Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = viniferin derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1809 KB  
Article
Effects of ε-Viniferin and ε-Viniferin-Enriched Extract from Vitis labruscana B. ‘Campbell Early’ Cell Cultures on Wound Healing and Epidermal Barrier Restoration in Human Skin Cells
by Daeun Kim, Jimin Lim, Kyuri Lee, Gisol Kim, Jaeho Pyee, Minkyoung You and Jaesung Hwang
Cosmetics 2025, 12(5), 181; https://doi.org/10.3390/cosmetics12050181 - 25 Aug 2025
Viewed by 2850
Abstract
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a [...] Read more.
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a grape flower-derived extract from Vitis labruscana ‘Campbell Early’ cell cultures enriched with ε-Viniferin. An HPLC analysis confirmed a high concentration of ε-Viniferin (547.58 ppm) in the cell culture-derived extract. In vitro assays conducted on HaCaT keratinocytes and HDFn fibroblasts demonstrated that the treatment with ε-Viniferin and Vino Chocolate™ significantly enhanced fibroblast migration. ELISA analyses showed that both treatments induced a dose-dependent increase in pro-collagen type I (COL1A1), with ε-Viniferin at 1 ppm demonstrating superior efficacy compared to TGF-β1. Additionally, these compounds notably suppressed the expression of matrix metalloproteinases MMP-1 and MMP-3, displaying effects comparable to or greater than retinoic acid. The Western blot analysis further revealed an increased filaggrin expression in keratinocytes, suggesting an improved epidermal barrier function. Collectively, these results indicate that ε-Viniferin and Vino Chocolate™ effectively promote extracellular matrix remodeling, modulate inflammatory responses, and enhance epidermal barrier integrity. These findings highlight their potential as multifunctional bioactive agents for cosmeceutical applications and emphasize the advantages of plant cell culture technology as a sustainable, innovative platform for advanced skincare ingredient development. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

54 pages, 3105 KB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 2659
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Graphical abstract

21 pages, 5011 KB  
Article
Neuroprotective Activity of Oligomeric Stilbenes from Alpha Grape Stems in In Vitro Models of Parkinson’s Disease
by Evgeny A. Pislyagin, Darya V. Tarbeeva, Ekaterina A. Yurchenko, Ekaterina S. Menchinskaya, Tatiana Y. Gorpenchenko, Natalya D. Pokhilo, Anatoly I. Kalinovskiy, Dmitry L. Aminin and Sergey A. Fedoreyev
Int. J. Mol. Sci. 2025, 26(6), 2411; https://doi.org/10.3390/ijms26062411 - 7 Mar 2025
Cited by 5 | Viewed by 1749
Abstract
This study investigated the neuroprotective activity of oligomeric stilbenes (OSs) derived from Alpha grape stems in various in vitro models of Parkinson’s disease (PD). Using neurotoxin-induced cellular models, including 1-methyl-4-phenylpyridine (MPP+), paraquat (PQ), 6-hydroxydopamine (6-OHDA), and rotenone, we screened the cytoprotective effects of [...] Read more.
This study investigated the neuroprotective activity of oligomeric stilbenes (OSs) derived from Alpha grape stems in various in vitro models of Parkinson’s disease (PD). Using neurotoxin-induced cellular models, including 1-methyl-4-phenylpyridine (MPP+), paraquat (PQ), 6-hydroxydopamine (6-OHDA), and rotenone, we screened the cytoprotective effects of ampelopsin A (1), ε-viniferin (2), vitisin D (3), vitisin A (4), α-viniferin (5), trans-vitisin B (6), cis-vitisin B (7), and melanoxylin A (8). The results demonstrate that certain stilbenes significantly enhanced cell viability and reduced reactive oxygen species (ROS) levels in neurotoxin-treated Neuro-2a cells. Notably, vitisin A and trans-vitisin B exhibited promising neuroprotective properties by decreasing mitochondrial ROS and cardiolipin peroxidation. This study highlights the potential of these compounds in mitigating oxidative stress and inflammation associated with PD. Additionally, we provided new insights into the antioxidant mechanisms of these stilbenes, including their direct ROS-scavenging abilities. Our findings contribute to the understanding of oligomeric stilbenes as potential therapeutic agents for the prevention and treatment of neurodegenerative diseases, particularly those associated with oxidative damage. Further research is warranted to explore its clinical applications and underlying mechanisms of action. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 3094 KB  
Article
Exosome-like Nanoparticles, High in Trans-δ-Viniferin Derivatives, Produced from Grape Cell Cultures: Preparation, Characterization, and Anticancer Properties
by Yury Shkryl, Zhargalma Tsydeneshieva, Ekaterina Menchinskaya, Tatiana Rusapetova, Olga Grishchenko, Anastasia Mironova, Dmitry Bulgakov, Tatiana Gorpenchenko, Vitaly Kazarin, Galina Tchernoded, Victor Bulgakov, Dmitry Aminin and Yulia Yugay
Biomedicines 2024, 12(9), 2142; https://doi.org/10.3390/biomedicines12092142 - 20 Sep 2024
Cited by 14 | Viewed by 5276
Abstract
Background: Recent interest in plant-derived exosome-like nanoparticles (ENs) has surged due to their therapeutic potential, which includes antioxidant, anti-inflammatory, and anticancer activities. These properties are attributed to their cargo of bioactive metabolites and other endogenous molecules. However, the properties of ENs isolated [...] Read more.
Background: Recent interest in plant-derived exosome-like nanoparticles (ENs) has surged due to their therapeutic potential, which includes antioxidant, anti-inflammatory, and anticancer activities. These properties are attributed to their cargo of bioactive metabolites and other endogenous molecules. However, the properties of ENs isolated from plant cell cultures remain less explored. Methods: In this investigation, grape callus-derived ENs (GCENs) were isolated using differential ultracentrifugation techniques. Structural analysis through electron microscopy, nanoparticle tracking analysis, and western blotting confirmed that GCENs qualify as exosome-like nanovesicles. Results: These GCENs contained significant amounts of microRNAs and proteins characteristic of plant-derived ENs, as well as trans-δ-viniferin, a notable stilbenoid known for its health-promoting properties. Functional assays revealed that the GCENs reduced the viability of the triple-negative breast cancer cell line MDA-MB-231 in a dose-dependent manner. Moreover, the GCENs exhibited negligible effects on the viability of normal human embryonic kidney (HEK) 293 cells, indicating selective cytotoxicity. Notably, treatment with these GCENs led to cell cycle arrest in the G1 phase and triggered apoptosis in the MDA-MB-231 cell line. Conclusions: Overall, this study underscores the potential of grape callus-derived nanovectors as natural carriers of stilbenoids and proposes their application as a novel and effective approach in the management of cancer. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Graphical abstract

7 pages, 1732 KB  
Article
Cytotoxicity of Benzofuran-Containing Simplified Viniferin Analogues
by Salvatore Princiotto, Cecilia Pinna, Luce Micaela Mattio, Francesca Annunziata, Giovanni Luca Beretta, Andrea Pinto and Sabrina Dallavalle
Pharmaceuticals 2024, 17(8), 1012; https://doi.org/10.3390/ph17081012 - 1 Aug 2024
Cited by 2 | Viewed by 1468
Abstract
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, [...] Read more.
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, as well as its analogue pterostilbene, characterized by an increased metabolic stability and significant pharmacological activities. To study the potential anticancer activity of other stilbenoids, a home-made collection of resveratrol dimers and simplified analogues was tested on melanoma A375, non-small cell lung cancer H460 and PC3 prostate cancer cell lines. The structural determinants responsible for the antiproliferative activity have been highlighted. Moreover, to investigate the DNA damage ability of the selected molecules, the expression of the γ-H2AX after compound exposure was evaluated. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 2674 KB  
Article
Fine-Tuning Grape Phytochemistry: Examining the Distinct Influence of Oak Ash and Potassium Carbonate Pre-Treatments on Essential Components
by Ozkan Kaya, Hava Delavar, Fadime Ates, Turhan Yilmaz, Muge Sahin and Nurhan Keskin
Horticulturae 2024, 10(1), 95; https://doi.org/10.3390/horticulturae10010095 - 19 Jan 2024
Cited by 13 | Viewed by 2595
Abstract
Understanding the impact of pre-treatment methods on the phytochemical composition of grapes is essential for optimizing grape quality and producing raisins with desirable characteristics. Therefore, this study meticulously analyzed the impact of two distinct pre-treatment methods, oak ash and potassium carbonate (K2 [...] Read more.
Understanding the impact of pre-treatment methods on the phytochemical composition of grapes is essential for optimizing grape quality and producing raisins with desirable characteristics. Therefore, this study meticulously analyzed the impact of two distinct pre-treatment methods, oak ash and potassium carbonate (K2CO3), on the composition of essential phytochemical components in grapes. This research encompassed phenolic compounds, anthocyanins, phenolic acids, flavonoids, and phytoalexins. This study investigates the impact of pre-treatment methods, oak ash and K2CO3, on the phytochemical composition of grapes. Significant differences were observed in anthocyanins, flavonoids, phytoalexins, and phenolic acids between the treatments. Oak ash exhibited advantages in preserving specific compounds, including higher levels of anthocyanins, flavonols, flavones, flavanones, catechins, resveratrol, pterostilbene, and viniferin, compared to K2CO3. Notably, the delphinidin-3-O-glycoside content was significantly higher in the oak ash treatment. An analysis of phenolic compounds revealed distinctions in hydroxycinnamic acids, hydroxybenzoic acids, benzaldehyde, and phenylacetaldehyde. Additionally, gallic acid, vanillic acid, trans-caffeic acid, trans-p-coumaric acid, and (-)-epicatechin were significantly more prevalent in the K2CO3 treatment, while ferulic acid and quercetin were more prevalent in the oak ash treatment. These findings underscore the pivotal role of pre-treatment methods in shaping the phytochemical content of grapes, thus holding critical implications for grape-derived products’ quality and potential health benefits. Full article
Show Figures

Figure 1

17 pages, 3639 KB  
Article
Grapevine Shoot Extract Rich in Trans-Resveratrol and Trans-ε-Viniferin: Evaluation of Their Potential Use for Cardiac Health
by María del Mar Contreras, Anouar Feriani, Irene Gómez-Cruz, Najla Hfaiedh, Abdel Halim Harrath, Inmaculada Romero, Eulogio Castro and Nizar Tlili
Foods 2023, 12(23), 4351; https://doi.org/10.3390/foods12234351 - 2 Dec 2023
Cited by 9 | Viewed by 4409
Abstract
A grapevine shoot extract (GSE) was obtained using ultrasound-assisted extraction and characterized. The main phenolic constituents were identified as stilbenoids. Among them, trans-resveratrol and trans-ε-viniferin stood out. The GSE was administered to an isoproterenol-induced myocardial injury animal model. The extract alleviated [...] Read more.
A grapevine shoot extract (GSE) was obtained using ultrasound-assisted extraction and characterized. The main phenolic constituents were identified as stilbenoids. Among them, trans-resveratrol and trans-ε-viniferin stood out. The GSE was administered to an isoproterenol-induced myocardial injury animal model. The extract alleviated the associated symptoms of the administration of the drug, i.e., the plasma lipid profile was improved, while the disturbed plasma ion concentration, the cardiac dysfunction markers, the DNA laddering, and the necrosis of myocardial tissue were diminished. This effect could be related to the anti-oxidative potential of GSE associated with its antioxidant properties, the increased levels of endogenous antioxidants (glutathione and enzymatic antioxidants), and the diminished lipid peroxidative markers in the heart. The results also revealed angiotensin-converting enzyme (ACE)-inhibitory activity, which indicated the potential of GSE to deal with cardiovascular disease events. This work suggests that not only trans-resveratrol has a protective role in heart function but also GSE containing this biomolecule and derivatives. Therefore, GSE has the potential to be utilized in the creation of innovative functional ingredients. Full article
Show Figures

Graphical abstract

12 pages, 313 KB  
Article
Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece
by Eleni Dimitropoulou, Konstantia Graikou, Vithleem Klontza and Ioanna Chinou
Separations 2023, 10(10), 540; https://doi.org/10.3390/separations10100540 - 13 Oct 2023
Cited by 5 | Viewed by 2412
Abstract
The seeds of Paeonia clusii Stern subsp. clusii and Paeonia mascula (L.) Mill. subsp. mascula growing wild in Greece, though not previously investigated, has been studied as a source of bioactive stilbenoids and other phenolics. Their methanol extracts were analyzed using ultra high-performance [...] Read more.
The seeds of Paeonia clusii Stern subsp. clusii and Paeonia mascula (L.) Mill. subsp. mascula growing wild in Greece, though not previously investigated, has been studied as a source of bioactive stilbenoids and other phenolics. Their methanol extracts were analyzed using ultra high-performance liquid chromatography—high-resolution mass spectrometry (UHPLC-HRMS), and among the identified metabolites (62), 19 paeoniflorin’s derivatives, 17 flavonoids and 12 stilbenes were detected. Moreover, through classic phytochemical separation procedures, twelve among them were isolated and fully spectrally determined as trans-resveratrol, trans-resveratrol-4′-O-β-D-glucopyranoside, cis-resveratrol-4′-O-β-D-glucopyranoside, trans-gnetin-H, trans-ε-viniferin, luteolin, luteolin-3′-O-β-D-glucopyranoside, luteolin-3′,4′-di-O-β-D-glucopyranoside, apigenin, hispidulin, paeoniflorin and benzoyl-paeoniflorin. All seed extracts were measured for their total phenolic content (TPC), appearing as a rich source (116.04 and 103.63 mg GAE/g extract, respectively), followed by free radical (DPPH) scavenging capacity (75.24% and 91.54% inhibition at the concentration of 200 μg/mL). The evaluation of tyrosinase inhibition for both extracts (61% and 70%, respectively) confirmed the potential for their future application in skin health care, comparable with other paeonies of Chinese origin, which are well-known as skin whitening and anti-aging promoters. Full article
(This article belongs to the Special Issue Feature Papers in Separations from Editorial Board Members)
21 pages, 1701 KB  
Review
Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material
by Marta Sharafan, Magdalena A. Malinowska, Halina Ekiert, Beata Kwaśniak, Elżbieta Sikora and Agnieszka Szopa
Pharmaceutics 2023, 15(5), 1372; https://doi.org/10.3390/pharmaceutics15051372 - 29 Apr 2023
Cited by 38 | Viewed by 7800
Abstract
This review refers to botanical, ecological and phytochemical characteristics of Vitis vinifera L. (vine grape)–a species, the valuable properties of which are widely exploited in the food industry and in recent times in medicine as well as in phytocosmetology. The general characteristic of [...] Read more.
This review refers to botanical, ecological and phytochemical characteristics of Vitis vinifera L. (vine grape)–a species, the valuable properties of which are widely exploited in the food industry and in recent times in medicine as well as in phytocosmetology. The general characteristic of V. vinifera, followed by the chemical composition and biological activities of different extracts obtained from the plant (fruit, skin, pomace, seed, leaf and stem extracts), are provided. A concise review of the extraction conditions of grape metabolites and the methods of their analysis are also presented. The biological activity of V. vinifera is determined by the presence of high contents of polyphenols, mainly flavonoids (e.g., quercetin, kaempferol), catechin derivatives, anthocyanins and stilbenoids (e.g., trans-resveratrol, trans-ε-viniferin). The review pays particular attention to the application of V. vinifera in cosmetology. It has been proven that V. vinifera possesses strong cosmetological-related properties, such as anti-ageing properties, anti-inflammatory properties and skin-whitening properties. Moreover, a review of studies on V. vinifera biological activities, which are of particular interest for dermatologic problems, are disclosed. Furthermore, the work also emphasises the importance of biotechnological studies on V. vinifera. The last part of the review is addressed to the safety of the use of V. vinifera. Full article
(This article belongs to the Special Issue Biomedical Applications of Natural Plant Extract)
Show Figures

Graphical abstract

14 pages, 837 KB  
Article
Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties
by Vithleem Klontza, Konstantia Graikou, Antigoni Cheilari, Vasilios Kasapis, Christos Ganos, Nektarios Aligiannis and Ioanna Chinou
Int. J. Mol. Sci. 2023, 24(5), 4935; https://doi.org/10.3390/ijms24054935 - 3 Mar 2023
Cited by 9 | Viewed by 3170
Abstract
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4′-O-β-d-glucopyranoside, trans-ε-viniferin, trans [...] Read more.
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4′-O-β-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3′-O-β-d-glucoside, luteolin 3′,4′-di-O-β-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies’ roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard. Full article
(This article belongs to the Special Issue Sustainable Approaches in Skin Conditions)
Show Figures

Figure 1

16 pages, 3654 KB  
Article
Investigation of the Effects of Monomeric and Dimeric Stilbenoids on Bacteria-Induced Cytokines and LPS-Induced ROS Formation in Bone Marrow-Derived Dendritic Cells
by Peter Riber Johnsen, Cecilia Pinna, Luce Mattio, Mathilde Bech Strube, Mattia Di Nunzio, Stefania Iametti, Sabrina Dallavalle, Andrea Pinto and Hanne Frøkiær
Int. J. Mol. Sci. 2023, 24(3), 2731; https://doi.org/10.3390/ijms24032731 - 1 Feb 2023
Cited by 9 | Viewed by 3268
Abstract
Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and [...] Read more.
Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria. Full article
Show Figures

Figure 1

33 pages, 5956 KB  
Review
Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy
by Shivkanya Fuloria, Mahendran Sekar, Farrah Syazana Khattulanuar, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Subban Ravi, Vetriselvan Subramaniyan, Srikanth Jeyabalan, M. Yasmin Begum, Kumarappan Chidambaram, Kathiresan V. Sathasivam, Sher Zaman Safi, Yuan Seng Wu, Rusli Nordin, Mohammad Nazmul Hasan Maziz, Vinoth Kumarasamy, Pei Teng Lum and Neeraj Kumar Fuloria
Molecules 2022, 27(16), 5072; https://doi.org/10.3390/molecules27165072 - 9 Aug 2022
Cited by 41 | Viewed by 8740
Abstract
Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (β-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin [...] Read more.
Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (β-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses. Full article
(This article belongs to the Special Issue Drug Development Inspired by Natural Products)
Show Figures

Graphical abstract

10 pages, 2436 KB  
Article
Synthesis and Antimicrobial Activity of δ-Viniferin Analogues and Isosteres
by Luce Micaela Mattio, Cecilia Pinna, Giorgia Catinella, Loana Musso, Kasandra Juliet Pedersen, Karen Angeliki Krogfelt, Sabrina Dallavalle and Andrea Pinto
Molecules 2021, 26(24), 7594; https://doi.org/10.3390/molecules26247594 - 15 Dec 2021
Cited by 10 | Viewed by 3688
Abstract
The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been recently identified as a promising antimicrobial agent. To define the structural elements relevant to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this paper, we report [...] Read more.
The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been recently identified as a promising antimicrobial agent. To define the structural elements relevant to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this paper, we report the construction of stilbenoid-derived 2,3-diaryl-5-substituted benzofurans, which allowed us to prepare a focused collection of dehydro-δ-viniferin analogues. The antimicrobial activity of the synthesized compounds was evaluated against S. aureus ATCC29213. The simplified analogue 5,5′-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol), obtained in three steps from 4-bromo-2-iodophenol (63% overall yield), emerged as a promising candidate for further investigation (MIC = 4 µg/mL). Full article
Show Figures

Graphical abstract

17 pages, 2900 KB  
Article
SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment
by Paul Cheresh, Seok-Jo Kim, Renea Jablonski, Satoshi Watanabe, Ziyan Lu, Monica Chi, Kathryn A. Helmin, David Gius, G. R. Scott Budinger and David W. Kamp
Int. J. Mol. Sci. 2021, 22(13), 6856; https://doi.org/10.3390/ijms22136856 - 25 Jun 2021
Cited by 42 | Viewed by 5324
Abstract
Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic [...] Read more.
Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3−/−) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

14 pages, 1633 KB  
Article
Biotic and Abiotic Elicitors of Stilbenes Production in Vitis vinifera L. Cell Culture
by Martin Sák, Ivana Dokupilová, Šarlota Kaňuková, Michaela Mrkvová, Daniel Mihálik, Pavol Hauptvogel and Ján Kraic
Plants 2021, 10(3), 490; https://doi.org/10.3390/plants10030490 - 5 Mar 2021
Cited by 28 | Viewed by 4513
Abstract
The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the [...] Read more.
The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates. Full article
Show Figures

Figure 1

Back to TopTop