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Abstract: Kohonen neural network (KNN) was used to investigate the effects of the visual, proprio-
ceptive and vestibular systems using the sway information in the mediolateral (ML) and anterior-
posterior (AP) directions, obtained from an inertial measurement unit, placed at the lower backs of
23 healthy adult subjects (10 males, 13 females, mean (standard deviation) age: 24.5 (4.0) years, height:
173.6 (6.8) centimeter, weight: 72.7 (9.9) kg). The measurements were based on the modified Clinical
Test of Sensory Interaction and Balance (mCTSIB). KNN clustered the subjects’ time-domain sway
measures by processing their sway’s root mean square position, velocity, and acceleration. Clustering
effectiveness was established using external performance indicators such as purity, precision-recall,
and F-measure. Differences in these measures, from the clustering of each mCTSIB condition with its
condition, were used to extract information about the balance-related sensory systems, where smaller
values indicated reduced sway differences. The results for the parameters of purity, precision, recall,
and F-measure were higher in the AP direction as compared to the ML direction by 7.12%, 11.64%,
7.12%, and 9.50% respectively, with their differences statistically significant (p < 0.05) thus suggesting
the related sensory systems affect majorly the AP direction sway as compared to the ML direction
sway. Sway differences in the ML direction were lowest in the presence of the visual system. It was
concluded that the effect of the visual system on the balance can be examined mostly by the ML sway
while the proprioceptive and vestibular systems can be examined mostly by the AP direction sway.

Keywords: mediolateral sway; anterior-posterior sway; balance-related sensory information;
accelerometry; Kohonen neural network; balance dysfunction and diagnosis

1. Introduction

The maintenance of balance is mainly a combined process of the interaction of the
central nervous system (CNS) and the balance-related sensory systems. In addition to other
activities, in order to maintain balance, the CNS must correctly integrate information from
the relevant sensory systems, i.e., the visual, proprioceptive, and vestibular systems [1].
These sensory systems act as sensors that contribute to a person’s balance and orientation
by providing the necessary information pertaining to balance’s functionality. For example,
the visual system is responsible for providing visual cues [2]; the proprioceptive system
is responsible for providing information associated with the position and movement of
the limbs and trunk [3]; the vestibular system is responsible for providing information
associated with the spatial orientation and acceleration of the head [4]. Thus, the evaluation
of the information from these systems is crucial in balance examinations.

The operations of the balance-related sensory systems could be assessed using the
modified Clinical Test of Sensory Interaction and Balance (mCTSIB) [5–8]. The test consists
of four conditions involving the subject being asked to (i) stand on a firm surface (i.e.,
ground) with eyes open, (ii) stand on a firm surface with eyes closed, (iii) stand on a
flexible surface (e.g., a thick sponge) with eyes open, and (iv) stand on a flexible surface
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with eyes closed [8]. The first condition incorporates the three-balance-related sensory
systems (i.e., visual, proprioceptive, and vestibular), the second condition incorporates
the proprioceptive and vestibular systems, the third condition incorporates the visual
and vestibular systems and the fourth condition incorporates only the vestibular system.
Objectively, sway information can be obtained from the center of pressure (COP) and
center of mass (COM) positions by examining the subject’s performance during mCTSIB
and by using devices such as force platform and inertial measurement unit (IMU) [9–11].
Corresponding to the design characteristics, these devices are commonly used to produce
sway information in two distinct body sway directions namely: the mediolateral (ML, i.e.,
side-to-side) direction and the anterior-posterior (AP, i.e., front-to-back) direction.

The sway directions (ML and/or AP) carry information that is crucial in understand-
ing the behavioral patterns of the sensory systems which are necessary for diagnostic and
monitoring purposes. These directions have been used in several studies to carry out pos-
tural sway analysis on various cohorts of subjects using varying analytical techniques. For
example, utilizing the statistical technique of two way mixed design model and employing
the root mean square (RMS) variables of COP displacement and velocity in the ML and AP
directions, a comparison of postural strategies used to regain balance between older adults
of ages 60 to 90 years, and younger adults of ages 20 to 40 years, undergoing a balance task
i.e., standing quietly for 30 seconds, walking in place and then taking a lateral step and
stand quietly (30 seconds) was carried out [12]. The work led to the suggestion that differ-
ent strategies are used by older adults in the ML and AP directions and in order to recover
balance after completing a lateral step, older adults prioritized postural stability in the AP
direction [12]. Similarly, using mixed generalized linear models, a comparison between
22 adults with multiple sclerosis with mean age (standard deviation) of 56.3 (8.9) years and
22 correspondingly matched healthy adults with mean age (standard deviation) of 59.1
(7.1) years was conducted with the aim of assessing the differences between the groups in
relation to their falls risk, strength, reactions, and directional control of balance [13]. The
results obtained pertaining to the control of balance suggested that individuals with multi-
ple sclerosis exhibited a greater overall COP motion in both the ML and AP directions [13].
Alternatively, the application of machine learning techniques such as clustering can be
used for obtaining information pertaining to the examination of similarities and differences
between groups by considering their clustering characteristics [14].

Cluster analysis allows for the examining of structural similarities or dis-similarities [15].
By combining the unsupervised nature of clustering with the supervised classification, one
can correctly and reliably measure the relationship between the sensory systems and un-
derstand their behavior. Therefore, in situations where data can be classified, clustering
can be performed between the groups to determine their structures (as a measure of their
distinctness) and class labels assigned to evaluate the results of the clustering. Evaluating the
clustering results using external measures such as purity, precision, recall, and F-measure can
be valuable for understanding their characteristics [16]. Among various clustering methods,
clustering using the Kohonen neural network (KNN, self-organizing map) produces an effec-
tive representation of the data, illustrating the hidden patterns inherent to the characteristics of
the data, as a specific data distribution (e.g., normal) is not expected, non-linear relationships
can be accommodated, the prior information about the number of clusters is not required
and its learning algorithm provides a robust clustering performance [17,18]. The number of
neurons and their topology in its output map (Kohonen or self-organizing map) can be set to
best represent the data.

The purpose of this study was to use the Kohonen neural network to investigate and
demonstrate the effects of sensory systems to balance using their respective time-domain
directional sway information. The subsequent sections are organized as follows: a brief
introduction of the Kohonen neural network is provided, followed by the methodological
section which is divided into data collection and analysis parts, and finally the results are
explained.
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2. Kohonen Neural Network

Developed by the Finnish researcher Tuevo Kohonen in the 1980s [19], the Kohonen
neural network is a type of unsupervised learning that uses clustering to project an input
space of high dimensions onto a low dimensional prototype regular grid that can be used to
visualize and explore the relationship properties of the data [20]. The Kohonen network’s
operation is based on competitive learning, i.e., a process whereby each neuron competes
with other neurons to represent an input example (input vector) [21]. The Kohonen network
has been widely used in data exploration applications [22]. Its use in balance and gait
analysis has been reported in a number of studies. It was used to extract and visualize
information about high dimensional balance strategies (full-body kinematics) before and
after a 6-week slackline training intervention of thirteen young adult subjects (11 females
and 2 males) [23]. The results showed that the balance coordination pattern between pre-
and post-tests for the slackline task was significantly different [23]. Gait investigation of
the data from 60 healthy normal subjects (mean age 63.3 years, age range 37 to 86 years,
47% men) and 60 patients (mean age 68.8 years, age range 45 to 84 years, 62% of men) with
idiopathic Parkinson disease using Kohonen network showed that the identified groupings
were consistent with the classification carried out by experts in function of traditional
gait dynamic analysis [24]. Kohonen network has also been applied in areas of balance to
identify movement patterns and variability among young and older adults [25]. Figure 1
shows a two-dimensional Kohonen map of size 10 × 10 neurons capable of projecting the
characteristics of the input dataset.
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The operation of the network as described in [21–27] is summarized using the follow-
ing 4 steps:

i. Initialization

The learning process starts with initializing the weights associated with each neuron.
A weight wmn is associated with the connection from mth feature of the input vector
(representing an input example) to nth neuron. The number of weights for each neuron is
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the same as the number of features in the input vector. The weights can be initialized based
on prior information or small randomly selected values close to zero. The learning rate
and neighborhood size are also initialized (these are defined in step iii). Kohonen network
requires the learning termination point to be initialized. The manners this can be achieved
are explained in step (iii).

ii. Competition

Kohonen network is presented with the jth training input vector (Xj). Each neuron
determines the closeness (or distance) of the current input vector to the weights associated
with its connections. The neuron with the closest connection weights to the input vector
(i.e., smallest distance) is selected as the winner. When the Euclidean distance is used to
determine closeness, the distance (dn) for neuron n is

dn =

√
(x1 −w1n)

2 + (x2 −w2n)
2 + . . . + (xk −wkn)

2 (1)

iii. Adaptation

This step can be divided into two tasks. Firstly, the neighbors of the winning neuron
are identified and secondly, the weights of the winning neuron and those of its identified
neighbors are updated. The neighboring neurons are located in the neighborhood region
(shown in Figure 1) that surrounds the winning neuron. The size of the neighborhood
region is defined as the number of neurons in each direction of the winning neuron. In
Figure 1, the neighborhood size is 3 neurons.

Adaptation involves updating the weight vectors of the winning neuron and its
neighbors. This is carried out using the Kohonen learning rule,

Wjupdated
= Wjcurrent

+ µ
(

Xj −Wjcurrent

)
(2)

where W-(j_current) and W-(j_updated) represent the current and updated weight vectors for
the winning neuron respectively. The learning rate (0 < µ ≤ 1) controls the amount of
weights changes taking place during each learning iteration. Larger values of µ lead to
faster learning but they may reduce adaptation effectiveness. Its initial value is typically
chosen heuristically.

In order to improve learning, the weights associated with the neighborhood neurons
are also updated to a lesser extent than the winning neuron. Typically, a Gaussian function
is used to influence the extent of this update, with relatively (as compared to the winning
neuron) smaller weights changes as neurons become further from the winning neuron.
The initial size of the neighborhood region and learning rate can be reduced as learning
progresses. This is to move from a coarse adjustment of the weights to finer adjustments.

iv. Termination of iterations

Steps (ii) and (iii) are repeated until either the required number of iterations is com-
pleted, or the magnitude of weight changes reaches a predefined value.

The Kohonen network can be implemented using sequential or batch processing.
The difference between the sequential and the batch processing is that in the former, the
neurons’ weights are updated after each input vector is presented to the network while
for the batch processing the weights are updated after an epoch, i.e., a single pass over
the entire input data set [28]. The advantages of the batch processing method include:
no dependence upon the order in which the input data are presented since the weights
updates are not recursive [28] and issues regarding poor convergence are eliminated as the
learning rate coefficient is absent in the batch Kohonen network algorithm [29].
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3. Methodology
3.1. Accelerometry Algorithm to Analyse Postural Sway

The analysis of postural sway involved the projection of the body movements at the
center of mass (COM) to the ground surface. This could be achieved by considering the
principle of the inverted pendulum [30] as shown in Figure 2.
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L represents the distance of the COM position to the ground which is assumed to be
constant for each individual. The resultant acceleration is shown as R. The angles made by
each directional acceleration ax, ay, and az are shown as α, β, and γ respectively. They are
obtained from their directional cosines cos(α), cos(β), and cos(γ) respectively. The angles
ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 are used for mathematical justifications. The ground displacements
from the origin in the x and y directions are dx and dy respectively and H represents the
ground projection of the COM height. Equations (3)–(5) describe the algorithm’s operation.
The units for distance, acceleration and angle were chosen as centimeters (cm), centimeters
per second square (cm/s2), and degrees (◦) respectively.

R =
√

ax2 + ay2 + az2 (3)

cos(α) =
ax

R
, cos β =

ay

R
, cos(γ) =

az

R
(4)

dx = −L cos(α), dy = −L cos(β), H = L cos(γ) (5)

3.2. Accelerometry Device Used for Data Recording

Figure 3 shows the device developed for the accelerometry data recordings. It con-
sisted of transmitter and receiver units.

The transmitter unit consisted of a microcontroller (type: Arduino Nano), an inertia
measurement unit (IMU, type: MPU 6050), and a wireless transceiver (type: nRF24L01). It
was responsible for measuring the subject’s postural sway. Communication between the
IMU and the microcontroller was facilitated using the inter-integrated circuit (I2C) protocol.
The IMU signals utilized and processed in the study were the IMU’s accelerometer signals,
represented by x, y, and z. Each signal indicated the movement in one of the 3 orthogonal
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directions. Communication between the wireless transceiver and the microcontroller was
via the serial peripheral interface (SPI) protocol. The signals were wirelessly sent to the
receiver unit by the transceiver.
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The receiver unit was responsible for receiving the signal from the transmitter unit
and transferring the information to a laptop computer for storage. It consisted of a mi-
crocontroller (type: Arduino Uno) and a wireless transceiver (type: nRF24L01). It was
interfaced with the laptop computer using a USB cable.

3.3. Participants’ Details and Experimental Procedure

Twenty-three healthy adult subjects (10 males and 13 females), mean (standard de-
viation) age: 24.5 (4.0) years, mean height (standard deviation): 173.6 (6.8) cm, mean
weight (standard deviation): 72.7 (9.9) kg, with no previous history of balance dysfunction,
participated in the study. During recording, the subject stood relaxed while looking at a
wall at a distance of 1 m. The transmitter unit was strapped to the subject’s lower back,
at approximately the iliac crest, as shown in Figure 4. The data acquisition software was
written in the Processing language that is compatible with Arduino microcontroller boards.
The data recording lasted for two minutes with 30 s allocated for each of the four conditions
of the mCTSIB. A longer duration recording was avoided to ensure the subjects did not
become tired. The four conditions of mCTSIB involved the subject: (i) standing on a firm
surface (ground) with eyes open, (ii) standing on a firm surface with eyes closed, (iii)
standing on a flexible surface (a sponge with dimensions: 10 cm height, 0.5 m length and
width), with eyes open, and (iv) standing on the flexible surface with eyes closed. The
signal sampling rate was 60 samples per second. The subjects declared not to have ingested
any substance capable of affecting their balance 48 hours prior to the recordings and ethical
permission was obtained from the university ethical committee prior to conducting the
recordings.

3.4. Data Analysis

The analysis had three stages: (i) processing the accelerometry raw data into sway
information, (ii) clustering the sway information, and (iii) interpreting the clustering results
to determine the information provided by ML and AP sway directions.
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Figure 4. A subject performing condition 3 of the mCTSIB with a white sponge under his feet and
the accelerometer transmitter unit (the white box) worn at the lower back.

3.4.1. Conversion of the Raw Accelerometry Data into Sway Information

The raw accelerometry data used for carrying out the analysis consisted of the body’s
acceleration in the three axes (x, y and z) of the tri-axial accelerometer. The raw accelerom-
eter data were converted into accelerations in units of gravity (g) by dividing the digital
output into units of least significant bits (LSB) of the tri-axial accelerometer by the ac-
celerometer’s sensitivity scale factor in units of LSB/g. The accelerometer’s sensitivity
scale factor for a full-scale range of ±2 g was 16,384 (LSB/g). Furthermore, the accelera-
tion outputs (i.e., signals representing acceleration in x, y, and z directions) were lowpass
filtered using a second order lowpass Butterworth filter with a cut of frequency of 4 Hz.
The resultant acceleration (R), the directional cosines: cos(α) cos(β) and cos(γ) and the
displacement in the x and y axes from the origin (position), dx and dy were obtained using
Equations (3)–(5). The subject’s body position, velocity, and acceleration were obtained
using Equations (6) and (7), where Dkn, Vkn, and Akn are the positional displacements,
velocity, and acceleration respectively, DkRMS, VkRMS, and AkRMS are their corresponding
root mean square (RMS) values, k corresponds to the direction of interest, i.e., ML and AP,
dk1 is the first term used to remove the inclination offset on the subject’s back.

Care was taken to ensure the transmitter unit was attached to each subject in a
consistent manner. The RMS measurements were utilized due to their effectiveness in dif-
ferentiating between the four conditions of the mCTSIB, established in an earlier study [30].

Dkn = dkn − dk1, Vkn =
Dkn − Dkn−1

T
, Akn =

Vkn −Vkn−1

T
(6)

DkRMS =

√√√√ 1
N

N

∑
n=1

(Dkn)
2, VkRMS =

√√√√ 1
N

N

∑
n=1

(Vkn)
2, AkRMS =

√√√√ 1
N

N

∑
n=1

(Akn)
2 (7)

3.4.2. Clustering of the Postural Sway Information

Correlation analysis was carried out among the variables of the ML and AP directions,
i.e., the RMS measures of position, velocity, and acceleration, to identify the variables that
had strong correlations with each other. Highly correlated variables were defined by the
coefficient of correlation being equal to, or greater than, 0.85 [31]. Prior to carrying out
correlation analysis, a test was carried out to establish whether the data were from a normal
distribution with the level of significance (α) set to 5%. The choice of correlation to apply
was dependent on the result of the test of normality of the variables [32]. In situations
where the measure deviated from normality, Kendall’s tau correlation coefficient was used
to compute the correlation, otherwise, Pearson correlation was used.
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The clustering of the input data was carried out in two abstraction levels. The two-level
approach has been shown to be computationally more efficient than using only the K-means
clustering [20] as only the representatives of the prototype vectors, i.e., the centroids, are
used for the clustering. The first abstraction level involved using the Kohonen network to
cluster the uncorrelated variables thereby forming a set of prototype vectors. The Matlab©

(MathWorks®, Natick, MA, USA) batch algorithm of the Kohonen network was used for
training with a Kohonen map size of 10 by 10 neurons (total 100 neurons). A large map
was used to explore the relationships between the four conditions of mCTSIB. The default
value of the initial neighborhood size (i.e., 3 neurons) was used for the training and the
number of training iterations was set to 1000. The entire dataset was used as the training
and test set because the interest was to explore the interactions between the conditions of
the mCTSIB. Each mCTSIB condition consisted of the data from the 23 subjects and the
clustering of the data set was conducted by pairing each condition with condition 1, taking
condition 1 as the reference (as condition 1 incorporated all the balance-related sensory
systems). Therefore, three examination combinations could be carried out, i.e., conditions:
1 and 2, 1 and 3, and 1 and 4.

The second abstraction level consisted of the clustering of the formed Kohonen net-
work prototype vectors. For this purpose, the clustering was performed using the K-means
algorithm. The K-means algorithm divides the data set into K clusters such that the within
cluster’s sum of the square is minimized [33]. The built-in K-means algorithm in the
Matlab (MathWorks®, Massachusetts, USA) batch was used for the implementation of the
K-means clustering with the default distance metric, i.e. Euclidean. The processes involved
were representing the porotype vectors formed during the first abstraction level by their
centroids and then clustering the resulting centroids. The prototype vectors represented the
neurons associated with at least one input data. The main issue that needed considering
when performing the K-means algorithm, was determining the number of clusters. To
this effect, the number of clusters was determined by performing K-means clustering
on the resulting centroids of the prototypes formed during the first abstraction level for
the different number of clusters (K) varying from 2 to 30 and evaluating the resulting
cluster separation, using the Davies-Bouldin (DB) index as the measure of the clustering
separation. The DB index is an internal evaluation measure based on the ratio of within to
between cluster separations [34]. Usually, the lower the value of the DB index, the better
the clustering performance. The DB index was determined using Equation (8).

DB =
1
k

k

∑
i=1

DBi, DBi = maxDBij, DBij =
σci + σcj∣∣∣∣∣∣µci − µcj

∣∣∣∣∣∣ (8)

where σci is the standard deviation of cluster ci, σcj is the standard deviation of cluster cj,
µci is mean of cluster ci, µcj is mean of cluster cj, DBij is an array of DB indices for cluster i
with respect to the jth cluster, where i 6= j, j = i + 1:k, DBi is DB index for the ith cluster. The
number of clusters with the minimum DB was used for external evaluation.

The minimum DB may not be optimal [20], thus further analysis of the clustering
was performed at other local minima, and the number of clusters (K) for the K-means
clustering, selected based on the highest F-measure. The DB index selected from the
clustering between conditions 1 and 4 was used for the clustering between conditions 1
and 2, and conditions 1 and 3 as the greatest differences were expected to be between
conditions 1 and 4.

3.4.3. Clustering Performance

After clustering the prototype centroids into K clusters, the centroids were replaced
by their actual constituent data points that were obtained from the first abstraction level.
The class labels corresponding to the four conditions of the mCTSIB were assigned to the
data points of the formed clusters. For evaluation purposes, each cluster was labeled by
most of the categories present in the cluster and also a labeled category was assigned to
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more than one cluster if there was a dominant grouping in that cluster. External evaluation
measures such as purity, precision, recall, and F-measure were utilized to measure the
differences between the four conditions of the mCTSIB. The purity measure evaluated
the coherence of a cluster, i.e., the degree to which a cluster contained data entries from
a single category [35]. The greater the purity measure, the more the separation between
the categories. The precision of a cluster is the same as its purity. The recall of a cluster
measures the fraction of points of the majority partition shared in common with the cluster.
Since the analysis had been limited to non-empty clusters (i.e., clusters with at least one
entry), the lowest amount of purity would be obtained, when all the samples converged
into a single cluster. Provided the numbers of samples between the classes were equal,
the samples of one class divided by the total number of samples of all the classes gave the
lowest purity. In this case, the lowest purity that could be obtained was 0.5 since there
were 23 samples in each group and the clustering consisted of two groups (46 samples), i.e.,
23 divided by 46. Similarly, the lowest clustering precision was obtained when all the data
samples were present in one cluster. In this case, since there were 23 samples in each group
and the clustering consisted of two groups (46 samples), the minimum precision was 0.5,
i.e., 23 divided by 46. The minimum recall would exist when only one sample would be
present in each cluster. That is, the recall of a clustering varies inversely with the number of
clusters, i.e., 0.5 (1 divided by 2) for two clusters, 0.25 (1 divided by 4) for four clusters, 0.17
(1 divided by 6) for six clusters, etc. The formulae of these measures are presented below:

purity =
r

∑
i=1

ni
n

purityi, purityi =
1
ni

k
max
j = 1

{
nij
}

(9)

preci =
1
ni

k
max
j = 1

{
nij
}
=

niji
ni

(10)

recalli =
niji
mji

(11)

Fi =
2× preci × recalli

preci + recalli
=

2niji
ni + mji

(12)

where nij is the number of elements of class j in the ith cluster, ni is the total number of
elements in the ith cluster, n is the total number of elements of the dataset, purityi is the ith

purity of the clustering. niji is the maximum elements of the classes in the ith cluster, preci is
the ith precision. mji is the number of elements of the resulting maximum jth class of the ith

cluster, recalli is the recall of the ith cluster. The F-measure of the clustering was obtained by
taking the average over all the clusters as

F =
1
r

r

∑
i=1

Fi (13)

Fi is the F-measure of the ith cluster. More details about these measures are avail-
able [36].

The clustering process was repeated thirty times, with the data randomized at each
repetition and its corresponding external measures recorded and utilized for further analy-
sis. The repetition of the clustering 30 times was conducted to guarantee the reliability of
the values. A statistical test was carried out on the recorded external measures between
the ML and AP directions to determine whether a significant difference existed between
their results. The choice of statistical test for the significant difference was subject to the
outcome of the test of normality from the external measures. In cases the outcome indicated
data were from a normal distribution, the independent sample t-test was used otherwise
the Mann-Whitney U-test was used. The software program for the external evaluation
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of the clustering performance was writing in Matlab© (version 2017a, MathWorks®, Mas-
sachusetts, USA) batch while the statistical test was carried out using SPSS® (version 24,
IBM, Armonk, NY, USA).

4. Results
4.1. Correlation Result

The correlations between the variables, i.e., the RMS values of position, velocity, and
acceleration as examined using the weights of the Kohonen network’s neurons (weights
planes) are shown in Figure 5. The black color represents the most negative connections,
red represents no connection, and yellow represents the strongest positive connections.
The weights planes are used as an indication of correlation between the input variables,
where closely related patterns represent strong correlations. Similar colors of weights
can be observed between the RMS velocity and the RMS acceleration, indicating a strong
correlation between the two variables. The result of the Shapiro-Wilk test of normality
indicated that the variables were not from a normal distribution (p < 0.05). Thus, Kendall’s
tau correlation was conducted between the variables and the result suggested that there
was a strong positive correlation between the RMS velocity and RMS acceleration (rτ (21)
= 0.929, p < 0.01) while a significant weak positive correlation existed between the RMS
position and RMS velocity rτ (21) = 0.344, p = 0.022), and the RMS position and RMS
acceleration (rτ (21) = 0.32, p = 0.032) with the level of significance (α) equal to 5%. Thus,
RMS position and velocity were used for the subsequent analysis.
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4.2. Clustering Results

The visualization of the Kohonen map and its structure using the test set for conditions
1 and 4 for both the AP and ML directions is shown in Figure 6.
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Figure 6. Plot of neighborhood distance and input vector hits of conditions 1 and 4. (a,b) representing
the AP direction, (c,d) representing the ML direction. The horizontal and vertical axes are neurons
positions.

Figure 6a shows a larger section of darker colors in the neighborhood distance plot
of the AP direction as compared to that obtained from the ML direction as shown by
Figure 6c. These darker colors indicate that the clustering obtained by using the measures
of the RMS position and velocity of the AP direction appears to be coarser as compared
to those obtained from the corresponding measures of the ML direction. However, the
spread of the brighter colors throughout the map as shown by the neighborhood distance
indicates a poor clustering between the sensory systems as expected for healthy adult
subjects. Nevertheless, the greater coarseness of the map in the AP direction suggests
larger sway differences between the sensory systems as compared to the sway differences
indicated by the ML direction. This shows the direction’s ability to differentiate between
the sensory system(s) associated with sway, and in turny, indicates the sensitivity of the
direction, i.e., the variation of the sensory system(s), results in the largest sway toward the
AP direction.

The results of the DB index for clusters K = 2 to 30 are plotted in Figure 7. The figure
indicates the average of 30 repetitions for conditions 1 and 4 with K = 2 to be lowest, other
local minima exist at K = 4 and 9.

The mean F-measures obtained for the AP direction between conditions 1 and 4 for
30 repetitions for the number of clusters (K) equal to 2, 4, and 9 were 0.717, 0.448, and
0.249 respectively. Similarly, the mean F-measure obtained for the ML direction between
conditions 1 and 4 for K = 2, 4, and 9 clusters were 0.532, 0.356, and 0.246 respectively. Since
the values of the F-measure for two clusters were higher than those of four and 9 clusters,
two clusters were used for further analysis.
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Using two clusters for the K means clustering, the averages of the respective clustering
performance measures between conditions 2, 3, and 4 of the mCTSIB and condition 1
are shown in Figure 8. The blue bars represent the AP direction, and the yellow bars
represent the ML direction. The precision and F-measure for the AP direction appeared
lower for Figure 8a (conditions 1 and 2) than it is for Figure 8b,c. This indicates that the
presence of the proprioceptive system reduces AP direction of sway. Conversely, all the
external measures for the ML direction were lowest for Figure 8b as compared to Figure
8a,c respectively. The median values and interquartile ranges of these measures for 30
clustering repetitions are shown in Table 1.

Table 1. Results of the median (interquartile range) values of the external measures for 30 clustering repetitions.

mCTSIB Conditions
Purity Precision Recall F-Measure

ML AP ML AP ML AP ML AP

1 and 2 0.522
(0.022)

0.565
(0.065)

0.530
(0.035)

0.58
(0.063)

0.522
(0.022)

0.565
(0.065)

0.526
(0.028)

0.573
(0.059)

1 and 3 0.500
(0.022)

0.565
(0.065)

0.500
(0.030)

0.613
(0.070)

0.500
(0.022)

0.565
(0.065)

0.500
(0.026)

0.594
(0.061)

1 and 4 0.522
(0.022)

0.652
(0.044)

0.542
(0.055)

0.795
(0.014)

0.522
(0.022)

0.652
(0.044)

0.532
(0.040)

0.717
(0.033)

Averages 0.515
(0.022)

0.594
(0.058)

0.524
(0.040)

0.662
(0.049)

0.515
(0.022)

0.594
(0.058)

0.519
(0.031)

0.628
(0.051)

Similar values of the external measures would have been observed if the sway in the
ML and AP directions were to be the same. On average, over all the four mCTSIB conditions,
the purity, precision, recall, and F-measure for the AP direction were respectively 7.12%,
11.64%, 7.12%, and 9.5% higher than the respective values obtained from the ML direction.
The Mann-Whitney U-test showed that significant differences (p < 0.05) existed between the
corresponding results of the external measures obtained from each direction. The results of
these measures are representative of healthy adult subjects and thus the results may differ
across subjects with balance problems.

When the RMS variables of the ML and AP sway directions were combined, the
order of similarity was the same as that obtained using the AP direction for similarity
measurement. The clustering results are shown in Figure 9.
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Figure 8. Results of median values of the external measures over 30 repetitions: (a) mCTSIB condi-
tions 1 and 2, (b) mCTSIB conditions 1 and 3 (c) mCTSIB conditions 1 and 4.
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5. Discussions

This study was designed to investigate, for diagnostic purposes, the effect of the
balance-related sensory systems to balance for young healthy adult subjects in a well-lit
environment, (10 males and 13 females) with a mean (standard deviation): ages 24.5 (4.0)
years, height: 173.6 (6.8) centimeter, and weight: 72.7 (9.9) kg, by examining the clustering
characteristics of their sway in the mediolateral (ML) and anterior-posterior (AP) directions.

Poor clustering was observed using the sway from the ML and AP directions across
the four conditions of the mCTSIB as the sway was from a cohort of healthy adult subjects.
However, disparities existed in clustering results from the respective directions with a
reduced similarity in the AP direction as compared to the ML direction. This was an indica-
tion of sway differences and highlights that as the sensory systems were reduced/altered,
i.e., from condition 1 to 4 of the mCTSIB, an increase in the sway occurred with more sway
in the AP direction than the ML direction. Therefore, the AP direction was more sensitive
to the responses of the sensory systems. Dependencies on the sensory systems to balance
for the subjects using the AP direction indicated that the subjects depended more on the
proprioceptive system than the visual system. Contrarily, considering the ML direction,
the reverse was the case. A combination of the ML and AP sway reduced the differences
between sensory systems, although the result still suggested that more reliance was placed
on the proprioceptive system than the visual system. A similar result was reported in [1,37],
that in a well-lit environment with a solid base of support, healthy individuals depended
more on the somatosensory system for balance. A combination of the sway from both
directions suggested that the results of the differences are affected as the direction with
less sway tends to cancel the direction with more sway or vice-versus. Consequently, for
accurate analysis of balance, the study indicated the directional sensitivity of sway should
be considered with more emphasis placed on the direction that represents more sway. A
larger sway does not necessarily imply the direction with the largest magnitude of sway
but the direction that represents the COM sway for a longer time interval.

The presence or absence of the proprioceptive system as indicated by the comparison
between the clustering results of conditions 1 and 2 and conditions 1 and 4, affected the
AP directional sway but had only a minor effect on the ML sway as indicated by their
clustering results with a value of 0.5 being the lowest attainable value for the external
measures. This indicated that the proprioceptive system had only a minor effect on the
ML sway. In contrast, the presence or absence of the visual system as indicated by the
comparison between the clustering results of conditions 1 and 3 and conditions 1 and 4,
affected both the AP and ML directional sway as indicated by their clustering results with
a value of 0.5 being the lowest attainable value for the external measures. This indicated
that the visual system in addition to reducing the AP directional sway, had a significant
effect on the ML directional sway as it completely removed any sway differences. A similar
result was reported in [38] with a different cohort of subjects. In [38], it was reported that
ML sway dramatically increased, when the subjects stood on a sponge surface with their
eyes closed, than when they stood, with their eyes open thus indicating that older subjects
relied on the visual system to correct ML postural sway. Thus, we suggest with addition
to a reduction in AP sway, a reduction in ML sway should particularly be used to assess
the functionality of the visual system while a reduction in AP sway should be used in
particular for the proprioceptive and vestibular system.

In general, the clustering results revealed that in healthy adult subjects, the sensory
systems sway is highly related. Thus, emphasis should be placed on training programs
that ensure the full operation of all the systems. In the case where full operation cannot be
guaranteed, the interaction of the visual or the proprioceptive with the vestibular can help
to achieve functional balance. The importance of the vestibular system has been reported
in several studies. In [39], patients with bilateral complete loss of peripheral vestibular
system function, were reported not to be able to engage in activities that required an intact
vestibular system such as sports and household activities. Similarly, a home-based exercise
program was found in [40] to significantly improve balance abilities in individuals with
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chronic vestibular dysfunctions. Since with the vestibular system only, no large difference
was observed nor was there any visible fall, we suggest that intervention to ensure the
proper functioning of the vestibular system should be of paramount importance.

The study’s findings can be summarized as:

i. The clustering of the postural sway, based on the RMS measures of the body’s position
and velocity of the AP direction, showed larger values of external measures of the
clustering performances as compared to similar variables from the ML direction. As a
result, it may be inferred that the AP direction was more sensitive to the effect of the
information of the sensory system as compared to the ML direction.

ii. Hindrance in the operation of the visual system leads to an increase in the external
performance measures of the clustering in the ML direction. In clustering between
the eyes open conditions (conditions 1 and 3), the clustering evaluation measures, i.e.
purity, precision, recall, and F-measure were 0.5, which was equal to the minimum
value that could occur from the clustering. Thus, postural sway in the ML direction is
a characteristic of the contribution of the visual system.

iii. Using separate directions resulted in differing order of similarities across the four
conditions of the mCTSIB. When the clustering measures of the AP direction were
used for analysis, the order of similarities of the conditions were conditions 1, 2, 3, and
4. However, when the clustering measures of the ML direction were used, the order of
similarities were conditions 1, 3, 2, and 4 and the results showed less disparity across
the conditions. When the measures from the AP and ML directions were combined,
the external clustering performance measures were reduced. This indicated that
combining the results of ML and AP directions results in closer similarities between
the conditions.

iv. There was not a large variation between the maximum and the minimum (0.5) values
across all external measures of the clustering performance between the conditions of
the mCTSIB using the RMS values of the position and velocity of the respective ML
and AP directions. The maximum value of the external measures corresponded to the
value of the precision measure (0.795) for the clustering between the conditions 1 and
4. In the case of clustering with two clusters, the minimum and maximum values of
the external measures that can occur for two groups with an equal number of samples
are 0.5 and 1 respectively. Thus, the difference of 0.295 between the precision value
and the minimum i.e. 0.795 minus 0.5 is considered small. Therefore, it was concluded
that for healthy young adult subjects, there is a strong interrelationship between the
mCTSIB conditions and their postural sway results cannot be clustered well into two
distinct groups.

6. Conclusions

For diagnostic purposes, the effect of the sensory systems in balance obtained from
the mediolateral (ML) and anterior-posterior (AP) directions of 23 healthy young adults
(10 males and 13 females) with closely related age, height, and weight were investigated.
The subjects engaged in the four conditions associated with the modified Clinical Test of
Sensory Interaction and Balance (mCTSIB). The measurements of the root mean square
sway values of body position and velocity obtained from an inertial measurement unit
(IMU) placed at the lower back of the subjects at approximately the position of the iliac crest.

Their effects were investigated using Kohonen neural network clustering perfor-
mances which were evaluated using external measures such as purity, precision, recall, and
F-measure. The results indicated that the information provided by ML and AP directions
in balance analysis differ and that the direction of sway plays an important role in correctly
assessing a subject’s balance. In particular, it was observed that the AP direction performed
better than the ML direction in clustering the data from the four conditions associated
with the mCTSIB. The ML sway was characterized by the hindrance of the visual system.
The combination of the sway variables from the ML and AP directions resulted in smaller
differences between the mCTSIB conditions. We suggest with addition to a reduction in
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AP sway, a reduction in ML sway should particularly be used to assess the functionality
of the visual system while a reduction in AP sway should be used in particular for the
proprioceptive and vestibular systems.
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