Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = viscosity-pressure characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 - 4 Aug 2025
Viewed by 207
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

31 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 138
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 267
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

14 pages, 3320 KiB  
Article
Numerical Simulation Research on Thermoacoustic Instability of Cryogenic Hydrogen Filling Pipeline
by Qidong Zhang, Yuan Ma, Fushou Xie, Liqiang Ai, Shengbao Wu and Yanzhong Li
Cryo 2025, 1(3), 9; https://doi.org/10.3390/cryo1030009 - 9 Jul 2025
Viewed by 181
Abstract
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux [...] Read more.
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux density distribution, pressure amplitude, and frequency. The instability boundary of hydrogen TAO is also obtained. The results show that (1) the temperature distribution and flow characteristics of the gas inside the pipeline exhibit significant periodic changes. In the first half of the oscillation period, the cold-end gas moves towards the end of the pipeline. Low-viscosity cold hydrogen is easily heated and rapidly expands. In the second half of the cycle, the expanding cold gas pushes the hot-end gas to move towards the cold end, forming a low-pressure zone and causing gas backflow. (2) Thermoacoustic oscillation can also cause additional thermal leakage on the pipeline wall. The average heat flux during one cycle is 1150.1 W/m2 for inflow and 1087.7 W/m2 for outflow, with a net inflow heat flux of 62.4 W/m2. (3) The instability boundary of the system is mainly determined by the temperature ratio of the cold and hot ends α, temperature gradient β, and length ratio of the cold and hot ends ξ. Increasing the pipe diameter and minimizing the pipe length can effectively weaken the amplitude of thermoacoustic oscillations. This study provides theoretical support for predicting thermoacoustic oscillations in low-temperature hydrogen transport pipeline systems and offers insights for system stability control and design verification. Full article
Show Figures

Figure 1

16 pages, 2822 KiB  
Article
Research on the Mechanism of Wellbore Strengthening Influence Based on Finite Element Model
by Erxin Ai, Qi Li, Zhikun Liu, Liupeng Wang and Chengyun Ma
Processes 2025, 13(7), 2185; https://doi.org/10.3390/pr13072185 - 8 Jul 2025
Viewed by 281
Abstract
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In [...] Read more.
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In recent years, advanced sealing technologies such as wellbore reinforcement have gradually been applied and developed, but their related influencing factors and mechanisms have not been deeply revealed. This article uses the Cohesive module of ABAQUS to establish a wellbore fracture sealing model. By establishing a porous elastic finite element model, the elastic mechanics theory of porous media is combined with finite element theory. Under the influence of factors such as anisotropy of geostress, reservoir elastic modulus, Poisson’s ratio, and fracturing fluid viscosity, the circumferential stress distribution of the wellbore after fracture sealing is simulated. The simulation results show that stress anisotropy has a significant impact on Mises stress. The greater the stress anisotropy, the more likely the wellbore sealing is to cause wellbore rupture or instability. Therefore, it is necessary to choose a suitable wellbore direction to avoid high stress concentration areas. The elastic modulus of the reservoir is an important parameter that affects wellbore stability and fracturing response, especially in high modulus reservoirs where the effect is more pronounced. Poisson’s ratio has a relatively minor impact. In fracturing and plugging design, the viscosity of fracturing fluid should be reasonably selected to balance the relationship between plugging efficiency and wellbore mechanical stability. In the actual drilling process, priority should be given to choosing the wellbore direction that avoids high stress concentration areas to reduce the risk of wellbore rupture or instability induced by plugging, specify targeted wellbore reinforcement strategies for high elastic modulus reservoirs; using models to predict fracture response characteristics can guide the use of sealing materials, achieve efficient bridging and stable sealing, and enhance the maximum pressure bearing capacity of the wellbore. By simulating the changes in circumferential stress distribution of the wellbore after fracture sealing, the mechanism of wellbore reinforcement was explored to provide guidance for mechanism analysis and on-site application. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Investigating the Impact of Seasonal Input Stream Fluctuations on Post-Consumer High-Density Polyethylene Composition and Processing
by Pia Fischer, Elena Berg, Christian Hopmann and Rainer Dahlmann
Polymers 2025, 17(13), 1828; https://doi.org/10.3390/polym17131828 - 30 Jun 2025
Viewed by 426
Abstract
The recycling of plastics collected from household waste to produce post-consumer recycled (PCR) materials is a critical step of sustainable waste management. However, the processing of PCR materials presents unique challenges, particularly in the context of seasonal input stream fluctuations and resulting PCR [...] Read more.
The recycling of plastics collected from household waste to produce post-consumer recycled (PCR) materials is a critical step of sustainable waste management. However, the processing of PCR materials presents unique challenges, particularly in the context of seasonal input stream fluctuations and resulting PCR material composition variations. Within this paper, the influence of batch-to-batch fluctuations on the processing stability and product properties of high-density polyethylene (HDPE) PCR from the German municipal waste system is analysed. It examines how variations in batch composition affect key parameters such as processing data (injection pressure, torque), mechanical properties (tensile strength, E-modulus, impact strength), and product quality (gel formation, part dimensions, part weight). Therefore, six consecutive household HDPE PCR material batches are analysed regarding their composition, contaminations, and rheological characteristics through ashing, differential scanning calorimetry, high-temperature gel permeation chromatography, and high-pressure capillary rheometry. The batches are then processed using blown- and cast-film extrusion as well as injection moulding, and the resulting process stability and product quality are analysed. The results show a strong correlation between thermal properties, such as crystallisation enthalpy, molecular weight, polypropylene (PP) content, varying batch viscosities, and changes in processing data as well as the resulting product properties. Full article
(This article belongs to the Special Issue Polymers for Circular Packaging Materials)
Show Figures

Figure 1

20 pages, 22127 KiB  
Article
Performance Analysis of Poppet Valves in Deep-Sea Hydraulic Systems: Considering Viscosity–Pressure Characteristics
by Pin-Jian Wang and Jia-Bin Wu
J. Mar. Sci. Eng. 2025, 13(6), 1177; https://doi.org/10.3390/jmse13061177 - 16 Jun 2025
Viewed by 400
Abstract
Deep-sea hydraulic systems, powering a wide range of numerous deep-sea operating equipment, employ many poppet valves to adjust the pressure and flow rate, thereby realizing precise movements of the actuators. With greater depths and ambient pressures, the hydraulic oil viscosity increases exponentially, leading [...] Read more.
Deep-sea hydraulic systems, powering a wide range of numerous deep-sea operating equipment, employ many poppet valves to adjust the pressure and flow rate, thereby realizing precise movements of the actuators. With greater depths and ambient pressures, the hydraulic oil viscosity increases exponentially, leading to a significant difference in the performance of the poppet valve compared to on-land usage and across varying depths. Based on the shear stress transport (SST) k-ω turbulence model and the dynamic mesh method, a computational fluid dynamics (CFD) model of the poppet valve was established. With the viscosity–pressure characteristics considered, the performance of the poppet valve was analyzed under different depths, different inlet flow rates, and different cracking pressures. The results indicate significant performance deterioration in poppet valves at increased depths, characterized by increased pressure loss and extended response rise time. At 11 km underwater, the pressure loss can be 7 MPa larger than the preset cracking pressure of 10 MPa, and the rise time is doubled compared with the land condition. It is recommended to use hydraulic oils with a lower initial viscosity and a slower increase in viscosity with pressure in deep sea conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5581 KiB  
Article
Film Cooling Performance and Superposition Method of an Actual Turbine Vane at High Freestream Turbulence
by Peng Chu, Yongfeng Sui, Bin Dai, Jibing Lan, Wenyang Shao, Binbin Xue, Xiliang Xu and Zhenping Feng
Aerospace 2025, 12(6), 533; https://doi.org/10.3390/aerospace12060533 - 12 Jun 2025
Viewed by 422
Abstract
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that [...] Read more.
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that the current design blowing ratio of S1 holes (0.89) is too high, resulting in poor film cooling effectiveness. However, the blowing ratios of P3 (0.78) and P4 (0.69) holes are relatively low, suggesting that increasing the coolant flow could improve the film cooling effectiveness. It is not recommended to design an excessively low blowing ratio on the suction surface, as this can lead to poor wall adherence downstream of the film holes. A slight increase in turbulence intensity enhances the film covering effect, particularly on the suction surface. Additionally, a novel superposition method for multirow fan-shaped film cooling holes on an actual turbine vane is proposed, exhibiting better agreement with experimental data. Compared with experimental results, the numerical predictions tend to underestimate the film cooling effectiveness with the examined k-ε-based viscosity turbulence models and Reynolds stress turbulence models, while the SST demonstrates relatively higher accuracy owing to its hybrid k-ω/k-ε formulation that better resolves near-wall physics and separation flows characteristic of turbine cooling configurations. This study contributes to the advancement of turbine vane thermal analysis and design in engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 6448 KiB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 547
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

15 pages, 2653 KiB  
Article
Fluid–Structure Interaction Analysis of a Bionic Robotic Fish Based on a Macrofiber Composite Material
by Chenghong Zhang
Biomimetics 2025, 10(6), 393; https://doi.org/10.3390/biomimetics10060393 - 11 Jun 2025
Viewed by 467
Abstract
In this study, the power system of a bionic robotic fish has been significantly simplified, resulting in a reduced volume and enhanced flexibility of both the structure and movement. To comprehensively understand the dynamics, a fluid–structure interaction (FSI) analysis was conducted, considering the [...] Read more.
In this study, the power system of a bionic robotic fish has been significantly simplified, resulting in a reduced volume and enhanced flexibility of both the structure and movement. To comprehensively understand the dynamics, a fluid–structure interaction (FSI) analysis was conducted, considering the intricate interplay between the mollusk’s structure and the surrounding fluid. This analysis took into account the dissipation due to fluid viscosity and the influence of the wake performance around the mollusk. The study examined the relationships between the driving frequency of the input signal and various parameters such as fluid pressure, propulsion force, and propulsion displacement of the soft robot fish head. With the robot fish’s head fixed, the amplitude of propulsion motion and propulsion force were measured. The simulation results closely matched the experimental findings, indicating their potential to predict the propulsion characteristics of the soft robot fish in fluid environments and further improve its performance. Full article
(This article belongs to the Special Issue Bionic Robotic Fish: 2nd Edition)
Show Figures

Figure 1

12 pages, 5625 KiB  
Proceeding Paper
Molding Characteristics and Impact Strength of Polypropylene with Different Numbers of Recycling Cycles
by Hui-Mei Zheng, Jui-Chan Li, Yen-Kai Wang, Kai-Fu Liew and Hsin-Shu Peng
Eng. Proc. 2025, 92(1), 88; https://doi.org/10.3390/engproc2025092088 - 29 May 2025
Viewed by 340
Abstract
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the [...] Read more.
We analyzed the changes in the molding properties of polypropylene (PP) resin in the process of recycling after multiple plasticization, injection, and crushing processes. We also explored the changes in the material properties and characteristics with the ASTM-D256 impact test specimen and the number of recycling cycles. After the material is injected and crushed, it is recycled to produce the material required for re-injection, and a pressure sensor is installed at the nozzle position to observe the effects of material properties and impact characteristics in recycling. Injecting and pulverizing PP several times results in looser molecular spacing, increasing the fluidity of the material. After several recycling cycles, the fluidity of the material gradually decreased. Its crystallinity fluctuated depending on the crystallinity and crystallization rates. Recycled PP materials in various molding processes were influenced by melt temperature, screw speed, back pressure, and injection speed, which also affected nozzle pressure and strength. As the melt temperature increased, the effect on the nozzle pressure and impact strength became more evident. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

15 pages, 5067 KiB  
Article
Integrated Modeling of Time-Varying Permeability and Non-Darcy Flow in Heavy Oil Reservoirs: Numerical Simulator Development and Case Study
by Yongzheng Cui, Wensheng Zhou and Chen Liu
Processes 2025, 13(6), 1683; https://doi.org/10.3390/pr13061683 - 27 May 2025
Viewed by 392
Abstract
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence [...] Read more.
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence water flooding performance. Therefore, in this paper, a comprehensive oil–water two phase mathematical model is developed for waterflooded heavy oil unconsolidated sandstone reservoirs based on the traditional black oil model, incorporating both time-varying permeability and threshold pressure gradient. The water-flooding-dependent threshold pressure gradient is firstly proposed, accounting for time-varying permeability. Subsequently, a simulator is developed with finite volume and Newton iteration method. Good agreement is obtained with the commercial simulator based on traditional black oil model. Afterward, the influence of permeability time variation and threshold pressure gradient is analyzed in detail. Results demonstrate that the threshold pressure gradient and time-varying permeability both decrease the oil recovery. The threshold pressure gradient (TPG) reduces the oil flow region and displacement efficiency since production. The increases in permeability after long term water flooding exacerbate reservoir heterogeneity and reduce sweep efficiency. The lowest oil recovery is observed when non-Darcy flow and permeability time variation are considered simultaneously. Furthermore, the time-varying threshold pressure gradient is observed with permeability time variation. Finally, a field data history matching was successfully performed, demonstrating the practical applicability of the proposed model. This new model better aligns with reservoir development characteristics. It can provide a theoretical guide for the development of heavy oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

27 pages, 9421 KiB  
Article
Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers
by Qiong Lin, Qihan Li, Pu Xu, Runyuan Zheng, Jiaji Bao, Lin Li and Dapeng Tan
Processes 2025, 13(6), 1666; https://doi.org/10.3390/pr13061666 - 26 May 2025
Cited by 4 | Viewed by 582
Abstract
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex [...] Read more.
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex structures make the mixing transport characteristics of static mixers complex and nonlinear, which affect the mixing efficiency and stability of the fluid control device. Here, the modeling and design optimization of the two-phase flow mixing and transport dynamics of a static mixer face many challenges. This paper proposes a modeling and problem-solving method for the two-phase flow transport dynamics of static mixers, based on the lattice Boltzmann method (LBM) and large eddy simulation (LES). The characteristics of the two-phase flow mixing dynamics and design optimization strategies for complex component structures are analyzed. First, a two-phase flow transport dynamics model for static mixers is set up, based on the LBM and a multiple-relaxation-time wall-adapting local eddy (MRT-WALE) vortex viscosity coupling model. Using octree lattice block refinement technology, the interaction mechanism between the fluid and the wall during the mixing process is explored. Then, the design optimization strategies for the flow field are analyzed under different flow rates and mixing element configurations to improve the mixing efficiency and stability. The research results indicate that the proposed modeling and problem-solving methods can reveal the dynamic evolution process of mixed-flow fields. Blade components are the main driving force behind the increased turbulent kinetic energy and induced vortex formation, enhancing the macroscopic mixing effect. Moreover, variations in the flow velocity and blade angles are important factors affecting the system pressure drop. If the inlet velocity is 3 m/s and the blade angle is 90°, the static mixer exhibits optimized overall performance. The quantitative analysis shows that increasing the blade angle from 80° to 100° reduces the pressure drop by approximately 44%, while raising the inlet velocity from 3 m/s to 15 m/s lowers the outlet COV value by about 70%, indicating enhanced mixing uniformity. These findings confirm that an inlet velocity of 3 m/s combined with a 90° blade angle provides an optimal trade-off between mixing performance and energy efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 2199 KiB  
Article
Predicting Strut Geometry of PCL and DMSO2 Biocomposites from Nozzle to Deposition in Bio-Scaffold 3D Printing
by Jae-Won Jang, Kyung-Eun Min, Jun-Hee Park, Cheolhee Kim and Sung Yi
Materials 2025, 18(10), 2380; https://doi.org/10.3390/ma18102380 - 20 May 2025
Viewed by 418
Abstract
The field of tissue engineering increasingly demands accurate predictive models to optimize the 3D printing process of bio-scaffolds. This study presents a unified numerical model that predicts extrusion velocity and strut diameter based on printing conditions and the material properties of polycaprolactone (PCL) [...] Read more.
The field of tissue engineering increasingly demands accurate predictive models to optimize the 3D printing process of bio-scaffolds. This study presents a unified numerical model that predicts extrusion velocity and strut diameter based on printing conditions and the material properties of polycaprolactone (PCL) and dimethyl sulfone (DMSO2) composites. The extrusion velocity was simulated using Navier–Stokes equations, while the strut diameter was calculated via a surface energy model. For PCL, the extrusion velocity showed a temperature coefficient of 23.3%/°C and a pressure coefficient of 19.1% per 100 kPa; the strut diameter exhibited a temperature coefficient of 21.6%/°C and a pressure coefficient of 16.6% per 100 kPa. When blended with DMSO2, the lower viscosity and higher surface energy resulted in increased extrusion velocity and strut diameter. The proposed model achieved a high predictive accuracy, with determination coefficient (R²) values exceeding 0.95. These results demonstrate the model’s potential to optimize 3D printing parameters, guide biomaterial selection, and predict pore characteristics, ultimately supporting the rational design of tissue engineering scaffolds. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

22 pages, 3730 KiB  
Article
Reservoir Compatibility and Enhanced Oil Recovery of Polymer and Polymer/Surfactant System: Effects of Molecular Weight and Hydrophobic Association
by Tao Liu, Xin Chen and Xiang Tang
Polymers 2025, 17(10), 1390; https://doi.org/10.3390/polym17101390 - 18 May 2025
Viewed by 644
Abstract
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration [...] Read more.
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration range of the polymer solution is optimized and designed in combination with core injectivity experiments and mobility control theory. The oil displacement system and its injection volume have been optimized via three parallel core flooding experiments. The results show that the increase of the polymer molecular weight and the association will enhance the viscosity-increasing performance, viscosity stability, viscoelasticity, and hydrodynamic characteristic size of the solution. According to whether the injection pressure curve reaches equilibrium and the time required for equilibrium, the matching relationship between the polymer and the reservoir can be divided into plugging, flow difficulty and flow smoothly. Based on the mobility control theory, the minimum mobility of the target core occurs when the water saturation is 30–40%. Therefore, the polymer formulation for the application of combined cores with viscosities of 50 mD, 210 mD, and 350 mD is set at 1500 mg/L for LMP and 800 mg/L for MAP. HAP has the best profile improvement effect, but its lowest EOR is 9.68%, which mainly acts on high-permeability layers; LMP can produce more remaining oil in middle-permeability layers, and its EOR can reach 12.01%; LMP/PS can give full play to the oil displacement performance of the polymer and the oil washing ability of the surfactant, and its highest EOR is 21.32%. Meanwhile, the emulsification effect also makes the profile improvement last longer. According to the EOR efficiency and final oil recovery, the optimal injection volume of LMP/PS can be designed to be 0.6–0.7 PV. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop