Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = viscosity variation law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5354 KB  
Article
Thermal–Hydraulic Modeling and H Control for Aero-Engine Fuel Metering Units
by Ke Wang, Yu Wang, Pengyuan Li, Di Wu, Lifeng Cui and Bin-Bin Hao
Aerospace 2025, 12(12), 1040; https://doi.org/10.3390/aerospace12121040 - 23 Nov 2025
Viewed by 366
Abstract
Aero-engines operate across wide flight envelopes and harsh environments, requiring the fuel metering unit (FMU) to perform reliably over a broad temperature range. Fuel temperature fluctuations significantly modify viscosity and density, which in turn alter pressure distribution, flow behavior, and the dynamic response [...] Read more.
Aero-engines operate across wide flight envelopes and harsh environments, requiring the fuel metering unit (FMU) to perform reliably over a broad temperature range. Fuel temperature fluctuations significantly modify viscosity and density, which in turn alter pressure distribution, flow behavior, and the dynamic response of the metering spool. Based on the first law of thermodynamics and the control volume method, this study theoretically analyzes how these thermal effects influence FMU pressure, flow rate, and spool motion. A thermo-hydraulic FMU model is then developed in AMESim to capture the coupled pressure-flow-motion dynamics. Based on this model, a robust H controller is designed using the mixed-sensitivity approach to compensate for the temperature-dependent degradation in system performance. Simulation results verify that the proposed model accurately reproduces the FMU dynamics under varying thermal conditions. Furthermore, compared with a conventional PI controller, the H controller achieves precise spool displacement regulation over the wide temperature range of 10 °C to 50 °C, effectively mitigating the adverse effects induced by temperature variations. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 5195 KB  
Article
Study on Experiment and Molecular Dynamics Simulation of Variation Laws of Crude Oil Distribution States in Nanopores
by Yukun Chen, Hui Zhao, Yongbin Wu, Rui Guo, Yaoli Shi and Yuhui Zhou
Appl. Sci. 2025, 15(21), 11308; https://doi.org/10.3390/app152111308 - 22 Oct 2025
Viewed by 474
Abstract
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the [...] Read more.
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the distribution mechanisms of multicomponent crude oil in oil-wet siltstone (SiO2) and dolomitic rock (dolomite, CaMg3(CO3)4) nanopores, with comprehensive consideration of key factors including pore size, rock type, and CO2 flooding on crude oil distribution at 353 K and 40 MPa. It is revealed that aromatic hydrocarbons (toluene) in multicomponent crude oil are preferentially adsorbed on pore walls due to π-π interactions, while n-hexane diffuses toward the pore center driven by hydrophobic effects. Pore size significantly affects the distribution states of crude oil: ordered adsorption structures form for n-hexane in 2 nm pores, whereas distributions become dispersed in 9 nm pores, with adsorption energy changing as pore size increases. Dolomite exhibits a significantly higher adsorption energy than SiO2 due to surface roughness and calcium–magnesium ion crystal fields. CO2 weakens the interaction between crude oil and pore walls through competitive adsorption and reduces viscosity via dissolution, promoting crude oil mobility. Nuclear magnetic resonance (NMR) experiments further verified the effect of CO2 on crude oil stripping in pores. This study not only clarifies the collaborative adsorption mechanisms and displacement regulation laws of multi-component crude oil in nanopores but also provides a solid theoretical basis for CO2 injection strategies in unconventional reservoir development. Full article
(This article belongs to the Special Issue Advances and Innovations in Unconventional Enhanced Oil Recovery)
Show Figures

Figure 1

22 pages, 7067 KB  
Article
New Evaluation System for Extra-Heavy Oil Viscosity Reducer Effectiveness: From 1D Static Viscosity Reduction to 3D SAGD Chemical–Thermal Synergy
by Hongbo Li, Enhui Pei, Chao Xu and Jing Yang
Energies 2025, 18(19), 5307; https://doi.org/10.3390/en18195307 - 8 Oct 2025
Viewed by 780
Abstract
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation [...] Read more.
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation of existing viscosity reducer evaluation systems, this study establishes a multi-dimensional evaluation system for the effectiveness of viscosity reducers, with stage-averaged remaining oil saturation as the core benchmarks. A “1D static → 2D dynamic → 3D synergistic” progressive sequential experimental design was adopted. In the 1D static experiments, multi-gradient concentration tests were conducted to analyze the variation law of the viscosity reduction rate of viscosity reducers, thereby screening out the optimal adapted concentration for subsequent experiments. For the 2D dynamic experiments, sand-packed tubes were used as the experimental carrier to compare the oil recovery efficiencies of ultimate steam flooding, viscosity reducer flooding with different concentrations, and the composite process of “steam flooding → viscosity reducer flooding → secondary steam flooding”, which clarified the functional value of viscosity reducers in dynamic displacement. In the 3D synergistic experiments, slab cores were employed to simulate the SAGD development process after multiple rounds of cyclic steam stimulation, aiming to explore the regulatory effect of viscosity reducers on residual oil distribution and oil recovery factor. This novel evaluation system clearly elaborates the synergistic mechanism of viscosity reducers, i.e., “chemical empowerment (emulsification and viscosity reduction, wettability alteration) + thermal amplification (steam carrying and displacement, steam chamber expansion)”. It fills the gap in the existing evaluation chain, which previously lacked a connection from static performance to dynamic displacement and further to multi-process synergistic adaptation. Moreover, it provides quantifiable and implementable evaluation criteria for steam–chemical composite flooding of extra-heavy oil, effectively releasing the efficiency-enhancing potential of viscosity reducers. This study holds critical supporting significance for promoting the efficient and economical development of extra-heavy oil resources. Full article
Show Figures

Figure 1

28 pages, 2938 KB  
Article
Boiling and Condensing Two-Phase Frictional Pressure Drop Within Minichannel Tubes—Comparison and New Model Development Based on Experimental Measurements
by Calos Martínez-Lara, Alejandro López-Belchí and Francisco Vera-García
Energies 2025, 18(18), 5010; https://doi.org/10.3390/en18185010 - 20 Sep 2025
Viewed by 1185
Abstract
This study presents a comprehensive experimental investigation into the frictional pressure drop of two-phase flows—boiling and condensation—in horizontal minichannels, emphasizing its impact on the energy efficiency of vapor compression systems. A total of 3553 data points were obtained using six low-GWP refrigerants (R32, [...] Read more.
This study presents a comprehensive experimental investigation into the frictional pressure drop of two-phase flows—boiling and condensation—in horizontal minichannels, emphasizing its impact on the energy efficiency of vapor compression systems. A total of 3553 data points were obtained using six low-GWP refrigerants (R32, R134a, R290, R410A, R513A, and R1234yf) across a wide range of operating conditions in multiport aluminum tubes with hydraulic diameters of 0.715 mm and 1.16 mm. The dataset covers mass fluxes from 200 to 1230 kgm2s1, saturation temperatures between 5 °C and 55 °C, and vapor qualities from 0.05 to 0.95. Results showed a strong dependence of frictional pressure gradient on vapor quality, mass flux, and channel size. Boiling flows generated higher frictional losses than condensation, and high-density refrigerants such as R32 exhibited the largest pressure penalties, which can directly translate into increased compressor power demand. Conversely, higher saturation temperatures were associated with lower frictional losses, highlighting the role of thermophysical properties in improving energy performance. Additionally, an inverse correlation between saturation temperature and frictional pressure gradient was observed, attributed to variations in thermophysical properties such as viscosity and surface tension. Existing correlations from the literature were assessed against the experimental dataset, with notable deviations observed in several cases, particularly for R134a under high-quality conditions. Consequently, a new empirical correlation was developed for predicting the frictional pressure drop in two-phase flow through minichannels. The proposed model, formulated using a power-law regression approach and incorporating dimensionless parameters, achieved better agreement with the experimental data, reducing prediction error to within ±20%, improving the accuracy for the majority of cases. This work provides a robust and validated dataset for the development and benchmarking of predictive models in compact heat exchanger design. By enabling the more precise estimation of two-phase pressure drops in compact heat exchangers, the findings support the design of refrigeration, air-conditioning, and heat pump systems with minimized flow resistance and reduced auxiliary energy consumption. This contributes to lowering compressor workload, improving coefficient of performance (COP), and it ultimately advances the development of next-generation cooling technologies with enhanced energy efficiency. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

21 pages, 3628 KB  
Article
Uncertainty Propagation for Power-Law, Bingham, and Casson Fluids: A Comparative Stochastic Analysis of a Class of Non-Newtonian Fluids in Rectangular Ducts
by Eman Alruwaili and Osama Hussein Galal
Mathematics 2025, 13(18), 3030; https://doi.org/10.3390/math13183030 - 19 Sep 2025
Viewed by 540
Abstract
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via [...] Read more.
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via comparison with quasi-Monte Carlo simulations, we demonstrate significantly lower computational costs across varying Coefficients of Variation (COVs). For viscosity uncertainty (Case I), results show a 0.54–2.8% increase in mean maximum velocity with standard deviations reaching 75.3–82.5% of the COV, where the power-law model exhibits the greatest sensitivity (velocity variations spanning 71.2–177.3% of the mean at COV = 20%). Pressure gradient uncertainty (Case II) preserves mean velocities but produces narrower and symmetric distributions. We systematically evaluate the effects of aspect ratio, yield stress, and flow behavior index on the stochastic velocity response of each fluid. Moreover, our analysis pioneers a performance hierarchy: Herschel–Bulkley fluids show the highest mean and standard deviation of maximum velocity, followed by power-law, Robertson–Stiff, Bingham, and Casson models. A key finding is the extreme fluctuation of the Robertson–Stiff model, which exhibits the most drastic deviations, reaching up to 177% of the average velocity. The significance of fluid-specific stochastic analysis in duct system design is underscored by these results. This is especially critical for non-Newtonian flows, where system performance and reliability are greatly impacted by uncertainties in viscosity and pressure gradient, which reflect actual operational variations. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 1911 KB  
Article
Rapid Assessment of Relative Hemolysis Amidst Input Uncertainties in Laminar Flow
by Nasim Gholizadeh, Ryan Wang, Gayatri Gautham and Gautham Krishnamoorthy
Fluids 2025, 10(9), 228; https://doi.org/10.3390/fluids10090228 - 29 Aug 2025
Viewed by 858
Abstract
Predicting absolute values of hemolysis using the power law model to guide medical device design is hampered by uncertainties stemming from four sources of model inputs: incoming/upstream velocity profiles, blood viscosity models, power law hemolysis coefficients, and obtaining accurate stress exposure times. Amidst [...] Read more.
Predicting absolute values of hemolysis using the power law model to guide medical device design is hampered by uncertainties stemming from four sources of model inputs: incoming/upstream velocity profiles, blood viscosity models, power law hemolysis coefficients, and obtaining accurate stress exposure times. Amidst all these uncertainties, enabling rapid assessments and predictions of relative hemolysis would still be valuable for evaluating device design prototypes. Towards achieving this objective, hemolysis data from the Eulerian modeling framework was first generated from computational fluid dynamics simulations encompassing five blood viscosity models, four sets of hemolysis power law coefficients, fully developed as well as developing velocity flow conditions, and a wide range of shear stresses, strain rates, and stress exposure times. Corresponding hemolysis predictions were also made in a Lagrangian framework via numerical integration of shear stress and residence time spatial variations under the assumption of fully developed Newtonian fluid flow. Absolute hemolysis predictions (from both frameworks) were proportional to each other and independent of the blood viscosity model. Further, relative hemolysis trends were not dependent on the hemolysis power law coefficients. However, accuracy in wall shear stresses in developing flow conditions is necessary for accurate relative hemolysis assessments. Full article
Show Figures

Figure 1

16 pages, 2449 KB  
Article
A Power-Law-Based Predictive Model for Proppant Settling Velocity in Non-Newtonian Fluid
by Tianbo Liang, Zilin Deng, Junlin Wu, Fangzhou Xu, Leyi Zheng, Maoqin Yang and Fujian Zhou
Processes 2025, 13(8), 2631; https://doi.org/10.3390/pr13082631 - 20 Aug 2025
Cited by 2 | Viewed by 1171
Abstract
Effective proppant transport is critical to the success of hydraulic fracturing, particularly when using a non-Newtonian fluid. However, accurately predicting the proppant settling behavior under complex rheological conditions is still a significant challenge. This study proposes a new method for estimating the velocity [...] Read more.
Effective proppant transport is critical to the success of hydraulic fracturing, particularly when using a non-Newtonian fluid. However, accurately predicting the proppant settling behavior under complex rheological conditions is still a significant challenge. This study proposes a new method for estimating the velocity of proppant settling in the power-law non-Newtonian fluid by accounting for spatial variations in viscosity within the fracture domain. The local shear rate field is first obtained using an analytical expression derived from the velocity gradient, and then used to approximate spatially varying viscosity based on the power-law rheological model. This allows the modification of Stokes’ law, which was initially developed for Newtonian fluid, to be used for the power-law non-Newtonian fluid. The results indicate that the model achieved high accuracy in the fracture center region, with an average relative error of 8.2%. The proposed approach bridges the gap between traditional settling models and the non-Newtonian behavior of the fracturing fluid, offering a practical and physically grounded framework for predicting the velocity of proppant settling within a hydraulic fracture. By considering the distribution of the shear rate and viscosity of the fracturing fluid, this method enables an accurate prediction of proppant settling velocity, which further provides theoretical support to the optimization of pumping schedules and operation parameters for hydraulic fracturing. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

31 pages, 6448 KB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 1645
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

40 pages, 4791 KB  
Article
Modified Semi-Lagrangian Godunov-Type Method Without Numerical Viscosity for Shocks
by Valeriy Nikonov
Fluids 2025, 10(5), 133; https://doi.org/10.3390/fluids10050133 - 16 May 2025
Viewed by 1461
Abstract
Most high-order Euler-type methods have been proposed to solve one-dimensional scalar hyperbolic conservational law. These methods resolve smooth variations in flow parameters accurately and simultaneously identify the discontinuities. A disadvantage of Euler-type methods is the parameter change stretching in the shock over a [...] Read more.
Most high-order Euler-type methods have been proposed to solve one-dimensional scalar hyperbolic conservational law. These methods resolve smooth variations in flow parameters accurately and simultaneously identify the discontinuities. A disadvantage of Euler-type methods is the parameter change stretching in the shock over a few mesh cells. In reality, in the shock, the flow properties change abruptly at once for the computational mesh. In our considerations, the mean free path of a flow particle is much smaller than the mesh cell size. This paper describes a modification of the semi-Lagrangian Godunov-type method, which was proposed by the author in the previously published paper. The modified method also does not have numerical viscosity for shocks. In the previous article, a linear law for the distribution of flow parameters was employed for a rarefaction wave when modeling the Shu-Osher problem with the aim of reducing parasitic oscillations. Additionally, the nonlinear law derived from the Riemann invariants was used for the remaining test problems. This article proposes an advanced method, namely, a unified formula for the density distribution of rarefaction waves and modification of the scheme for modeling moderately strong shock waves. The obtained results of numerical analysis, including the standard problem of Sod, the Riemann problem of Lax, the Shu–Osher shock-tube problem and a few author’s test cases are compared with the exact solution, the data of the previous method and the Total Variation Deminishing (TVD) scheme results. This article delineates the further advancement of the numerical scheme of the proposed method, specifically presenting a unified mathematical formulation for an expanded set of test problems. Full article
Show Figures

Figure 1

14 pages, 3276 KB  
Article
Experimental Study on Grouting Diffusion Law of Tunnel Secondary Lining Cracks Based on Different Slurry Viscosities
by Bin Zhang, Peng Liu, Yi Wu, Liming Wu, Chen Li, Shiyang Liu and Yuanfu Zhou
Appl. Sci. 2025, 15(4), 1955; https://doi.org/10.3390/app15041955 - 13 Feb 2025
Cited by 1 | Viewed by 1151
Abstract
To investigate the diffusion law of ultrafine cement slurry (UCS) with different water–cement ratios in tunnel second lining cracks during grouting, the grouting of ultrafine cement slurry with different water–cement ratios was carried out by experimental and theoretical analysis methods in this study. [...] Read more.
To investigate the diffusion law of ultrafine cement slurry (UCS) with different water–cement ratios in tunnel second lining cracks during grouting, the grouting of ultrafine cement slurry with different water–cement ratios was carried out by experimental and theoretical analysis methods in this study. Through the collection and data analysis grouting experiment of the diffusion time history, the diffusion morphological characteristics based on different slurry viscosities were obtained, which were divided into three grouting diffusion patterns: circular diffusion zone, excessive diffusion zone, and elliptical diffusion zone. Furthermore, the spatiotemporal variation rules of the diffusion radius of ultrafine cement slurry with different water–cement ratios in tunnel secondary lining cracks were obtained as well. By analyzing the diffusion radius values under different water–cement ratios in each direction of x+, x−, y+, and y−, the critical water–cement ratios ξ were found to be 0.8, which affected the diffusion radius value in the vertical upward y+ direction. Meanwhile, when the grouting was completed, the maximum diffusion radius of the ultrafine cement slurry was obtained using different water–cement ratios in each direction. Moreover, the grouting diffusion equation of tunnel secondary lining cracks based on ultrafine cement slurry with different water–cement ratios is established. The research results can accurately predict the grouting diffusion pattern and diffusion radius in tunnel second lining cracks with different water–cement ratios of ultrafine cement slurry. Full article
Show Figures

Figure 1

27 pages, 8970 KB  
Article
Shear Instability and Localization in High-Speed Cold Spray Processes: Impact on Particle Fragmentation and Bonding Mechanisms
by Sabeur Msolli
Materials 2025, 18(3), 490; https://doi.org/10.3390/ma18030490 - 22 Jan 2025
Cited by 2 | Viewed by 1344
Abstract
This study investigates the deformation behavior and interfacial phenomena occurring during the high-velocity impact of a copper particle into a copper substrate under various conditions using FEM. It also offers an enhanced physics-based model based on discrete dislocation dynamics simulations to depict newly [...] Read more.
This study investigates the deformation behavior and interfacial phenomena occurring during the high-velocity impact of a copper particle into a copper substrate under various conditions using FEM. It also offers an enhanced physics-based model based on discrete dislocation dynamics simulations to depict newly observed features such as interfacial instabilities and shear localization leading to bonding and particle fragmentation. To investigate bonding mechanisms at the particle–substrate interface, additional simulations using a one-element-thickness model are conducted. These simulations focus on the deformation behavior at the interface, revealing wavy shape formation in the substrate due to disparities in strain-rate levels. Material instabilities, localized at the intersection of plane and release waves, progress hand-in-hand during the early stages of impact, suggesting shear behavior as a precursor to instabilities. The effect of shear viscosity on particle deformation and interfacial behavior is also examined, showing that increased viscosity leads to thermal material softening and enhanced deformation. Material jetting and interfacial instability are observed, particularly at higher viscosity thresholds. Additionally, the impact of drag coefficient variations on particle deformation is explored, indicating a critical role in interfacial stability and particle flattening. Finally, the occurrence of adiabatic shear instability and localization is investigated, revealing shear localization regions at the particle–substrate interface and within the particle itself responsible for particle fragmentation. To this aim, damage initiation and evolution laws are applied to identify regions of shear localization, crucial for particle–substrate bonding and mechanical interlocking. The impact velocity is shown to influence shear localization, with higher velocities resulting in increased deformation and larger localization regions. Full article
Show Figures

Figure 1

37 pages, 7884 KB  
Article
Influence of Added Cellulose Nanocrystals on the Rheology of Polymers
by Rajinder Pal, Parth Deshpande and Smit Patel
Nanomaterials 2025, 15(2), 95; https://doi.org/10.3390/nano15020095 - 9 Jan 2025
Cited by 1 | Viewed by 2126
Abstract
The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in [...] Read more.
The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers. The interactions between nanocrystals and the following polymers: anionic sodium carboxymethyl cellulose and non-ionic guar gum, were found to be strong in that the consistency index increased substantially with the addition of nanocrystals to polymer solutions. The interaction between nanocrystals and non-ionic polymer polyethylene oxide was moderate. Depending on the concentrations of nanocrystals and polymer, the consistency index both increased and decreased upon the addition of nanocrystals to polymer solution. The interactions between nanocrystals and the following polymers: anionic xanthan gum, anionic polyacrylamide, and cationic quaternary ammonium salt of hydroxyethyl cellulose, were found to be weak. The changes in rheological properties with nanocrystal addition to these polymer solutions were found to be small or negligible. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

25 pages, 6251 KB  
Article
Effect of Variation in Viscosity on Static and Dynamic Characteristics of Rough Porous Journal Bearings with Micropolar Fluid Squeeze Film Lubrication
by Neminath Bhujappa Naduvinamani and Bhagyashri Kotreppa Koppa
Lubricants 2024, 12(11), 389; https://doi.org/10.3390/lubricants12110389 - 13 Nov 2024
Cited by 2 | Viewed by 1647
Abstract
In the present study, an effort was made to determine the effects of a porous matrix with different viscosities on the dynamic and static behaviors of rough short journal bearings taking into account the action of a squeezing film under varying loads without [...] Read more.
In the present study, an effort was made to determine the effects of a porous matrix with different viscosities on the dynamic and static behaviors of rough short journal bearings taking into account the action of a squeezing film under varying loads without journal rotation. The micropolar fluid was regarded as a lubricant that contained microstructure additives in both the porous region and the film region. By applying Darcy’s law for micropolar fluids through a porous matrix and stochastic theory related to uneven surfaces, a standardized Reynolds-type equation was extrapolated. Two scenarios with a stable and an alternating applied load were analyzed. The impacts of variations in viscosity, the porous medium, and roughness on a short journal bearing were examined. We inspected the dynamic and static behaviors of the journal bearing. We found that the velocity of the journal center with a micropolar fluid decreased when there was a cyclic load, and the impact of variations in the viscosity and porous matrix diminished the load capacity and pressure in the squeeze film and increased the velocity of the journal center. Full article
Show Figures

Figure 1

11 pages, 2162 KB  
Article
Non-Debye Behavior of the Néel and Brown Relaxation in Interacting Magnetic Nanoparticle Ensembles
by Cristian E. Botez and Jeffrey Knoop
Materials 2024, 17(16), 3957; https://doi.org/10.3390/ma17163957 - 9 Aug 2024
Cited by 4 | Viewed by 2091
Abstract
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of [...] Read more.
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of the carrier fluid (TF = 197 K): χ″ shows peaks at temperatures Tp1 and Tp2 around 75 K and 225 K, respectively. Below TF, the Néel mechanism is entirely responsible for the superspin relaxation (as the carrier fluid is frozen), and we found that the temperature dependence of the relaxation time, τN(Tp1), is well described by the Dorman–Bessais–Fiorani (DBF) model: τNT=τrexpEB+EadkB T. Above TF, both the internal (Néel) and the Brownian superspin relaxation mechanisms are active. Yet, we found evidence that the effective relaxation times, τeff, corresponding to the Tp2 peaks observed in the denser samples do not follow the typical Debye behavior described by the Rosensweig formula 1τeff=1τN+1τB. First, τeff is 5 × 10−5 s at 225 K, almost three orders of magnitude more that its Néel counterpart, τN~8 × 10−8 s, estimated by extrapolating the above-mentioned DBF analysis. Thus, 1τN1τeff, which is clearly not consistent with the Rosensweig formula. Second, the observed temperature dependence of the effective relaxation time, τeff(Tp2), is excellently described by τB1T=Tγ0expEkBTT0, a model solely based on the hydrodynamic Brown relaxation, τB(T)=3ηTVHkBT, combined with an activation law for the temperature variation of the viscosity, ηT=η0expE/kB(TT0. The best fit yields γ0=3ηVHkB = 1.6 × 10−5 s·K, E′/kB = 312 K, and T0′ = 178 K. Finally, the higher temperature Tp2 peaks vanish in the more diluted samples (δ ≤ 0.02). This indicates that the formation of larger hydrodynamic particles via aggregation, which is responsible for the observed Brownian relaxation in dense samples, is inhibited by dilution. Our findings, corroborating previous results from Monte Carlo calculations, are important because they might lead to new strategies to synthesize functional magnetic ferrofluids for biomedical applications. Full article
(This article belongs to the Special Issue Functional Nanoparticle Materials: From Synthesis to Application)
Show Figures

Figure 1

20 pages, 4155 KB  
Article
Study on the Evolution Law of Temperature, Pressure, and Productivity near the Well for Gas Hydrate Exploitation by Depressurization
by Rongrong Qi, Hongfeng Lu, Chenlu Xu, Lu Yu, Changwen Xiao, Jinwen Du and Yan Li
Energies 2024, 17(15), 3728; https://doi.org/10.3390/en17153728 - 29 Jul 2024
Cited by 2 | Viewed by 1395
Abstract
In this paper, a one-dimensional model of gas–water two-phase productivity for hydrate depressurization is established, which takes into account permeability variation and gas–water two-phase flow. By solving the coupled algebraic equations of dissociation front position, equilibrium temperature, and pressure in an iterative scheme, [...] Read more.
In this paper, a one-dimensional model of gas–water two-phase productivity for hydrate depressurization is established, which takes into account permeability variation and gas–water two-phase flow. By solving the coupled algebraic equations of dissociation front position, equilibrium temperature, and pressure in an iterative scheme, the movement law of the hydrate dissociation front and the evolution process of temperature and pressure near the well were obtained, and the effects of bottom hole pressure, reservoir temperature, and hydrate saturation on productivity were analyzed. The results show that the hydrate reservoir is divided into a decomposed zone and an undecomposed zone by the dissociation front, and the temperature and pressure gradients of the former are greater than those of the latter. Reducing bottom hole pressure, increasing reservoir temperature, and increasing hydrate saturation all lead to an increase in temperature and pressure gradient in the decomposed zone. Methane gas production is a sensitive function of bottom hole pressure, reservoir temperature, and hydrate saturation. The lower the bottom hole pressure, the higher the reservoir temperature, the lower the hydrate saturation (within a certain range), and the higher the gas production rate. The trend of the water production curve is the same as that of gas, but the value is 3–4 orders of magnitude smaller, which may be due to the large difference in the viscosity of gas and water, and the gas seepage speed is much larger than that of water. Full article
Show Figures

Figure 1

Back to TopTop