Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = viral E3 ligase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 540
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

25 pages, 34583 KiB  
Article
RNF213 Acts as a Molecular Switch for Cav-1 Ubiquitination and Phosphorylation in Human Cells
by Jungmi Choi, Ryoichi Inoue, Yuki Masuo, Yukiko Shimizu, Kazuhiro Sonomura, Minsoo Kim, Hatasu Kobayashi, Kouji H. Harada, Yohei Mineharu, Akio Koizumi, Tohru Tezuka and Shohab Youssefian
Cells 2025, 14(11), 775; https://doi.org/10.3390/cells14110775 - 25 May 2025
Cited by 1 | Viewed by 1036
Abstract
RNF213 encodes a unique protein with AAA+ ATPase and E3 ubiquitin ligase activities that are critical for its diverse roles, which range from involvement in human vasculopathies, such as Moyamoya disease, to ubiquitination of viral and bacterial pathogens. Nevertheless, its primary functions in [...] Read more.
RNF213 encodes a unique protein with AAA+ ATPase and E3 ubiquitin ligase activities that are critical for its diverse roles, which range from involvement in human vasculopathies, such as Moyamoya disease, to ubiquitination of viral and bacterial pathogens. Nevertheless, its primary functions in human signaling remain unclear due to the limited identification of direct substrates. Here, we investigated the interaction between RNF213 and caveolin-1 (Cav-1), a small scaffolding protein vital for caveolae formation and the regulation of a plethora of cellular processes. Cav-1 specifically binds within the two functional AAA+ domains of RNF213 in an ATP-dependent manner, highlighting the influence of cellular energy status on this interaction. Consequently, RNF213 ubiquitinates Cav-1 at several N-terminal lysine residues through K48 and K63 linkages, although several Moyamoya disease-associated RNF213 mutations greatly reduce this polyubiquitination. Moreover, RNF213 activity inhibits phosphorylation of a key regulatory residue of Cav-1, as RNF213 knockdown under oxidative stress markedly enhances Cav-1 Tyr14 phosphorylation and modifies nitric oxide bioavailability in endothelial cells. Collectively, our results indicate that RNF213 functions as a molecular switch modulating Cav-1 signaling based on RNF213 functionality and cellular conditions. These findings offer new insights into vascular pathogenesis and the vast signal pathways along the RNF213–Cav-1 axis. Full article
Show Figures

Graphical abstract

20 pages, 1384 KiB  
Review
The Function of TRIM25 in Antiviral Defense and Viral Immune Evasion
by Qianxun Liu, Shantong Peng, Jiani Wei and Zhenzhen Xie
Viruses 2025, 17(5), 735; https://doi.org/10.3390/v17050735 - 20 May 2025
Viewed by 1022
Abstract
Tripartite motif (TRIM) 25 is a member of the TRIM E3 ubiquitin ligase family, which plays multiple roles in anti-tumor and antiviral defenses through various pathways. Its RBCC and SPRY/PRY domains work cooperatively for its oligomerization and subsequent activation of ligase activity. TRIM25 [...] Read more.
Tripartite motif (TRIM) 25 is a member of the TRIM E3 ubiquitin ligase family, which plays multiple roles in anti-tumor and antiviral defenses through various pathways. Its RBCC and SPRY/PRY domains work cooperatively for its oligomerization and subsequent activation of ligase activity. TRIM25 expression is regulated by several proteins and RNAs, and it functionally participates in the post-transcriptional and translational modification of antiviral regulators, such as RIG-I, ZAP, and avSGs. Conversely, the antiviral functions of TRIM25 are inhibited by viral proteins and RNAs through their interactions, as well as by the viral infection-mediated upregulation of certain miRNAs. Here, we review the antiviral functions of TRIM25 and highlight its significance regarding innate immunity, particularly in antiviral defense and viral immune evasion. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 1194 KiB  
Review
A No-Brainer! The Therapeutic Potential of TRIM Proteins in Viral and Central Nervous System Diseases
by Adam Hage, Mikhaila Janes and Sonja M. Best
Viruses 2025, 17(4), 562; https://doi.org/10.3390/v17040562 - 14 Apr 2025
Cited by 1 | Viewed by 999
Abstract
Tripartite motif (TRIM) proteins comprise an important class of E3 ubiquitin ligases that regulate numerous biological processes including protein expression, cellular signaling pathways, and innate immunity. This ubiquitous participation in fundamental aspects of biology has made TRIM proteins a focus of study in [...] Read more.
Tripartite motif (TRIM) proteins comprise an important class of E3 ubiquitin ligases that regulate numerous biological processes including protein expression, cellular signaling pathways, and innate immunity. This ubiquitous participation in fundamental aspects of biology has made TRIM proteins a focus of study in many fields and has illuminated the negative impact they exert when functioning improperly. Disruption of TRIM function has been linked to the success of various pathogens and separately to the occurrence and development of several neurodegenerative diseases, making TRIM proteins an appealing candidate to study for novel therapeutic approaches. Here, we review the current findings on TRIM proteins that demonstrate their analogous properties in the distinct fields of viral infection and central nervous system (CNS) disorders. We also examine recent advancements in drug development and targeted protein degradation as potential strategies for TRIM-mediated therapeutic treatments and discuss the implications these technologies have on future research directions. Full article
(This article belongs to the Special Issue TRIM Proteins in Antiviral Immunity and Virus Pathogenesis)
Show Figures

Figure 1

14 pages, 3947 KiB  
Article
The Deubiquitinase OTUD1 Influences HIV-1 Release by Regulating the Host Restriction Factor BST-2
by Man-Di Zhang, Fan Chen, Wen-Qiang He, Ying Lu, Feng-Liang Liu, Hong-Guang Zhang, Liu-Meng Yang, Chun-Sheng Dong, Si-Dong Xiong and Yong-Tang Zheng
Viruses 2025, 17(2), 260; https://doi.org/10.3390/v17020260 - 14 Feb 2025
Cited by 1 | Viewed by 968
Abstract
Bone marrow stromal cell antigen 2 (BST-2) is a restriction factor for human immunodeficiency virus type I (HIV-1) and plays an important role in regulating the release of viral particles. However, the antiviral efficacy of BST-2 is antagonized by the HIV-1-encoded accessory protein [...] Read more.
Bone marrow stromal cell antigen 2 (BST-2) is a restriction factor for human immunodeficiency virus type I (HIV-1) and plays an important role in regulating the release of viral particles. However, the antiviral efficacy of BST-2 is antagonized by the HIV-1-encoded accessory protein Vpu, which facilitates the degradation of BST-2 by recruiting E3 ubiquitin ligase β-TrCP. The involvement of deubiquitinases (DUBs) in counteracting BST-2 ubiquitination and influencing its stability during HIV-1 infection remains inadequately explored. In this study, we conducted a small interfering RNA (siRNA) screening of human DUBs and determined that OTUD1 interacts with BST-2, leading to a reduction in its K48- and K63-linked ubiquitination. This reduction increases BST-2 protein stability, and subsequently inhibits HIV-1 release. Our findings reveal a novel regulatory mechanism by which DUBs influence the stability of the HIV-1 restriction factor BST-2 to dampen viral release, providing a potential therapeutic target for HIV-1 antiviral intervention. Full article
(This article belongs to the Special Issue Cellular Mechanisms Regulating HIV Replication)
Show Figures

Figure 1

18 pages, 3056 KiB  
Article
TRIM38 Inhibits Zika Virus by Upregulating RIG-I/MDA5 Pathway and Promoting Ubiquitin-Mediated Degradation of Viral NS3 Protein
by Jing He, Yulian Kuang, Kui Xu, Rong Huang, Xiaoyao Yang, Liyao Deng, Xiaojuan Feng, Yang Ren, Jian Yang and Lei Yuan
Viruses 2025, 17(2), 199; https://doi.org/10.3390/v17020199 - 30 Jan 2025
Viewed by 1235
Abstract
Members of the tripartite motif (TRIM)-containing protein family play crucial roles in regulating immune system responses. The TRIM38 protein regulates host innate immunity and directly degrades some viral proteins through its E3 ubiquitin ligase activity. This study demonstrated that Zika virus (ZIKV) infection [...] Read more.
Members of the tripartite motif (TRIM)-containing protein family play crucial roles in regulating immune system responses. The TRIM38 protein regulates host innate immunity and directly degrades some viral proteins through its E3 ubiquitin ligase activity. This study demonstrated that Zika virus (ZIKV) infection can promote the expression of TRIM38 in human glioma cells (U251). TRIM38 overexpression restricted ZIKV replication in U251 cells, while TRIM38 knockout enhanced ZIKV replication. TRIM38 overexpression upregulated the RIG-I/MDA5 pathway and promoted the level of IFN-β early during viral infection, while TRIM38 knockout had the opposite effect. In addition, TRIM38 interacts with ZIKV non-structural protein 3 (NS3) and degrades the NS3 protein through a lysosome-dependent manner via the E3 ligase activity of TRIM38. Deletion of the RING domain of TRIM38 abrogates its interaction with NS3 and impairs the antiviral activity of TRIM38. Our results indicate that TRIM38 is a novel antiviral protein against ZIKV, and it exerts antiviral activity by upregulating the RIG-I/MDA5 pathway, increasing IFN-β levels, and degrading the viral NS3 protein. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

16 pages, 1324 KiB  
Review
Emerging Roles of TRIM56 in Antiviral Innate Immunity
by Dang Wang and Kui Li
Viruses 2025, 17(1), 72; https://doi.org/10.3390/v17010072 - 7 Jan 2025
Viewed by 1865
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. [...] Read more.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics. Full article
(This article belongs to the Special Issue TRIM Proteins in Antiviral Immunity and Virus Pathogenesis)
Show Figures

Figure 1

16 pages, 17760 KiB  
Article
MARCH8 Restricts RSV Replication by Promoting Cellular Apoptosis Through Ubiquitin-Mediated Proteolysis of Viral SH Protein
by Takashi Okura, Tatsuki Takahashi, Taichi Kameya, Fuminori Mizukoshi, Yusuke Nakai, Masatoshi Kakizaki, Mayuko Nishi, Noriyuki Otsuki, Hirokazu Kimura, Kei Miyakawa, Kazuya Shirato, Wataru Kamitani and Akihide Ryo
Viruses 2024, 16(12), 1935; https://doi.org/10.3390/v16121935 - 18 Dec 2024
Cited by 1 | Viewed by 1471
Abstract
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts [...] Read more.
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein. We demonstrated that MARCH8 directly interacts with RSV-SH and catalyzes its ubiquitination at lysine 13, leading to SH degradation via the ubiquitin-lysosomal pathway. Functionally, MARCH8 expression enhances RSV-induced apoptosis through SH degradation, ultimately reducing viral titers. Conversely, an RSV strain harboring the SH-K13R mutation exhibited prolonged SH protein stability and attenuated apoptosis in infected cells, even in the presence of MARCH8. Targeted depletion of MARCH8 enhances cellular survival and potentially increases viral persistence. These findings demonstrate that MARCH8 promotes the early elimination of virus-infected cells by abrogating the anti-apoptotic function of SH, thereby reducing viral transmission. Our study provides novel insights into the interplay between host restriction factors and viral evasion strategies, potentially providing new therapeutic approaches for RSV infections. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

12 pages, 2482 KiB  
Article
scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling
by Yinjie Niu, Xinmei Yang, Hongru Liang, Xia Luo, Baofu Ma, Qiang Lin, Xiaozhe Fu and Ningqiu Li
Viruses 2024, 16(12), 1876; https://doi.org/10.3390/v16121876 - 2 Dec 2024
Viewed by 1210
Abstract
Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of Siniperca chuatsi TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen [...] Read more.
Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of Siniperca chuatsi TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection. ScTRIM44 contained one B-box domain (B, 166–207 aa) and a coiled-coil domain (CC, 279–309 aa), but lacked the canonical RING domain of E3 ubiquitin ligases. The scTRIM44 mRNA was expressed relatively high in immune-related tissues. The mRNA expression of scTRIM44 significantly decreased in vivo and vitro post-ISKNV and -LMBV infection. However, the expression of scTRIM44 mRNA showed significant up-regulation post-SCRV infection. ScTRIM44 positively regulated SCRV infection in CPB cells, but copies of ISKNV and LMBV showed no significant alteration in over-expressed or knocked-down scTRIM44 cells. Moreover, scTRIM44 positively regulated RIG-I- and MDA5-mediated interferon molecule signaling. These data suggested that scTRIM44 promoted SCRV infection by positively regulating RIG-I- and MDA5-mediated interferon molecule signaling, but didn’t regulate ISKNV and LMBV infection. This research provided a comprehensive insight into the antiviral activity of scTRIM44. Full article
(This article belongs to the Special Issue Aquatic Animal Viruses and Antiviral Immunity)
Show Figures

Figure 1

14 pages, 8290 KiB  
Review
Mechanistic Role of TRIM26 in Viral Infection and Host Defense
by Mona Sharma, Ke Liu, Jianchao Wei, Zhiyong Ma and Yafeng Qiu
Genes 2024, 15(11), 1476; https://doi.org/10.3390/genes15111476 - 15 Nov 2024
Cited by 1 | Viewed by 1644
Abstract
Tripartite motif protein 26 (TRIM26) is an E3 ubiquitin ligase and a member of the TRIM family. Similar to other TRIM proteins, TRIM26 consists of three domains, collectively termed RBCC: a Really Interesting New Gene (RING) domain, one B-Box domain, and a C [...] Read more.
Tripartite motif protein 26 (TRIM26) is an E3 ubiquitin ligase and a member of the TRIM family. Similar to other TRIM proteins, TRIM26 consists of three domains, collectively termed RBCC: a Really Interesting New Gene (RING) domain, one B-Box domain, and a C terminal domain consisting of a PRY/SPRY domain. The PRY/SPRY domain exhibits relatively higher conservation compared with the RING and B-Box domains, suggesting potentially similar roles across TRIM26 proteins from various species. TRIM26 either directly interacts with viral proteins or modulates immune responses to engage with a viral infection, serving as either a protective or detrimental host factor depending on the circumvent of the viral infection. The present review focuses on understanding the mechanisms of TRIM26 during viral infection and its potential future applications. Full article
(This article belongs to the Special Issue Advances in Genes and Genomics of Aquatic Animals and Pathogens)
Show Figures

Figure 1

20 pages, 3007 KiB  
Review
Host-Driven Ubiquitination Events in Vector-Transmitted RNA Virus Infections as Options for Broad-Spectrum Therapeutic Intervention Strategies
by Sanskruthi Sreepangi, Haseebullah Baha, Lorreta Aboagyewa Opoku, Naomi X. Jones, Maame Konadu, Farhang Alem, Michael D. Barrera and Aarthi Narayanan
Viruses 2024, 16(11), 1727; https://doi.org/10.3390/v16111727 - 31 Oct 2024
Viewed by 1639
Abstract
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus–host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function [...] Read more.
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus–host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function through signaling and degradation. Viral proteins are documented to hijack the host ubiquitination machinery to modulate multiple host processes including antiviral defense mechanisms. The engagement of the host ubiquitination machinery in the post-translational modification of viral proteins to support aspects of the viral life cycle including assembly and egress is also well documented. Exploring the role ubiquitination plays in the life cycle of vector-transmitted viral pathogens will increase the knowledge base pertinent to the impact of host-enabled ubiquitination of viral and host proteins and the consequences on viral pathogenesis. In this review, we explore E3 ligase-regulated ubiquitination pathways functioning as proviral and viral restriction factors in the context of acutely infectious, vector-transmitted viral pathogens and the potential for therapeutically targeting them for countermeasures development. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 4th Edition)
Show Figures

Figure 1

16 pages, 2853 KiB  
Article
E3 Ubiquitin Ligase Smurf1 Regulates the Inflammatory Response in Macrophages and Attenuates Hepatic Damage during Betacoronavirus Infection
by Luiz P. Souza-Costa, Felipe R. S. Santos, Jordane C. Pimenta, Celso M. Queiroz-Junior, Fernanda L. Tana, Danielle C. Teixeira, Manoela G. G. Couto, Natalia F. M. Oliveira, Rafaela D. Pereira, Vinicius A. Beltrami, Pedro A. C. Costa, Larisse S. B. Lacerda, Josiane T. Andrade-Chaves, Pedro P. G. Guimarães, Renato S. Aguiar, Mauro M. Teixeira, Vivian V. Costa and Luis H. Franco
Pathogens 2024, 13(10), 871; https://doi.org/10.3390/pathogens13100871 - 3 Oct 2024
Viewed by 1945
Abstract
The E3 ubiquitin ligase Smurf1 catalyzes the ubiquitination and proteasomal degradation of several protein substrates related to inflammatory responses and antiviral signaling. This study investigated the role of Smurf1 in modulating inflammation induced by Betacoronavirus infection. Bone marrow-derived macrophages (BMDMs) from C57BL/6 (wild-type) [...] Read more.
The E3 ubiquitin ligase Smurf1 catalyzes the ubiquitination and proteasomal degradation of several protein substrates related to inflammatory responses and antiviral signaling. This study investigated the role of Smurf1 in modulating inflammation induced by Betacoronavirus infection. Bone marrow-derived macrophages (BMDMs) from C57BL/6 (wild-type) or Smurf1-deficient (Smurf1−/−) mice were infected with MHV-A59 to evaluate the inflammatory response in vitro. Smurf1 was found to be required to downregulate the macrophage production of pro-inflammatory mediators, including TNF, and CXCL1; to control viral release from infected cells; and to increase cell viability. To assess the impact of Smurf 1 in vivo, we evaluated the infection of mice with MHV-A59 through the intranasal route. Smurf1−/− mice infected with a lethal inoculum of MHV-A59 succumbed earlier to infection. Intranasal inoculation with a 10-fold lower dose of MHV-A59 resulted in hematological parameter alterations in Smurf1−/− mice suggestive of exacerbated systemic inflammation. In the lung parenchyma, Smurf1 expression was essential to promote viral clearance, downregulating IFN-β mRNA and controlling the inflammatory profile of macrophages and neutrophils. Conversely, Smurf1 did not affect IFN-β mRNA regulation in the liver, but it was required to increase TNF and iNOS expression in neutrophils and decrease TNF expression in macrophages. In addition, Smurf1−/− mice exhibited augmented liver injuries, accompanied by high serum levels of alanine aminotransferase (ALT). These findings suggest that Smurf1 plays a critical role in regulating the inflammatory response in macrophages and attenuating systemic inflammation during Betacoronavirus infection. Full article
(This article belongs to the Special Issue Host Immune Responses to Intracellular Pathogens)
Show Figures

Graphical abstract

13 pages, 2386 KiB  
Article
Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage
by Susan M. Watanabe, David A. Nyenhuis, Mahfuz Khan, Lorna S. Ehrlich, Irene Ischenko, Michael D. Powell, Nico Tjandra and Carol A. Carter
Viruses 2024, 16(10), 1566; https://doi.org/10.3390/v16101566 - 2 Oct 2024
Cited by 3 | Viewed by 1441
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known [...] Read more.
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101–Ub–Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding. Full article
Show Figures

Figure 1

19 pages, 2300 KiB  
Review
The Role of Tripartite Motif Family Proteins in Chronic Liver Diseases: Molecular Mechanisms and Therapeutic Potential
by Xiwen Cao, Yinni Chen, Yuanli Chen and Meixiu Jiang
Biomolecules 2024, 14(8), 1038; https://doi.org/10.3390/biom14081038 - 21 Aug 2024
Cited by 3 | Viewed by 2198
Abstract
The worldwide impact of liver diseases is increasing steadily, with a consistent upswing evidenced in incidence and mortality rates. Chronic liver diseases (CLDs) refer to the liver function’s progressive deterioration exceeding six months, which includes abnormal clotting factors, detoxification failure, and hepatic cholestasis. [...] Read more.
The worldwide impact of liver diseases is increasing steadily, with a consistent upswing evidenced in incidence and mortality rates. Chronic liver diseases (CLDs) refer to the liver function’s progressive deterioration exceeding six months, which includes abnormal clotting factors, detoxification failure, and hepatic cholestasis. The most common etiologies of CLDs are mainly composed of chronic viral hepatitis, MAFLD/MASH, alcoholic liver disease, and genetic factors, which induce inflammation and harm to the liver, ultimately resulting in cirrhosis, the irreversible final stage of CLDs. The latest research has shown that tripartite motif family proteins (TRIMs) function as E3 ligases, which participate in the progression of CLDs by regulating gene and protein expression levels through post-translational modification. In this review, our objective is to clarify the molecular mechanisms and potential therapeutic targets of TRIMs in CLDs and provide insights for therapy guidelines and future research. Full article
Show Figures

Figure 1

17 pages, 12312 KiB  
Article
Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response
by Mariana Oliveira Lopes da Silva, Camila Menezes Figueiredo, Rômulo Leão Silva Neris, Iris Paula Guimarães-Andrade, Daniel Gavino-Leopoldino, Leonardo Linhares Miler-da-Silva, Helber da Maia Valença, Leandro Ladislau, Caroline Victorino Felix de Lima, Fernanda Meireles Coccarelli, Claudia Farias Benjamim and Iranaia Assunção-Miranda
Int. J. Mol. Sci. 2024, 25(16), 8909; https://doi.org/10.3390/ijms25168909 - 16 Aug 2024
Viewed by 2012
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle–articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of [...] Read more.
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle–articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention. Full article
(This article belongs to the Special Issue Advanced Research on Immune Response to Viral Infection)
Show Figures

Figure 1

Back to TopTop