures and infrastructures. Estimations of the swell that is expected to develop during wetting are usually based on standard laboratory tests. The standard procedure requires inundating the test specimens; this procedure represents an extreme wetting condition and provides an upper limit to the swell. However, wetting may result from less extreme conditions, for example by the absorption of water due to suction forces, which may result in a smaller swell. This paper describes a laboratory investigation of the swell difference in high-plasticity clay that may result from different wetting conditions. Swell tests were carried out on specimens prepared at different initial conditions and wetted under different wetting conditions of inundation or absorption. The results indicate that as the initial void ratio decreases and the degree of saturation increases, it is more likely that different wetting conditions will result in different swell magnitudes, where inundation may create a larger swell than absorption. The soil at a low initial void ratio and high degree of saturation seems to be characterized by mono-modal pore size distributions in the micropore range. This unique pore size distribution may be the explanation of the different swell magnitudes. Full article
(This article belongs to the Topic Advanced Risk Assessment in Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 5215 KiB  
Article
Molecular Insights into CO2 Diffusion Behavior in Crude Oil
by Chunning Gao, Yongqiang Zhang, Wei Fan, Dezhao Chen, Keqin Wu, Shuai Pan, Yuchuan Guo, Haizhu Wang and Keliu Wu
Processes 2024, 12(10), 2248; https://doi.org/10.3390/pr12102248 - 15 Oct 2024
Cited by 1 | Viewed by 1581
Abstract
CO2 flooding plays a significant part in enhancing oil recovery and is essential to achieving CCUS (Carbon Capture, Utilization, and Storage). This study aims to understand the fundamental theory of CO2 dissolving and diffusing into crude oil and how these processes [...] Read more.
CO2 flooding plays a significant part in enhancing oil recovery and is essential to achieving CCUS (Carbon Capture, Utilization, and Storage). This study aims to understand the fundamental theory of CO2 dissolving and diffusing into crude oil and how these processes vary under reasonable reservoir conditions. In this paper, we primarily use molecular dynamics simulation to construct a multi-component crude oil model with 17 hydrocarbons, which is on the basis of a component analysis of oil samples through laboratory experiments. Then, the CO2 dissolving capacity of the multi-component crude was quantitatively characterized and the impacts of external conditions—including temperature and pressure—on the motion of the CO2 dissolution and diffusion coefficients were systematically investigated. Finally, the swelling behavior of mixed CO2–crude oil was analyzed and the diffusion coefficients were predicted; furthermore, the levels of CO2 impacting the oil’s mobility were analyzed. Results showed that temperature stimulation intensified molecular thermal motion and increased the voids between the alkane molecules, promoting the rapid dissolution and diffusion of CO2. This caused the crude oil to swell and reduced its viscosity, further improving the mobility of the crude oil. As the pressure increased, the voids between the internal and external potential energy of the crude oil models became wider, facilitating the dissolution of CO2. However, when subjected to external compression, the CO2 molecules’ diffusing progress within the oil samples was significantly limited, even diverging to zero, which inhabited the improvement in oil mobility. This study provides some meaningful insights into the effect of CO2 on improving molecular-scale mobility, providing theoretical guidance for subsequent investigations into CO2–crude oil mixtures’ complicated and detailed behavior. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

25 pages, 9502 KiB  
Article
Thermomechanical Processing for Improved Mechanical Properties of HT9 Steels
by Thak Sang Byun, David A. Collins, Timothy G. Lach, Jung Pyung Choi and Stuart A. Maloy
Materials 2024, 17(15), 3803; https://doi.org/10.3390/ma17153803 - 1 Aug 2024
Cited by 1 | Viewed by 1584
Abstract
Thermomechanical processing (TMP) of ferritic–martensitic (FM) steels, such as HT9 (Fe–12Cr–1MoWV) steels, involves normalizing, quenching, and tempering to create a microstructure of fine ferritic/martensitic laths with carbide precipitates. HT9 steels are used in fast reactor core components due to their high-temperature strength and [...] Read more.
Thermomechanical processing (TMP) of ferritic–martensitic (FM) steels, such as HT9 (Fe–12Cr–1MoWV) steels, involves normalizing, quenching, and tempering to create a microstructure of fine ferritic/martensitic laths with carbide precipitates. HT9 steels are used in fast reactor core components due to their high-temperature strength and resistance to irradiation damage. However, traditional TMP methods for these steels often result in performance limitations under irradiation, including embrittlement at low temperatures (<~430 °C), insufficient strength and toughness at higher temperatures (>500 °C), and void swelling after high-dose irradiation (>200 dpa). This research aimed to enhance both fracture toughness and strength at high temperatures by creating a quenched and tempered martensitic structure with ultrafine laths and precipitates through rapid quenching and unconventional tempering. Mechanical testing revealed significant variations in strength and fracture toughness depending on the processing route, particularly the tempering conditions. Tailored TMP approaches, combining rapid quenching with limited tempering, elevated strength to levels comparable to nano-oxide strengthened ferritic alloys while preserving fracture toughness. For optimal properties in high-Cr steels for future reactor applications, this study recommends a modified tempering treatment, i.e., post-quench annealing at 500 °C or 600 °C for 1 h, possibly followed by a brief tempering at a slightly higher temperature. Full article
(This article belongs to the Special Issue Mechanical Behavior and Radiation Response of Materials)
Show Figures

Figure 1

36 pages, 6799 KiB  
Review
The Irradiation Effects in Ferritic, Ferritic–Martensitic and Austenitic Oxide Dispersion Strengthened Alloys: A Review
by Natália Luptáková, Jiří Svoboda, Denisa Bártková, Adam Weiser and Antonín Dlouhý
Materials 2024, 17(14), 3409; https://doi.org/10.3390/ma17143409 - 10 Jul 2024
Cited by 4 | Viewed by 2736
Abstract
High-performance structural materials (HPSMs) are needed for the successful and safe design of fission and fusion reactors. Their operation is associated with unprecedented fluxes of high-energy neutrons and thermomechanical loadings. In fission reactors, HPSMs are used, e.g., for fuel claddings, core internal structural [...] Read more.
High-performance structural materials (HPSMs) are needed for the successful and safe design of fission and fusion reactors. Their operation is associated with unprecedented fluxes of high-energy neutrons and thermomechanical loadings. In fission reactors, HPSMs are used, e.g., for fuel claddings, core internal structural components and reactor pressure vessels. Even stronger requirements are expected for fourth-generation supercritical water fission reactors, with a particular focus on the HPSM’s corrosion resistance. The first wall and blanket structural materials in fusion reactors are subjected not only to high energy neutron irradiation, but also to strong mechanical, heat and electromagnetic loadings. This paper presents a historical and state-of-the-art summary focused on the properties and application potential of irradiation-resistant alloys predominantly strengthened by an oxide dispersion. These alloys are categorized according to their matrix as ferritic, ferritic–martensitic and austenitic. Low void swelling, high-temperature He embrittlement, thermal and irradiation hardening and creep are typical phenomena most usually studied in ferritic and ferritic martensitic oxide dispersion strengthened (ODS) alloys. In contrast, austenitic ODS alloys exhibit an increased corrosion and oxidation resistance and a higher creep resistance at elevated temperatures. This is why the advantages and drawbacks of each matrix-type ODS are discussed in this paper. Full article
Show Figures

Figure 1

16 pages, 2344 KiB  
Article
Effect of Carbon on Void Nucleation in Iron
by Lin Shao
Materials 2024, 17(13), 3375; https://doi.org/10.3390/ma17133375 - 8 Jul 2024
Cited by 3 | Viewed by 1189
Abstract
The study reports the significance of carbon presence in affecting void nucleation in Fe. Without carbon, void nucleation rates decrease gradually at high temperatures but remain significantly high and almost saturated at low temperatures. With carbon present, even at 1 atomic parts per [...] Read more.
The study reports the significance of carbon presence in affecting void nucleation in Fe. Without carbon, void nucleation rates decrease gradually at high temperatures but remain significantly high and almost saturated at low temperatures. With carbon present, even at 1 atomic parts per million, void nucleation rates show a low-temperature cutoff. With higher carbon levels, the nucleation temperature window becomes narrower, the maximum nucleation rate becomes lower, and the temperature of maximum void nucleation shifts to a higher temperature. Fundamentally, this is caused by the change in effective vacancy diffusivity due to the formation of carbon-vacancy complexes. The high sensitivity of void nucleation to carbon comes from the high sensitivity of void nucleation to the vacancy arrival rate in a void. The void nucleation is calculated by first obtaining the effective vacancy diffusivity considering the carbon effect, then calculating the defect concentration and defect flux change considering both carbon effects and pre-existing dislocations, and finally calculating the void nucleation rate based on the recently corrected homogeneous void nucleation theory. The study is important not only in the fundamental understanding of impurity effects in ion/neutron irradiation but also in alloy engineering for judiciously introducing impurities to increase swelling resistance, as well as in the development of simulation and modeling methodologies applicable to other metals. Full article
Show Figures

Graphical abstract

15 pages, 4642 KiB  
Article
Flow through and Volume Change Behavior of a Compacted Expansive Soil Amended with Natural Biopolymers
by Ahmed Bukhary and Shahid Azam
Geotechnics 2024, 4(1), 322-336; https://doi.org/10.3390/geotechnics4010017 - 20 Mar 2024
Viewed by 1776
Abstract
Natural biopolymers offer a sustainable alternative for improving soil behavior due to their inert nature, small dosage requirement, and applicability under ambient temperatures. This research evaluates the efficacy of natural biopolymers for ameliorating an expansive soil by using a 0.5% dosage of cationic [...] Read more.
Natural biopolymers offer a sustainable alternative for improving soil behavior due to their inert nature, small dosage requirement, and applicability under ambient temperatures. This research evaluates the efficacy of natural biopolymers for ameliorating an expansive soil by using a 0.5% dosage of cationic chitosan, charge-neutral guar gum, and anionic xanthan gum during compaction. The results of laboratory investigations indicate that the flow through and volume change properties of the expansive soil were affected variably. The dual porosity, characterized by low air entry due to inter-aggregate pores (AEV1 of 4 kPa) and high air entry due to the clay matrix (AEV2 of 200 kPa) of the soil, was healed using chitosan and guar gum (AEV of 200 kPa) but was enhanced by the xanthan gum (AEV1 of 100 kPa and AEV2 of 200 kPa). The s-shaped swell–shrink path of the soil comprised structural (e from 1.23 to 1.11), normal (e from 1.11 to 0.6), and residual stages (e ranged from 0.6–0.43). This shape was converted into a j-shaped path through amendment using chitosan and guar gum, showing no structural volume change, with e from about 1.25 to 0.5, but was reverted to a more pronounced form by xanthan gum, with e from 1.5 to 1.32, 1.32 to 0.49, and 0.49 to 0.34 in the three stages, respectively. The consolidation behavior of the soil was largely unaffected by the addition of biopolymers such that the saturated hydraulic conductivity decreased from 10−9 m/s to 10−12 m/s over a void ratio decrease from 1.1 to 0.6. At a seating stress of 5 kPa, the swelling potential (7.8%) of the soil slightly decreased to 6.9% due to the addition of chitosan but increased to 9.4% and 12.2% with guar gum and xanthan gum, respectively. The use of chitosan and guar gum will allow the compaction of the investigated expansive soil on the dry side of optimum. Full article
Show Figures

Figure 1

13 pages, 4092 KiB  
Article
Flexible Composite Hydrogels Based on Polybenzoxazine for Supercapacitor Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy, Gazi A. K. M. Rafiqul Bari and Seong-Cheol Kim
Gels 2024, 10(3), 197; https://doi.org/10.3390/gels10030197 - 13 Mar 2024
Cited by 3 | Viewed by 1999
Abstract
Polybenzoxazines (Pbzs) are advanced forms of phenolic resins that possess many attractive properties, including thermal-induced self-curing polymerization, void-free polymeric products and absence of by-product formation. They also possess high Tg (glass transition temperature) and thermal stability. But the produced materials are brittle [...] Read more.
Polybenzoxazines (Pbzs) are advanced forms of phenolic resins that possess many attractive properties, including thermal-induced self-curing polymerization, void-free polymeric products and absence of by-product formation. They also possess high Tg (glass transition temperature) and thermal stability. But the produced materials are brittle in nature. In this paper, we present our attempt to decrease the brittleness of Pbz by blending it with polyvinylalcohol (PVA). Benzoxazine monomer (Eu-Ed-Bzo) was synthesized by following a simple Mannich condensation reaction. The formation of a benzoxazine ring was confirmed by FT-IR and NMR spectroscopic analyses. The synthesized benzoxazine monomer was blended with PVA in order to produce composite films, PVA/Pbz, by varying the amount of benzoxazine monomer (1, 3 and 5 wt. % of PVA). The property of the composite films was studied using various characterization techniques, including DSC, TGA, water contact angle analysis (WCA) and SEM. WCA analysis proved that the hydrophobic nature of Pbz (value) was transformed to hydrophilic (WCA of PVA/Pbz5 is 35.5°). These composite films could play the same role as flexible electrolytes in supercapacitor applications. For this purpose, the composite films were immersed in a 1 M KOH solution for 12 h in order to analyze their swelling properties. Moreover, by using this swelled gel, a symmetric supercapacitor, AC//PVA/Pbz5//AC, was constructed, exhibiting a specific capacitance of 170 F g−1. Full article
(This article belongs to the Special Issue Gels for Energy Generation, Conversion and Storage Applications)
Show Figures

Graphical abstract

18 pages, 4700 KiB  
Article
Ultra-High-Temperature Ceramic-Doped Inorganic Polymers for Thermo-Structural Fiber-Reinforced Composites
by Valentina Medri, Annalisa Natali Murri, Elettra Papa, Claudio Mingazzini, Matteo Scafè and Elena Landi
Materials 2023, 16(20), 6649; https://doi.org/10.3390/ma16206649 - 11 Oct 2023
Cited by 1 | Viewed by 2475
Abstract
New inorganic nanostructured matrices for fiber-reinforced composites with enhanced high-temperature stability were developed from alkali aluminosilicate polymers doped with different ultra-high-temperature ceramic (UHTC) particles. The alkali aluminosilicate matrices were synthesized at room temperature with a high SiO2:Al2O3 ratio [...] Read more.
New inorganic nanostructured matrices for fiber-reinforced composites with enhanced high-temperature stability were developed from alkali aluminosilicate polymers doped with different ultra-high-temperature ceramic (UHTC) particles. The alkali aluminosilicate matrices were synthesized at room temperature with a high SiO2:Al2O3 ratio and then further functionalized by doping with 4–5 wt % of micrometric SiC, ZrB2, ZrC, and HfC powders and finally thermally stabilized as glass–ceramics at 750 °C. The different UHTC-doped matrices were characterized according to their dimensional and microstructural changes after thermal cycling in air flux at 1000 °C. The first results showed that carbide-based UHTC powders improved the thermal stability of the matrices, preventing the excessive swelling of the material and the formation of detrimental voids that might result in the lack of adhesion with reinforcing fibers. Contrarily, the addition of ZrB2 resulted in an excessive matrix swelling at high temperature, thus proving no efficacy compared to the undoped matrix. Impregnation tests carried out on C-fiber fabrics showed good processability, adhesion to the fibers, and fracture pull-out, especially for carbide-based matrices. Full article
Show Figures

Graphical abstract

14 pages, 1564 KiB  
Article
Predicting Swell in Clay-Sand Mixtures Used in Liners
by Muawia Dafalla
Appl. Sci. 2023, 13(20), 11161; https://doi.org/10.3390/app132011161 - 11 Oct 2023
Cited by 1 | Viewed by 1364
Abstract
A method to predict the swellability of clay-sand mixtures is proposed. This model is a modified form of the Studds (1997) prediction model for clay-sand mixtures. The new proposed model uses the laboratory fall cone penetration technique to produce a characterization chart. This [...] Read more.
A method to predict the swellability of clay-sand mixtures is proposed. This model is a modified form of the Studds (1997) prediction model for clay-sand mixtures. The new proposed model uses the laboratory fall cone penetration technique to produce a characterization chart. This chart presents slope levels that can be used to obtain an equation for the final clay void ratio versus the vertical effective stress for clays. The porosity of the clay-sand mixtures was worked out based on a correction factor obtained from compression and porosity measurements in the laboratory. The porosity of the mixture was merged into the clay profile equation to compute the final clay void ratio at a specified stress level, which made it possible to predict the swelling behavior for different and variable stress levels. The swellability slope was obtained using fall cone tests conducted on the fine portion. Mixtures of kaolinite and bentonite were introduced to represent soils with different swell potentials. The fall cone measurements of a few points can be used to establish the swellability relationships for natural clay. Merging fall cone points with the swellability slope chart can define the profile of the vertical effective stress versus the clay void ratio. Full article
(This article belongs to the Special Issue Mechanical Properties and Engineering Applications of Special Soils)
Show Figures

Figure 1

19 pages, 2024 KiB  
Article
A Molecular Dynamics Study of Single-Gas and Mixed-Gas N2 and CH4 Transport in Triptycene-Based Polyimide Membranes
by Ioannis Tanis, David Brown, Sylvie Neyertz, Milind Vaidya, Jean-Pierre Ballaguet, Sebastien Duval and Ahmad Bahamdan
Polymers 2023, 15(18), 3811; https://doi.org/10.3390/polym15183811 - 18 Sep 2023
Viewed by 2003
Abstract
Fluorinated polyimides incorporated with triptycene units have gained growing attention over the last decade since they present potentially interesting selectivities and a higher free volume with respect to their triptycene-free counterparts. This work examines the transport of single-gas and mixed-gas N2 and [...] Read more.
Fluorinated polyimides incorporated with triptycene units have gained growing attention over the last decade since they present potentially interesting selectivities and a higher free volume with respect to their triptycene-free counterparts. This work examines the transport of single-gas and mixed-gas N2 and CH4 in the triptycene-based 6FDA-BAPT homopolyimide and in a block 15,000 g mol−1/15,000 g mol−1 6FDA-mPDA/BAPT copolyimide by using molecular dynamics (MD) simulations. The void-space analyses reveal that, while the free volume consists of small-to-medium holes in the 6FDA-BAPT homopolyimide, there are more medium-to-large holes in the 6FDA-mPDA/BAPT copolyimide. The single-gas sorption isotherms for N2 and CH4 over the 0–70 bar range at 338.5 K show that both gases are more soluble in the block copolyimide, with a higher affinity for methane. CH4 favours sites with the most favourable energetic interactions, while N2 probes more sites in the matrices. The volume swellings remain limited since neither N2 nor CH4 plasticise penetrants. The transport of a binary-gas 2:1 CH4/N2 mixture is also examined in both polyimides under operating conditions similar to those used in current natural gas processing, i.e., at 65.5 bar and 338.5 K. In the mixed-gas simulations, the solubility selectivities in favour of CH4 are enhanced similarly in both matrices. Although diffusion is higher in 6FDA-BAPT/6FDA-mPDA, the diffusion selectivities are also close. Both triptycene-based polyimides under study favour, to a similar extent, the transport of methane over that of nitrogen under the conditions studied. Full article
Show Figures

Figure 1

Back to TopTop