Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-IMS Topographic Plots for Various Parts of Shiitake Mushroom Samples Treated Using UVC-LED
2.2. Differences between Volatile Compounds in Various Parts of Shiitake Mushroom Samples Treated with UVC-LED
2.3. Similarity Analysis of Volatile Compounds in Various Parts of Shiitake Mushrooms Being Treated with UVC-LED
2.4. Sensory Evaluation
2.5. Effect of UVC-LED Treatment on Vitamin D2 and Ergosterol Contents in Various Parts of Shiitake Mushrooms
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. UVC-LED Irradiation
3.3.1. UVC-LED Irradiation for Fresh Shiitake Mushroom
3.3.2. UVC-LED Irradiation for Shiitake Mushroom Powder in Ethanol Suspension
3.4. Drying Procedures
3.5. GC-IMS Analysis
3.6. Sensory Evaluation
3.7. Vitamin D2 and Ergosterol Determinations
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, D.; Wu, J.; Ma, Z.; Tang, P.; Liao, X.; Lao, F. Production of high sensory quality shiitake mushroom (Lentinus edodes) by pulsed air-impingement jet drying (AID) technique. Food Chem. 2021, 341 Pt 2, 128290. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, C.; Fang, D.; Yuan, B.; Hu, Q.; Zhao, L. Effect of boiling time on the contents of flavor and taste in Lentinus edodes. Flavour Fragr. J. 2019, 34, 506–513. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, G.; Pan, H.; Wu, Y.; Fan, L. Effects of different drying methods and extraction condition on antioxidant properties of shiitake (Lentinus edodes). Food Sci. Technol. Res. 2009, 15, 547–552. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Yang, Y.; Zhang, J.; Feng, J.; Yu, H.; Zhou, S.; Li, X.; Liu, Y. Effects of culture substrates on taste component content and taste quality of Lentinula edodes. Int. J. Food Sci. Technol. 2017, 52, 981–991. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, R.; Feng, X.; Dong, X.; Gao, H.; Fan, X.; Yin, C. Effects of low-dose γ-irradiation on the water state of fresh Lentinula edodes. LWT Food Sci. Technol. 2020, 118, 108764. [Google Scholar] [CrossRef]
- Hu, D.; Chen, W.; Li, X.; Yue, T.; Zhang, Z.; Feng, Z.; Li, C.; Bu, X.; Li, Q.; Hu, C.; et al. Ultraviolet Irradiation increased the concentration of vitamin D2 and decreased the concentration of ergosterol in shiitakemushroom (Lentinus edodes) and oyster mushroom (Pleurotus ostreatus) powder in ethanol suspension. ACS Omega 2020, 5, 7361–7368. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yang, X.; Hu, C.; Feng, Z.; Chen, W.; Shi, H. Comparison of ergosterol and vitamin D2 in mushrooms Agaricus bisporus and Cordyceps militaris using ultraviolet irradiation directly on dry powder or in ethanol suspension. ACS Omega 2021, 6, 29506–29515. [Google Scholar] [CrossRef]
- Hsu, T.C.; Teng, Y.T.; Yeh, Y.W.; Fan, X.T.; Chu, K.H.; Lin, S.H.; Yeh, K.K.; Lee, P.T.; Lin, Y.; Chen, Z.; et al. Perspectives on UVC LED: Its progress and application. Photonics 2021, 8, 196. [Google Scholar] [CrossRef]
- Haley, O.C.; Pliakoni, E.D.; Rivard, C.; Nwadike, L.; Bhullar, M. The attenuation of microbial reduction in blueberry fruit following UV-LED treatment. J. Food Prot. 2023, 86, 100056. [Google Scholar] [CrossRef]
- Keshavarzfathy, M.; Taghipour, F. Computational modeling of ultraviolet light-emitting diode (UV-LED) reactor for water treatment. Water Res. 2019, 166, 115022. [Google Scholar] [CrossRef]
- Rouhani, S.; Taghipour, F. Modeling of UV-LED photocatalytic reactors for the degradation of gaseous volatile organic compounds (VOCs) in indoor environments. J. Environ. Chem. Eng. 2022, 10, 107657. [Google Scholar] [CrossRef]
- Gerchman, Y.; Mamane, H.; Friedman, N.; Mandelboim, M. UV-LED disinfection of coronavirus: Wavelength effect. J. Photochem. Photobiol. B Biol. 2020, 212, 112044. [Google Scholar] [CrossRef] [PubMed]
- Xiaokang, W.; Brunton, N.P.; Lyng, J.G.; Harrison, S.M.; Carpes, S.T.; Papoutsis, K. Volatile and non-volatile compounds of shiitake mushrooms treated with pulsed light after twenty-four hour storage at different conditions. Food Biosci. 2020, 36, 100619. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Ji, X.; Min, W.; Yan, W. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT Food Sci. Technol. 2021, 141, 110855. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agric. 2020, 100, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1099, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Schwab, W.; Ho, C.T.; Song, C.; Wan, X. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2021, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qian, M.C.; Deng, Y.; Yuan, H.; Jiang, Y. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC × GC-TOFMS. Food Chem. 2022, 387, 132813. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Zhang, J.; Wu, R.; Wang, T.; Ding, W. Characterization of the volatile compounds of Zhenba bacon at different process stages using GC-MS and GC-IMS. Foods 2021, 10, 2869. [Google Scholar] [CrossRef]
- Gu, S.; Chen, W.; Wang, Z.; Wang, J.; Huo, Y. Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT Food Sci. Technol. 2020, 132, 109758. [Google Scholar] [CrossRef]
- Tata, A.; Massaro, A.; Damiani, T.; Piro, R.; Dall’Asta, C.; Suman, M. Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC-IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose. Food Control 2022, 133, 108645. [Google Scholar] [CrossRef]
- Daulton, E.; Wicaksono, A.; Bechar, J.; Covington, J.A.; Hardwicke, J. The detection of wound infection by ion mobility chemical analysis. Biosensors 2020, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, R.; Capuano, R.; Guaglio, A.; Caminiti, V.; Canini, F.; Catini, A.; Sedda, G.; Paolesse, R.; Di Natale, C.; Spaggiari, L. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer. J. Breath Res. 2022, 16, 046008. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hadar, Y.; Dosoretz, C.G. Mushroom mycelium as a potential source of food. Trends Food Sci. Technol. 1991, 2, 214–218. [Google Scholar] [CrossRef]
- Cho, I.H.; Kim, S.Y.; Choi, H.K.; Kim, Y.S. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake sing.). J. Agric. Food Chem. 2006, 54, 6332–6335. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Munch, P.; Schieberle, P. Quantitative model studies on the formation of aroma-active aldehydes and acids by Strecker-type reactions. J. Agric. Food Chem. 2000, 48, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zou, X.; Deng, L.; Fan, Y.; Li, H.; Li, J.; Deng, Z. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids. Food Res. Int. 2014, 64, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jiao, X.; Liu, J.; Jia, M.; Blanchard, C.; Zhou, Z. Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS. Food Res. Int. 2021, 140, 109975. [Google Scholar] [CrossRef]
- Song, J.; Shao, Y.; Yan, Y.; Li, X.; Peng, J.; Guo, L. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA. LWT Food Sci. Technol. 2021, 146, 111292. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, K.; Guo, H.; Geng, Y.; Lv, W.; Wang, S.; Guo, Y.; Qin, P.; Ren, G. Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2021, 348, 129086. [Google Scholar] [CrossRef] [PubMed]
- Hiraide, M.; Miyazaki, Y.; Shibata, Y. The smell and odorous components of dried shiitake mushroom, Lentinula edodes I: Relationship between sensory evaluations and amounts of odorous components. J. Wood Sci. 2004, 50, 358–364. [Google Scholar] [CrossRef]
- Hou, H.; Liu, C.; Lu, X.; Fang, D.; Hu, Q.; Zhang, Y.; Zhao, L. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques. LWT Food Sci. Technol. 2021, 146, 111402. [Google Scholar] [CrossRef]
- Fukami, K.; Ishiyama, S.; Yaguramaki, H.; Masuzawa, T.; Nabeta, Y.; Endo, K. Identification of distinctive volatile compounds in fish sauce. J. Agric. Food Chem. 2002, 50, 5412–5416. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xue, J.L.; Feng, C.P. Effects of different drying methods on volatile flavor compounds in Lentinus edodes. Sci. Technol. Food Ind. 2018, 39, 224–229. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197 Pt A, 714–722. [Google Scholar] [CrossRef]
- Mau, J.L.; Chen, P.R.; Yang, J.H. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. J. Agric. Food Chem. 1998, 46, 5269–5272. [Google Scholar] [CrossRef]
- Pei, F.; Shi, Y.; Gao, X.; Wu, F.; Mariga, A.M.; Yang, W.; Zhao, L.; An, X.; Xin, Z.; Yang, F.; et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem. 2014, 165, 547–554. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, D.; Pu, D.; Zhang, Y.; Chen, H.; Sun, B.; Ren, F. Multivariate relationships among sensory attributes and volatile components in commercial dry porcini mushrooms (Boletus edulis). Food Res. Int. 2020, 133, 109112. [Google Scholar] [CrossRef]
Count | Compound | Peak Volume | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C-CK | S-CK | CF-30 | SF-30 | CF-120 | SF-120 | CS-30 | CS-120 | SS-30 | SS-120 | ||
2 | Nonanal-M | 1121.87 ± 123.36 bc | 516.68 ± 24.14 d | 560.05 ± 18.70 d | 471.88 ± 11.39 d | 580.09 ± 8.82 d | 470.64 ± 11.70 d | 1217.54 ± 24.74 b | 990.63 ± 18.69 c | 1165.60 ± 35.60 b | 1406.95 ± 72.82 a |
4 | (E)-2-octenal-M | 1168.89 ± 82.60 d | 1439.12 ± 51.14 abc | 1522.94 ± 154.57 ab | 1613.89 ± 54.92 a | 1370.27 ± 39.28 bc | 1267.03 ± 47.78 cd | 96.14 ± 8.12 e | 91.55 ± 3.36 e | 159.89 ± 8.52 e | 278.88 ± 16.30 e |
5 | (E)-2-octenal-D | 1697.18 ± 164.73 bc | 2554.85 ± 171.59 a | 2135.44 ± 388.78 ab | 2071.31 ± 111.03 b | 1173.13 ± 88.40 d | 1411.05 ± 101.22 cd | 65.86 ± 18.53 e | 54.98 ± 8.05 e | 63.37 ± 13.20 e | 59.04 ± 9.26 e |
7 | benzene Acetaldehyde | 379.25 ± 93.68 cd | 481.88 ± 48.34 cd | 586.78 ± 125.12 c | 1139.66 ± 59.77 b | 1379.87 ± 170.48 a | 1607.23 ± 50.99 a | 244.10 ± 7.28 d | 252.32 ± 3.16 d | 251.68 ± 4.45 d | 287.97 ± 6.43 d |
9 | Nonanal-D | 272.84 ± 52.40 e | 88.75 ± 6.61 f | 87.14 ± 5.61 f | 81.51 ± 2.46 f | 92.97 ± 7.73 f | 78.77 ± 6.15 f | 1081.37 ± 87.72 b | 1241.88 ± 61.88 a | 714.00 ± 18.51 c | 414.17 ± 33.32 d |
11 | Decanal | 95.36 ± 11.46 d | 83.20 ± 3.73d e | 75.37 ± 2.82 e | 65.86 ± 4.10 e | 72.25 ± 1.06 e | 66.80 ± 5.30 e | 247.95 ± 8.09 a | 193.45 ± 7.85 b | 191.87 ± 3.24 b | 144.32 ± 4.29 c |
13 | Dimethyl trisulfide | 1939.56 ± 210.48 a | 75.28 ± 14.95 cd | 1317.78 ± 179.27 b | 136.24 ± 29.19 cd | 320.56 ± 8.50 c | 110.19 ± 11.91 cd | 19.67 ± 3.54 e | 22.55 ± 3.76 e | 21.96 ± 4.91 e | 23.99 ± 3.43 e |
14 | Benzaldehyde-M | 1181.71 ± 74.24 c | 1705.72 ± 21.93 a | 1519.95 ± 77.50 b | 1551.58 ± 58.27 b | 1535.48 ± 64.81 b | 1127.15 ± 6.67 c | 617.44 ± 34.38 e | 885.01 ± 3.00 d | 535.16 ± 5.48 e | 375.28 ± 15.75 f |
15 | Benzaldehyde-D | 1309.61 ± 201.87 e | 5967.98 ± 89.55 b | 2769.03 ± 267.23 d | 5911.48 ± 252.61 b | 3537.58 ± 370.12 c | 7826.78 ± 305.84 a | 63.54 ± 11.97 f | 65.07 ± 8.52 f | 86.55 ± 10.32 f | 97.19 ± 12.23 f |
18 | Heptanal-M | 538.02 ± 25.97 bc | 497.75 ± 6.49 c | 584.33 ± 31.76 ab | 569.29 ± 12.55 b | 629.38 ± 18.00 a | 541.30 ± 17.20 bc | 83.13 ± 2.44 e | 82.05 ± 3.74 e | 89.25 ± 2.92 e | 255.95 ± 25.39 d |
19 | Heptanal-D | 690.93 ± 76.69 ab | 466.91 ± 27.29 b | 625.21 ± 158.82 ab | 745.46 ± 30.19 a | 718.12 ± 76.75 ab | 870.98 ± 170.07 a | 41.27 ± 8.12 c | 66.50 ± 4.50 c | 33.41 ± 1.56 c | 70.78 ± 6.96 c |
21 | pentanoic acid | 204.76 ± 6.90 b | 288.42 ± 2.33 a | 233.89 ± 10.74 b | 228.16 ± 6.69 b | 160.93 ± 1.18 c | 207.36 ± 29.44 b | 14.24 ± 2.90 d | 14.11 ± 3.46 d | 13.53 ± 2.37 d | 24.58 ± 4.61 d |
22 | Hexanal-M | 618.48 ± 25.93 c | 737.40 ± 4.53 b | 709.01 ± 17.57 b | 702.42 ± 5.88 b | 698.98 ± 25.77 b | 593.26 ± 24.45 c | 228.17 ± 6.00 e | 190.49 ± 4.53 e | 335.94 ± 0.84 d | 978.51 ± 30.60 a |
23 | Hexanal-D | 2452.06 ± 73.18 e | 2889.71 ± 74.46 d | 3268.57 ± 144.72 c | 3971.58 ± 24.78 ab | 3709.24 ± 110.91 b | 4103.04 ± 178.64 a | 366.11 ± 7.92 h | 315.11 ± 8.66 h | 729.43 ± 30.78 g | 2032.37 ± 86.84 f |
24 | 2,6-Dimethylpyridine | 64.64 ± 5.38 e | 463.89 ± 7.79 a | 138.36 ± 2.93 d | 308.28 ± 8.41 b | 74.94 ± 7.02 e | 242.34 ± 4.52 c | 16.54 ± 0.57 f | 15.58 ± 0.87 f | 16.35 ± 0.94 f | 7.63 ± 1.86 f |
25 | Furfural-M | 100.72 ± 13.37 c | 120.93 ± 14.26 c | 101.73 ± 19.38 c | 261.37 ± 31.57 b | 88.32 ± 6.84 c | 321.28 ± 27.19 a | 24.37 ± 0.39 d | 21.62 ± 0.29 d | 23.06 ± 1.10 d | 19.52 ± 1.70 d |
27 | (E)-2-hexenal-M | 121.29 ± 11.45 d | 152.87 ± 7.28 d | 189.95 ± 8.20 c | 249.37 ± 1.48 ab | 229.84 ± 9.64 b | 262.47 ± 25.82 a | 35.91 ± 1.64 e | 41.70 ± 2.49 e | 40.69 ± 1.39 e | 128.48 ± 7.16 d |
29 | Butanoic acid | 34.27 ± 8.30 cd | 38.68 ± 7.69 cd | 47.61 ± 3.26 bc | 53.58 ± 1.87 b | 40.60 ± 2.31 bcd | 45.68 ± 6.32 bc | 46.42 ± 2.98 bc | 69.20 ± 1.41 a | 30.17 ± 0.82 d | 7.32 ± 1.04 e |
31 | (E)-hept-2-enal-M | 142.41 ± 13.90 de | 178.22 ± 11.24 c | 319.63 ± 17.83 a | 245.20 ± 5.30 b | 351.39 ± 14.15 a | 273.04 ± 15.24 b | 107.15 ± 2.01 f | 113.12 ± 1.94 ef | 163.73 ± 1.72 cd | 325.56 ± 8.09 a |
32 | (E)-hept-2-enal-D | 46.13 ± 4.42 c | 103.62 ± 7.19 c | 263.01 ± 28.58 b | 323.68 ± 34.64 b | 489.49 ± 91.53 a | 472.03 ± 73.36 a | 19.21 ± 3.75 c | 24.69 ± 1.98 c | 30.92 ± 4.34 c | 68.96 ± 4.97 c |
34 | n-Hexanol-M | 59.00 ± 5.57 c | 157.05 ± 1.42 c | 383.12 ± 75.98 b | 368.33 ± 16.53 b | 651.51 ± 21.53 a | 489.45 ± 98.70 b | 43.48 ± 2.19 c | 49.63 ± 1.82 c | 43.87 ± 4.58 c | 48.40 ± 5.66 c |
35 | n-Hexanol-D | 10.04 ± 1.06 c | 15.72 ± 1.20 c | 81.98 ± 31.32 bc | 95.12 ± 5.49 b | 264.23 ± 14.76 a | 242.05 ± 61.75 a | 7.73 ± 1.05 c | 7.76 ± 1.32 c | 8.99 ± 1.68 c | 7.50 ± 1.64 c |
36 | Furfural-D | 76.61 ± 6.25 de | 181.83 ± 4.04 bc | 116.26 ± 4.81 cd | 249.09 ± 48.42 b | 112.30 ± 6.47 cd | 445.62 ± 57.60 a | 40.67 ± 4.75 de | 42.04 ± 3.86 de | 39.03 ± 4.67 de | 27.73 ± 5.15 e |
37 | (E)-2-hexenal-D | 27.52 ± 3.72 ef | 53.66 ± 2.95 de | 83.78 ± 10.10 cd | 110.00 ± 10.99 bc | 127.76 ± 17.71 b | 226.93 ± 27.99 a | 14.89 ± 2.42 f | 11.48 ± 1.96 f | 14.08 ± 1.89 f | 19.49 ± 2.94 ef |
38 | Butyl acetate-M | 119.52 ± 7.23 d | 129.95 ± 1.83 d | 170.68 ± 8.33 c | 210.92 ± 4.21 b | 212.22 ± 8.27 b | 242.73 ± 2.18 a | 33.71 ± 2.32 f | 31.78 ± 1.99 f | 35.67 ± 1.46 f | 67.77 ± 3.22 e |
40 | Octanal | 60.30 ± 1.75 d | 49.91 ± 0.87 d | 51.95 ± 9.19 d | 67.64 ± 6.67 d | 59.32 ± 4.80 d | 57.50 ± 16.00 d | 163.80 ± 1.95 b | 117.29 ± 0.83 c | 140.04 ± 3.61 bc | 272.04 ± 20.00 a |
44 | 1-Octen-3-one | 112.06 ± 5.94a | 74.90 ± 2.61d | 68.60 ± 7.96d | 82.46 ± 3.19cd | 103.42 ± 9.89ab | 93.74 ± 6.26bc | 26.39 ± 1.87e | 23.24 ± 2.78e | 31.17 ± 0.93 e | 75.49 ± 1.79 d |
47 | Dimethyl disulfide | 1212.54 ± 88.71 a | 43.57 ± 1.05 e | 480.13 ± 29.66 d | 52.14 ± 3.87 e | 60.25 ± 6.07 e | 77.64 ± 6.30 e | 1039.04 ± 12.94 b | 1165.34 ± 4.57 a | 898.34 ± 8.86 c | 135.80 ± 11.10 e |
50 | Pentan-1-ol | 170.56 ± 13.90 e | 525.63 ± 10.55 c | 657.20 ± 63.22 b | 424.68 ± 12.36 d | 840.45 ± 49.90 a | 540.40 ± 8.00 c | 18.54 ± 4.42 f | 19.06 ± 4.86 f | 18.69 ± 4.85 f | 23.56 ± 5.97 f |
51 | 3-Methyl-2-butenal-M | 60.74 ± 1.88 ab | 44.09 ± 0.62 c | 47.29 ± 7.97 bc | 60.47 ± 0.98 ab | 47.13 ± 3.31 bc | 62.49 ± 9.68 a | 29.54 ± 1.49 d | 28.58 ± 1.78 d | 30.25 ± 2.04 d | 17.65 ± 1.55 d |
52 | 3-Methylbutan-1-ol-D | 391.74 ± 79.46 d | 591.83 ± 12.98 c | 916.28 ± 101.16 b | 663.29 ± 2.42 c | 1107.61 ± 73.74 a | 702.73 ± 26.14 c | 20.98 ± 3.89 e | 15.13 ± 1.99 e | 20.32 ± 1.92 e | 17.93 ± 1.33 e |
53 | Butyl acetate-D | 12.01 ± 0.92 d | 52.89 ± 2.90 b | 34.65 ± 2.17 c | 77.43 ± 10.01 a | 33.11 ± 4.42 c | 38.30 ± 1.98 c | 5.22 ± 1.04 d | 5.64 ± 1.87 d | 7.11 ± 1.12 d | 6.87 ± 2.67 d |
55 | 3-Methyl-2-butenal-D | 81.43 ± 5.08 ab | 52.63 ± 2.15 b | 75.13 ± 16.42 ab | 76.17 ± 1.85 ab | 56.85 ± 6.54 b | 102.57 ± 32.82 a | 7.43 ± 0.27 c | 8.79 ± 0.86 c | 9.96 ± 1.82 c | 15.85 ± 3.75 c |
56 | 3-Methylbutan-1-ol-M | 53.20 ± 4.10 c | 88.17 ± 6.12 b | 139.59 ± 16.45 a | 104.54 ± 0.16 b | 132.76 ± 7.38 a | 90.52 ± 20.47 b | 27.33 ± 1.88 cd | 19.89 ± 1.88 d | 30.52 ± 3.07 cd | 35.52 ± 2.66 cd |
59 | 2-Methylbutanal-D | 1720.30 ± 67.75 b | 2178.78 ± 48.23 a | 1668.37 ± 110.67 b | 1871.52 ± 29.66 b | 1784.22 ± 87.06 b | 1744.87 ± 123.04 b | 60.93 ± 7.14 d | 51.11 ± 3.11 d | 193.35 ± 6.47 d | 737.99 ± 61.36 c |
61 | Butanal | 2682.47 ± 518.61 b | 2409.04 ± 178.95 b | 2081.47 ± 241.56 b | 4111.36 ± 53.03 a | 3568.64 ± 166.36 a | 4146.59 ± 247.11 a | 25.59 ± 5.47 c | 21.05 ± 4.91 c | 29.04 ± 6.09 c | 67.72 ± 12.81 c |
62 | 3-Methylbutanal-D | 898.04 ± 95.95 d | 2306.82 ± 17.47 a | 1336.14 ± 128.46 c | 1994.18 ± 62.13 b | 1594.98 ± 59.03 c | 1501.35 ± 211.00 c | 36.41 ± 3.38 f | 27.54 ± 2.98 f | 139.93 ± 3.26 f | 552.40 ± 19.94 e |
64 | Ethyl Acetate | 235.71 ± 12.81 cd | 367.44 ± 11.77 ab | 197.08 ± 6.59 d | 284.48 ± 0.19 c | 242.72 ± 5.82 cd | 444.39 ± 54.83 a | 260.87 ± 38.20 cd | 358.56 ± 5.62 b | 434.89 ± 35.11 ab | 80.93 ± 8.47 e |
67 | 2-Methylbutanal-M | 67.66 ± 12.79 cd | 81.20 ± 6.52 bc | 90.42 ± 9.57 b | 45.27 ± 1.54 ef | 60.67 ± 6.97 de | 32.05 ± 6.42 f | 82.7 ± 22.36 bc | 97.07 ± 1.30 b | 81.82 ± 1.32 bc | 282.46 ± 4.60 a |
68 | 3-Methylbutanal-M | 2325.54 ± 138.70 a | 235.76 ± 6.40 f | 1271.08 ± 183.12 c | 390.72 ± 39.61 ef | 681.00 ± 37.71 de | 599.48 ± 185.74 de | 1620.98 ± 19.17 b | 1725.97 ± 35.02 b | 744.23 ± 6.22 d | 1216.56 ± 30.48 c |
70 | Oct-1-en-3-ol | 133448.79 ± 108.23 a | 9998.93 ± 123.24 d | 11452.82 ± 419.99 b | 10429.96 ± 138.46 cd | 10916.61 ± 68.99 bc | 10998.83 ± 527.14 bc | 98.42 ± 22.00 e | 114.65 ± 14.83 e | 111.56 ± 17.34 e | 123.19 ± 20.26 e |
Group | Relative Contents (%) | ||||||
---|---|---|---|---|---|---|---|
Alcohols | Aldehydes | Ketones | Esters | Ethers | Others | Unidentified | |
C-CK | 29.40 ± 1.97 a | 44.75 ± 1.35 g | 4.47 ± 0.36 e | 8.04 ± 0.84 a | 5.77 ± 0.57 d | 2.85 ± 0.33 bc | 4.72 ± 0.13 ef |
S-CK | 27.19 ± 1.00 b | 57.16 ± 1.05 cd | 4.35 ± 0.18 e | 1.78 ± 0.21 f | 0.24 ± 0.05 g | 3.89 ± 0.12 a | 5.40 ± 0.01 de |
CF-30 | 29.13 ± 1.45 a | 49.17 ± 1.32 f | 7.06 ± 0.63 d | 2.76 ± 0.20 e | 3.32 ± 0.34 e | 2.36 ± 0.17 d | 6.19 ± 0.55 bc |
SF-30 | 24.46 ± 0.39 c | 58.00 ± 0.67 c | 7.35 ± 0.22 cd | 1.63 ± 0.01 f | 0.33 ± 0.09 g | 2.35 ± 0.06 d | 5.88 ± 0.21 cd |
CF-120 | 29.14 ± 1.14 a | 51.92 ± 1.12 e | 8.54 ± 0.23 ab | 1.86 ± 0.08 f | 0.69 ± 0.05 g | 1.69 ± 0.05 e | 6.16 ± 0.25 bcd |
SF-120 | 25.01 ± 0.28 c | 55.26 ± 1.58 d | 8.60 ± 0.73 ab | 1.84 ± 0.21 f | 0.31 ± 0.01 g | 2.28 ± 0.17 d | 6.71 ± 0.67 b |
CS-30 | 4.45 ± 0.57 e | 58.29 ± 0.60 c | 8.70 ± 0.52 a | 4.94 ± 0.64 d | 11.72 ± 0.62 b | 2.77 ± 0.09 c | 9.13 ± 0.56 a |
CS-120 | 4.31 ± 0.53 e | 56.85 ± 1.46 cd | 7.90 ± 0.17 bc | 5.98 ± 0.32 c | 12.61 ± 0.32 a | 3.11 ± 0.21 b | 9.25 ± 0.37 a |
SS-30 | 4.40 ± 0.64 e | 61.92 ± 1.19 b | 7.88 ± 0.51 bc | 6.82 ± 0.61 b | 10.32 ± 0.24 c | 2.29 ± 0.27 d | 6.38 ± 0.54 bc |
SS-120 | 8.07 ± 0.51 d | 79.17 ± 1.33 a | 3.71 ± 0.23 e | 2.32 ± 0.26 ef | 1.41 ± 0.27 f | 1.11 ± 0.24 f | 4.21 ± 0.48 f |
Groups | Vitamin D2 Content (μg/g) | Ergosterol Content (μg/g) |
---|---|---|
C-CK | 0.00 ± 0.00 e | 4275.25 ± 802.16 a |
S-CK | 0.00 ± 0.00 e | 2144.41 ± 453.75 bc |
CF-30 | 26.55 ± 1.30 e | 2138.95 ± 75.33 bc |
SF-30 | 29.25 ± 4.12 e | 2295.13 ± 301.41 bc |
CF-120 | 48.12 ± 7.00 e | 2671.42 ± 292.59 b |
SF-120 | 24.94 ± 12.92 e | 2128.21 ± 254.84 bc |
CS-30 | 267.85 ± 38.91 c | 2595.18 ± 382.38 b |
SS-30 | 112.60 ± 9.30 d | 995.31 ± 80.81 cd |
CS-120 | 668.79 ± 77.69 a | 1603.58 ± 182.26 c |
SS-120 | 399.45 ± 65.05 b | 809.19 ± 123.30 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Wang, Y.; Kong, F.; Wang, D.; Hu, C.; Yang, X.; Chen, X.; Chen, W.; Feng, Z. Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy. Molecules 2024, 29, 1872. https://doi.org/10.3390/molecules29081872
Hu D, Wang Y, Kong F, Wang D, Hu C, Yang X, Chen X, Chen W, Feng Z. Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy. Molecules. 2024; 29(8):1872. https://doi.org/10.3390/molecules29081872
Chicago/Turabian StyleHu, Daihua, Yulin Wang, Fanshu Kong, Danni Wang, Chingyuan Hu, Xu Yang, Xiaohua Chen, Wang Chen, and Zili Feng. 2024. "Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy" Molecules 29, no. 8: 1872. https://doi.org/10.3390/molecules29081872
APA StyleHu, D., Wang, Y., Kong, F., Wang, D., Hu, C., Yang, X., Chen, X., Chen, W., & Feng, Z. (2024). Analysis of Volatile Aroma Components in Different Parts of Shiitake Mushroom (Lentinus edodes) Treated with Ultraviolet C Light-Emitting Diodes Based on Gas Chromatography–Ion Mobility Spectroscopy. Molecules, 29(8), 1872. https://doi.org/10.3390/molecules29081872