Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = vitamin D-enhanced mushrooms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1434 KiB  
Article
Development of a Simple HPLC Method for the Analysis of Ergosterol and UV-Enriched Vitamin D₂ in Mushroom Powders
by Judit Bajzát, András Misz, József Rácz, Máté Vágvölgyi, Csaba Csutorás and Csaba Vágvölgyi
Appl. Sci. 2025, 15(7), 4058; https://doi.org/10.3390/app15074058 - 7 Apr 2025
Viewed by 977
Abstract
In this study, a straightforward and cost-effective HPLC-UV method was developed for the rapid determination of vitamin D2 and ergosterol in mushrooms. These bioactive components are known to play a significant role in the nutritional value of mushrooms, particularly in the production [...] Read more.
In this study, a straightforward and cost-effective HPLC-UV method was developed for the rapid determination of vitamin D2 and ergosterol in mushrooms. These bioactive components are known to play a significant role in the nutritional value of mushrooms, particularly in the production of mushroom-based food supplements. The method, designed for routine analysis, involves a simple sample preparation process combining saponification and solid–liquid extraction, followed by HPLC-UV detection. High recovery rates (97–99%) were achieved by the method, with limits of detection (LOD) and quantitation (LOQ) of 0.1 mg/kg dry weight and 0.5 mg/kg dry weight, respectively. The enrichment of vitamin D₂ content in mushroom powders through UV irradiation was also investigated. In Agaricus bisporus, vitamin D₂ levels increased from an initial 1.92 mg/kg to 4.66 mg/kg following heat treatment at 100 °C, and reached a maximum of 28.13 mg/kg when heat treatment was combined with UV irradiation. In contrast, Lentinula edodes exhibited an initial vitamin D₂ content of 7–8.5 mg/kg, with the highest levels achieved through UV treatment alone, which also preserved ergosterol content. These findings highlight species-specific differences in vitamin D₂ conversion and present an effective approach for enhancing the nutritional profile of mushroom-based products, while providing a reliable analytical tool for quality control. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

22 pages, 1990 KiB  
Review
Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products
by Akruti Singh, Ramesh Kumar Saini, Amit Kumar, Prince Chawla and Ravinder Kaushik
Foods 2025, 14(5), 741; https://doi.org/10.3390/foods14050741 - 22 Feb 2025
Cited by 8 | Viewed by 8646
Abstract
Mushrooms are known to be a nutritional powerhouse, offering diverse bioactive compounds that promote and enhance health. Mushrooms provide a distinguishable taste and aroma and are an essential source of vitamin D2, vitamin B complex, hydroxybenzoic acids (HBAs) and hydroxycinnamic acids [...] Read more.
Mushrooms are known to be a nutritional powerhouse, offering diverse bioactive compounds that promote and enhance health. Mushrooms provide a distinguishable taste and aroma and are an essential source of vitamin D2, vitamin B complex, hydroxybenzoic acids (HBAs) and hydroxycinnamic acids (HCAs), terpenes, sterols, and β-glucans. Edible mushroom varieties such as Hericium erinaceus, Ganoderma sp., and Lentinula edodes are recognized as functional foods due to their remarkable potential for disease prevention and promotion of overall health and well-being. These varieties have antioxidants, anti-inflammatory, cytoprotective, cholesterol-lowering, antidiabetic, antimicrobial, and anticancer properties, as well as controlling blood pressure, being an immunity booster, and strengthening bone properties. In addition, they contain essential non-digestible oligosaccharides (NDOs) and ergothioneine, a potential substrate for gut microflora. Supplementing our daily meals with those can add value to our food, providing health benefits. Novel edible mushrooms are being investigated to explore their bioactive substances and their therapeutic properties, to benefit human health. The scientific community (mycologists) is currently studying the prospects for unlocking the full health advantages of mushrooms. This review aims to promote knowledge of mushroom culturing conditions, their nutritional potential, and the value-added products of 11 varieties. Full article
Show Figures

Figure 1

13 pages, 908 KiB  
Article
Effects of Consuming Pulsed UV Light-Treated Pleurotus citrinopileatus on Vitamin D Nutritional Status in Healthy Adults
by Chih-Ching Hsu, Chiao-Ming Chen, Yu-Ming Ju, Yu-Ching Wu, Huei-Mei Hsieh, Shu-Hui Yang, Chien-Tien Su, Te-Chao Fang, Widiastuti Setyaningsih and Sing-Chung Li
Foods 2025, 14(2), 259; https://doi.org/10.3390/foods14020259 - 15 Jan 2025
Cited by 2 | Viewed by 1458
Abstract
Vitamin D, essential for growth and health, is often deficient in Taiwan despite abundant sunlight. Plant-derived vitamin D2 (ergocalciferol) is bioavailable, environmentally friendly, and cost-effective. This study evaluated the efficacy of enhancing Pleurotus citrinopileatus (PC) mushrooms’ vitamin D2 content through pulsed [...] Read more.
Vitamin D, essential for growth and health, is often deficient in Taiwan despite abundant sunlight. Plant-derived vitamin D2 (ergocalciferol) is bioavailable, environmentally friendly, and cost-effective. This study evaluated the efficacy of enhancing Pleurotus citrinopileatus (PC) mushrooms’ vitamin D2 content through pulsed ultraviolet (PUV) light and its impact on vitamin D status in humans. In a four-week randomized parallel trial, 36 healthy participants were assigned to three groups: a control group, a group consuming 10 g/day PUV-treated PC (PC-10 g), and a group consuming 100 g/day PUV-treated PC (PC-100 g). Blood samples collected pre- and post-intervention measured serum 25(OH)D2, 25(OH)D3, and biochemical parameters. After four weeks, serum 25(OH)D2 levels significantly increased in the PC-10 g group (1.47 ± 1.42 ng/mL to 9.50 ± 7.10 ng/mL, p = 0.001) and in the PC-100 g group (1.94 ± 2.15 ng/mL to 21.82 ± 16.75 ng/mL, p = 0.002), showing a 10.2-fold rise. The PC-100 g group also experienced a 37.6% reduction in serum intact parathyroid hormone (I-PTH) levels (26.26 ± 9.84 pg/mL to 16.38 ± 5.53 pg/mL). No adverse effects were reported. PUV-treated PC mushrooms significantly increase serum 25(OH)D2 levels and reduce I-PTH, particularly at higher doses. These findings underscore the potential of vitamin-D-enriched PC as a sustainable, fungi-derived food source for addressing vitamin D deficiency. Full article
Show Figures

Figure 1

19 pages, 2604 KiB  
Article
Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy
by Daihua Hu, Yulin Wang, Fanshu Kong, Danni Wang, Chingyuan Hu, Xu Yang, Xiaohua Chen, Wang Chen and Zili Feng
Molecules 2024, 29(8), 1872; https://doi.org/10.3390/molecules29081872 - 19 Apr 2024
Cited by 4 | Viewed by 1606
Abstract
Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms’ (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was [...] Read more.
Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms’ (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography–ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms. The fresh shiitake mushrooms were characterized by the highest values of raw mushroom odors. After UVC-LED treatment, the content of C8 alcohols decreased, especially that of 1-octen-3-ol, while the content of aldehydes increased, especially the content of nonanal and decanal. The score of fatty and green odors was enhanced. For fresh samples, the mushroom odors decreased and the mushroom-like odors weakened more sharply when treated in ethanol suspension than when treated with direct irradiation. The fruit odors were enhanced using direct UVC-LED irradiation for fresh mushroom samples and the onion flavor decreased. As for shiitake mushroom powder in ethanol suspension treated with UVC-LED, the sweaty and almond odor scores decreased and the vitamin D2 content in mushroom caps and stems reached 668.79 μg/g (dw) and 399.45 μg/g (dw), respectively. The results obtained from this study demonstrate that UVC-LED treatment produced rich-flavored, quality mushroom products. Full article
Show Figures

Figure 1

13 pages, 2133 KiB  
Article
Effect of Different LED Light Wavelengths on Production and Quality of Pleurotus ostreatus Grown on Different Commercial Substrates
by Marina De Bonis, Silvia Locatelli, Paolo Sambo, Giampaolo Zanin, John A. Pecchia and Carlo Nicoletto
Horticulturae 2024, 10(4), 349; https://doi.org/10.3390/horticulturae10040349 - 31 Mar 2024
Cited by 2 | Viewed by 4606
Abstract
Artificial lighting, primarily employed in crop production, can also be applied to the cultivation of edible mushrooms to enhance productivity and quality. While UV radiation has predominantly been investigated in post-harvest treatments for edible mushrooms, the utilization of different light wavelengths during the [...] Read more.
Artificial lighting, primarily employed in crop production, can also be applied to the cultivation of edible mushrooms to enhance productivity and quality. While UV radiation has predominantly been investigated in post-harvest treatments for edible mushrooms, the utilization of different light wavelengths during the cultivation phase remains largely unexplored for many mushroom species. This study aimed to assess the impact of three different light wavelengths 450 nm (B), 610 nm (R), and a combination of these two wavelengths (R + B) on the productive characteristics and quality of Pleurotus ostreatus, cultivated using three straw-based commercial substrates. It was observed that, except for yield, artificial light influenced mushroom growth. Specifically, the application of R light appeared to promote mycelium growth, whereas B light contributed to increase the diameter of fruiting bodies. Additionally, the concentration of vitamin D2 was higher under both B and R+B light treatments. Interestingly, the light treatments did not affect yield but impacted diameter and various chemical attributes such as EC, total soluble solids, and titratable acidity. In conclusion, exposure to different lighting affected Pleurotus ostreatus physiology and nutritional content. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

27 pages, 2044 KiB  
Review
Developments in Plant Proteins Production for Meat and Fish Analogues
by Malgorzata Nowacka, Magdalena Trusinska, Paulina Chraniuk, Federico Drudi, Jakub Lukasiewicz, Nam Phuong Nguyen, Adrianna Przybyszewska, Katarzyna Pobiega, Silvia Tappi, Urszula Tylewicz, Katarzyna Rybak and Artur Wiktor
Molecules 2023, 28(7), 2966; https://doi.org/10.3390/molecules28072966 - 27 Mar 2023
Cited by 38 | Viewed by 9056
Abstract
In recent years, there have been significant developments in plant proteins production for meat and fish analogues. Some of the key developments include the use of new plant protein sources such as soy, legumes, grains, potatoes, and seaweed, as well as insect proteins, [...] Read more.
In recent years, there have been significant developments in plant proteins production for meat and fish analogues. Some of the key developments include the use of new plant protein sources such as soy, legumes, grains, potatoes, and seaweed, as well as insect proteins, leaf proteins, mushrooms, and microbial proteins. Furthermore, to improve the technological and functional properties of plant proteins, they can be subjected to traditional and unconventional treatments such as chemical (glycosylation, deamidation, phosphorylation, and acylation), physical (pulsed electric fields, ultrasound, high hydrostatic pressure, dynamic high-pressure treatment, and cold plasma), and biological (fermentation and enzymatic modification). To obtain the high quality and the desired texture of the food product, other ingredients besides proteins, such as water, fat, flavors, binders, dyes, vitamins, minerals, and antioxidants, also have to be used. The final product can be significantly influenced by the matrix composition, variety of ingredients, and water content, with the type of ingredients playing a role in either enhancing or constraining the desired texture of the food. There are several types of technologies used for meat and fish analogues production, including extrusion, shear cell technology, spinning, 3D printing, and others. Overall, the technologies used for meat and fish analogues production are constantly evolving as new innovations are developed and existing methods are improved. These developments have led to the creation of plant-based products that have a similar texture, taste, and nutritional profile to meat and fish, making them more appealing to consumers seeking alternatives to animal-based products. Full article
Show Figures

Figure 1

24 pages, 621 KiB  
Systematic Review
Vitamin D from UV-Irradiated Mushrooms as a Way for Vitamin D Supplementation: A Systematic Review on Classic and Nonclassic Effects in Human and Animal Models
by Mariangela Rondanelli, Alessia Moroni, Marco Zese, Clara Gasparri, Antonella Riva, Giovanna Petrangolini, Simone Perna and Giuseppe Mazzola
Antioxidants 2023, 12(3), 736; https://doi.org/10.3390/antiox12030736 - 16 Mar 2023
Cited by 12 | Viewed by 5539
Abstract
Recent literature has shown that vitamin D, in addition to its well-known activity on the skeleton, has many positive effects on health. Unfortunately, it is not easy to meet intake needs solely with food. Mushrooms could provide a valid way to achieve this [...] Read more.
Recent literature has shown that vitamin D, in addition to its well-known activity on the skeleton, has many positive effects on health. Unfortunately, it is not easy to meet intake needs solely with food. Mushrooms could provide a valid way to achieve this goal, because they are one of the few sources of vitamin D. The aim of this systematic review was to summarize what has been reported in the literature on the treatment of animal and human models with irradiated commercial mushrooms, with particular attention paid to the effects on clinical outcomes associated with the classical and nonclassical vitamin D functions. A total of 18 articles were selected. Six studies were conducted on human samples, while twelve were focused on animal models. The six studies conducted in humans involved a large number of subjects (663), but the treatment period was relatively short (1–6 months). Furthermore, the treatment dosage was different in the various groups (600–3800 IU/day). Probably for this reason, the studies did not demonstrate clinical efficacy on the parameters evaluated (cognitive functions, muscle system/function, metabolic syndrome). Indeed, those studies demonstrated an efficacy in increasing the blood levels of 25(OH)D2, but not in increasing the levels of 25(OH)D total. In 9 of 12 studies conducted on the animal model, however, a clinical efficacy on bone metabolism, inflammation, and cognitive performance was demonstrated. The results of this systematic review indicate that the intake of vitamin D from irradiated mushrooms could possibly help to meet vitamin D needs, but the dosage and the time of treatment tested need to be evaluated. Therefore, studies conducted in humans for longer periods than the studies carried out up to now are necessary, with defined dosages, in order to also evaluate the clinical efficacy demonstrated in animal models both for the classical (bone metabolism) and nonclassical (muscle function, cognitive performance, anti-inflammatory, and antioxidant activities) effects of vitamin D. Full article
(This article belongs to the Special Issue Melatonin and Vitamin D in Diseases and Health)
Show Figures

Figure 1

17 pages, 659 KiB  
Article
A Randomized Controlled Trial on Pleurotus eryngii Mushrooms with Antioxidant Compounds and Vitamin D2 in Managing Metabolic Disorders
by Stamatia-Angeliki Kleftaki, Charalampia Amerikanou, Aristea Gioxari, Dimitra Z. Lantzouraki, George Sotiroudis, Konstantinos Tsiantas, Thalia Tsiaka, Dimitra Tagkouli, Chara Tzavara, Lefteris Lachouvaris, Georgios I. Zervakis, Nick Kalogeropoulos, Panagiotis Zoumpoulakis and Andriana C. Kaliora
Antioxidants 2022, 11(11), 2113; https://doi.org/10.3390/antiox11112113 - 26 Oct 2022
Cited by 9 | Viewed by 3884
Abstract
This study examined the effects of a Pleurotus eryngii mushroom snack on metabolically unhealthy patients. After harvest, mushrooms were baked and subjected to UV-B irradiation to enhance vitamin D2 content. A randomized controlled trial was conducted for three months with two arms. [...] Read more.
This study examined the effects of a Pleurotus eryngii mushroom snack on metabolically unhealthy patients. After harvest, mushrooms were baked and subjected to UV-B irradiation to enhance vitamin D2 content. A randomized controlled trial was conducted for three months with two arms. Both groups received conventional nutritional counseling for metabolic disorders, while the intervention group had to consume the snack daily as well. We collected blood samples at the beginning and the end of the study to determine biochemical measurements and serum 25(OH)D2 and to evaluate inflammation and oxidative stress. One hundred patients consented and were randomized. Comparatively to the control group, snack consumption regulated glucose levels and reduced body weight, fat, waist and hip circumferences. In addition, 25(OH)D2 increased significantly in the intervention group. The levels of LDL and SGOT were lower only in the intervention group. Levels of IL-6 and ox-LDL decreased in the mushroom group, while the overall physical health increased. These findings suggest potential antidiabetic, antiobesity, anti-inflammatory and antioxidant health benefits of the snack to metabolically unhealthy individuals. Full article
Show Figures

Graphical abstract

16 pages, 1115 KiB  
Article
The Effects of Vitamin D-Enriched Mushrooms and Vitamin D3 on Cognitive Performance and Mood in Healthy Elderly Adults: A Randomised, Double-Blinded, Placebo-Controlled Trial
by Ian T. Zajac, Mary Barnes, Paul Cavuoto, Gary Wittert and Manny Noakes
Nutrients 2020, 12(12), 3847; https://doi.org/10.3390/nu12123847 - 16 Dec 2020
Cited by 34 | Viewed by 5993
Abstract
Despite abundant cross-sectional evidence that low vitamin D status is associated with risk of cognitive decline in ageing, interventional evidence for benefits of vitamin D supplementation is lacking. This study was a 6 month randomised, double-blinded placebo-controlled clinical trial of the effects of [...] Read more.
Despite abundant cross-sectional evidence that low vitamin D status is associated with risk of cognitive decline in ageing, interventional evidence for benefits of vitamin D supplementation is lacking. This study was a 6 month randomised, double-blinded placebo-controlled clinical trial of the effects of vitamin D3 (D3), enhanced vitamin D2 in a mushroom matrix (D2M), standard mushroom (SM) and placebo (PL) on cognition and mood in n = 436 healthy older male (49%) and female volunteers aged ≥ 60 years. Primary end points were change in serum vitamin D metabolites (25-OH-D, 25-OH-D2 and 25-OH-D3), cognitive performance, and mood over 24 weeks. Levels of total 25-OH-D and 25-OH-D3 were maintained in the D3 arm but decreased significantly (p < 0.05) in the remaining arms (D2M, SM and PL). Analysis also revealed differential changes in these metabolites depending on total vitamin D status at baseline. There were no significant effects of treatment on any of the measures of cognitive function or mood. Overall, the results show that daily supplementation of ~600 IU of vitamin D3 was sufficient to maintain 25-OH-D throughout winter months, but in contrast to existing cross-sectional studies there was no support for benefit of vitamin D supplementation for mood or cognition in healthy elderly people. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

11 pages, 721 KiB  
Review
A Review of Mushrooms as a Potential Source of Dietary Vitamin D
by Glenn Cardwell, Janet F. Bornman, Anthony P. James and Lucinda J. Black
Nutrients 2018, 10(10), 1498; https://doi.org/10.3390/nu10101498 - 13 Oct 2018
Cited by 261 | Viewed by 35074
Abstract
When commonly consumed mushroom species are exposed to a source of ultraviolet (UV) radiation, such as sunlight or a UV lamp, they can generate nutritionally relevant amounts of vitamin D. The most common form of vitamin D in mushrooms is D2, [...] Read more.
When commonly consumed mushroom species are exposed to a source of ultraviolet (UV) radiation, such as sunlight or a UV lamp, they can generate nutritionally relevant amounts of vitamin D. The most common form of vitamin D in mushrooms is D2, with lesser amounts of vitamins D3 and D4, while vitamin D3 is the most common form in animal foods. Although the levels of vitamin D2 in UV-exposed mushrooms may decrease with storage and cooking, if they are consumed before the ‘best-before’ date, vitamin D2 level is likely to remain above 10 μg/100 g fresh weight, which is higher than the level in most vitamin D-containing foods and similar to the daily requirement of vitamin D recommended internationally. Worldwide mushroom consumption has increased markedly in the past four decades, and mushrooms have the potential to be the only non-animal, unfortified food source of vitamin D that can provide a substantial amount of vitamin D2 in a single serve. This review examines the current information on the role of UV radiation in enhancing the concentration of vitamin D2 in mushrooms, the effects of storage and cooking on vitamin D2 content, and the bioavailability of vitamin D2 from mushrooms. Full article
Show Figures

Figure 1

Back to TopTop