The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects
Abstract
:1. Introduction
2. Methods
- Stationary dot pattern while standing on the platform (control condition) for 30 s.
- CW or CCW CV random dot pattern rotating in the roll plane at 60°/s for 30 s.
- CW or CCW SPH test starting 15 s after recording start. Trial duration 30 s. Stationary visual scene projected.
- Congruent CV to SPH test direction. That is, CV and SPH test rotation are both in the same CW or CCW direction. Trial duration 30 s. SPH test rotation starts at 15 s.
- Incongruent CV to SPH test direction. That is, CV and SPH test rotation both rotate in opposite CW and CCW directions. Trial duration 30 s. SPH test rotation starts at 15 s.
- Pre-tilt: 13.5 to 15 s after recording start. That is, just before the SPH test started. This value was used to determine the amount of body lean induced by CV prior to tilt.
- Post-tilt: 18.5 to 19.4 s after recording start, that is, 3.5 to 4.4 s after the start of the SPH platform rotation, which terminated after 3.3 s (at 18.3 s). This value was referenced to values pre-tilt and used to determine the change in body lean induced by the platform movement when CV was present. This interval (18.5 to 19.4 s) included the interval for which body segments had maximum displacements (see Figure 2, Figure 3 and Figure 4).
- Post-SPH: 27.5 to 30 s after each trial started. Measures at this time-point were referenced to those of pre-tilt and used to quantify the effect of CV on the SPH. Measures at this time point were also compared with the body lean measures for CV alone.
3. Results
3.1. Effects of CV on Upper Body Responses to Platform Tilt
3.2. Effects of CV on SPH Responses
4. Discussion
4.1. Effects of CV on Phasic Body Position and Platform SPH Position
4.2. Congruent vs. Incongruent Directions
4.3. Study Limitations
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allum, J.H.; Graf, W.; Dichgans, J.; Schmidt, C.L. Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp. Brain Res. 1976, 26, 463–485. [Google Scholar] [CrossRef]
- Waespe, W.; Henn, V. Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 1977, 27, 523–538. [Google Scholar] [CrossRef]
- Robinson, D.A. Linear addition of optokinetic and vestibular signals in the vestibular nucleus. Exp. Brain Res. 1977, 30, 447–450. [Google Scholar] [CrossRef]
- Xerri, C.; Barthelemy, J.; Borel, L.; Lacour, M. Neuronal coding of linear motion in the vestibular nuclei of the alert cat. III. Dynamic characteristics of visual-otolith interactions. Exp. Brain Res. 1988, 70, 299–309. [Google Scholar] [CrossRef]
- Anastasopoulos, D.; Mergner, T. Canal-neck interaction in vestibular nuclear neurons of the cat. Exp. Brain Res. 1982, 46, 269–280. [Google Scholar] [CrossRef]
- Dichgans, J.; Held, R.; Young, L.R.; Brandt, T. Moving visual scenes influence the apparent direction of gravity. Science 1972, 178, 1217–1219. [Google Scholar] [CrossRef]
- Tanahashi, S.; Ujike, H.; Kozawa, R.; Ukai, K. Effects of visually simulated roll motion on vection and postural stabilization. J. Neuroeng. Rehabil. 2007, 4, 39. [Google Scholar] [CrossRef]
- Wang, Y.; Kenyon, R.V.; Keshner, E.A. Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Exp. Brain Res. 2010, 201, 663–672. [Google Scholar] [CrossRef]
- Haggerty, S.E.; Wu, A.R.; Sienko, K.H.; Kuo, A.D. A shared neural integrator for human posture control. J. Neurophysiol. 2017, 118, 894–903. [Google Scholar] [CrossRef]
- Niehof, N.; Perdreau, F.; Koppen, M.; Medendorp, W.P. Time course of the subjective visual vertical during sustained optokinetic and galvanic vestibular stimulation. J. Neurophysiol. 2019, 122, 788–796. [Google Scholar] [CrossRef]
- Selva, P.; Oman, C.M.; Stone, H.A. Mechanical properties and motion of the cupula of the human semicircular canal. J. Vestib. Res. 2009, 19, 95–110. [Google Scholar] [CrossRef]
- Fernandez, C.; Goldberg, J.M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 1971, 34, 661–675. [Google Scholar] [CrossRef]
- Allum, J.H.J.; Yamane, M.; Pfaltz, C.R. Long-term modifications of vertical and horizontal vestibulo-ocular reflex dynamics in man. I. After acute unilateral peripheral vestibular paralysis. Acta Otolaryngol. 1988, 105, 328–337. [Google Scholar] [CrossRef]
- Ward, B.K.; Bockisch, C.J.; Caramia, N.; Bertolini, G.; Tarnutzer, A.A. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical. J. Neurophysiol. 2017, 117, 1948–1958. [Google Scholar] [CrossRef]
- De Vrijer, M.; Medendorp, W.P.; Van Gisbergen, J.A. Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision. J. Neurophysiol. 2008, 99, 915–930. [Google Scholar] [CrossRef]
- Bürgin, A.; Bockisch, C.J.; Tarnutzer, A.A. Precision of perceived direction of gravity in partial bilateral vestibulopathy correlates with residual utricular function. Clin. Neurophysiol. 2018, 129, 934–945. [Google Scholar] [CrossRef]
- Hong, S.M.; Yeo, S.G.; Byun, J.Y.; Park, M.S.; Park, C.H.; Lee, J.H. Subjective visual vertical during eccentric rotation in patients with vestibular neuritis. Eur. Arch. Otorhinolaryngol. 2010, 267, 357–361. [Google Scholar] [CrossRef]
- Clarke, A.H.; Schönfeld, U.; Hamann, C.; Scherer, H. Measuring unilateral otolith function via the otolith-ocular response and the subjective visual vertical. Acta Otolaryngol. Suppl. 2001, 545, 84–87. [Google Scholar]
- Beule, A.G.; Allum, J.H.J. Otolith function assessed with the subjective postural horizontal and standardised stance and gait tests. Audiol. Neurootol. 2006, 11, 172–182. [Google Scholar] [CrossRef]
- Duh, H.L.; Lin, J.W.; Kenyon, R.V.; Parker, D.E.; Furness, T.A. Effects of field of view on balance in an immersive environment. In Proceedings of the IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001; pp. 235–240. [Google Scholar]
- Oude Nijhuis, L.B.; Allum, J.H.; Borm, G.F.; Honegger, F.; Overeem, S.; Bloem, B.R. Directional sensitivity of “first trial” reactions in human balance control. J. Neurophysiol. 2009, 101, 2802–2814. [Google Scholar] [CrossRef]
- Nashner, L.; Berthoz, A. Visual contribution to rapid motor responses during postural control. Brain Res. 1978, 150, 403–407. [Google Scholar] [CrossRef]
- Bloem, B.R.; Allum, J.H.; Carpenter, M.G.; Verschuuren, J.; Honegger, F. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp. Brain Res. 2002, 142, 91–107. [Google Scholar]
- Carpenter, M.G.; Allum, J.H.; Honegger, F. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing. Exp. Brain Res. 2001, 140, 95–111. [Google Scholar] [CrossRef]
- Anastasopoulos, D.; Anastasopoulos, L.; Mergner, T. Voluntary suppression of neck reflexes during passive head-on-trunk rotations: Reflex gain control versus proprioceptive feedback. J. Neurophysiol. 2022, 127, 161–172. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Laurens, J. Time Course of Sensory Substitution for Gravity Sensing in Visual Vertical Orientation Perception following Complete Vestibular Loss. eNeuro 2020, 7, ENEURO.0021-20.2020. [Google Scholar] [CrossRef]
- Indovina, I.; Maffei, V.; Bosco, G.; Zago, M.; Macaluso, E.; Lacquaniti, F. Representation of visual gravitational motion in the human vestibular cortex. Science 2005, 308, 416–419. [Google Scholar] [CrossRef]
- Hannigan, I.P.; Nham, B.; Wang, C.; Rosengren, S.M.; Kwok, B.Y.C.; McGarvie, L.A.; Reid, N.M.; Curthovs, I.S.; Halmagyi, G.M.; Welgampola, M.S. The Relationship between the Subjective Visual Horizontal and Ocular Vestibular Evoked Myogenic Potentials in Acute Vestibular Neuritis. Otol. Neurotol. 2023, 44, e419–e427. [Google Scholar] [CrossRef]
A Time 13.5 to 15 s | Platform Only | Congruent Platform and CV | Incongruent Platform and CV | CV Only | Main Effect of Condition | PO vs. Con | PO vs. InCon | Con vs. InCon |
Head | 0.45 ±0.97 | 3.65 ±0.73 | 3.08 ±0.75 | 3.42 ±0.55 | F = 11.411, p = 0.003 | 0.008 | 0.047 | 0.807 |
Trunk | 0.32 ±0.06 | 1.67 ±0.32 | 1.71 ±0.26 | 1.81 ±0.32 | F = 15.871, p = 0.001 | 0.017 | 0.003 | 1 |
Pelvis | 0.15 ±0.05 | 0.78 ±0.23 | 0.68 ±0.17 | 0.76 ±0.15 | F = 6.987, p = 0.028 | 0.096 | 0.066 | 0.528 |
Platform | 0.03 ±0.01 | 0.03 ±0.01 | 0.02 ±0.00 | 0.01 ±0.00 | F = 2.938, p = 0.107 | 1 | 0.776 | 0.013 |
B Time 18.5 to 19.5 s cf 13.5 to 15 s | Platform Only | Congruent Platform and CV | Incongruent Platform and CV | CV Only | Main Effect of Condition | PO vs. Con | PO vs. InCon | Con vs. InCon |
Head | 1.51 ±0.31 | 3.56 ±0.62 | 1.30 ±0.35 | 0.64 ±0.17 | F = 16.677, p = 0.001 | 0.021 | 1 | <0.001 |
Trunk | 1.53 ±0.30 | 3.57 ±0.51 | 1.60 ±0.27 | 0.25 ±0.06 | F = 14.262, p = 0.004 | 0.028 | 1 | 0.002 |
Pelvis | 2.23 ±0.21 | 2.63 ±0.31 | 1.85 ±0.24 | 0.14 ±0.05 | F = 8.952, p = 0.009 | 0.381 | 0.030 | 0.008 |
Platform | 2.02 ±0.01 | 2.04 ±0.01 | 2.03 ±0.01 | 0.00 ±0.00 | F = 1.981, p = 0.192 | 0.355 | 1 | 0.096 |
C Time 27.5 to 30 s cf 13.5 to 15 s | Platform Only | Congruent Platform and CV | Incongruent Platform and CV | CV Only | Main Effect of Condition | PO vs. Con | PO vs. InCon | Con vs. InCo |
Head | 0.52 ±0.10 | 1.74 ±0.31 | 1.38 ±0.39 | 1.08 ±0.33 | F = 6.045, p = 0.011 | 0.012 | 0.075 | 1 |
Trunk | 0.31 ±0.08 | 1.22 ±0.42 | 0.89 ±0.25 | 0.44 ±0.11 | F = 2.328, p = 0.161 | 0.239 | 0.034 | 1 |
Pelvis | 0.21 ±0.03 | 0.49 ±0.23 | 0.39 ±0.04 | 0.18 ±0.07 | F = 1.161, p = 0.314 | 0.760 | 0.002 | 1 |
Platform | 0.17 ±0.02 | 0.65 ±0.23 | 0.34 ±0.04 | 0.00 ±0.00 | F = 3.068, p = 0.116 | 0.234 | 0.011 | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleworth, T.W.; Allum, J.H.J.; Nielsen, E.I.; Carpenter, M.G. The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects. Brain Sci. 2023, 13, 1502. https://doi.org/10.3390/brainsci13111502
Cleworth TW, Allum JHJ, Nielsen EI, Carpenter MG. The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects. Brain Sciences. 2023; 13(11):1502. https://doi.org/10.3390/brainsci13111502
Chicago/Turabian StyleCleworth, Taylor W., John H. J. Allum, Emma I. Nielsen, and Mark G. Carpenter. 2023. "The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects" Brain Sciences 13, no. 11: 1502. https://doi.org/10.3390/brainsci13111502
APA StyleCleworth, T. W., Allum, J. H. J., Nielsen, E. I., & Carpenter, M. G. (2023). The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects. Brain Sciences, 13(11), 1502. https://doi.org/10.3390/brainsci13111502