Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = vertical tectonic movements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 220
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

27 pages, 22085 KiB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 224
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 6310 KiB  
Article
An Evaluation of the Effects of the 1755 Lisbon Earthquake on Rivers and Their Tributaries in Mainland Portugal
by Alice Tavares, Aníbal Costa and Carlos S. Oliveira
Hydrology 2025, 12(6), 150; https://doi.org/10.3390/hydrology12060150 - 13 Jun 2025
Viewed by 781
Abstract
Historical earthquake records are crucial for analyzing high-intensity earthquakes that occur over long periods. Since good instrumental data only date back to 1980, there are gaps in our knowledge, and qualitative assessments remain essential to expand our knowledge and integrate more information into [...] Read more.
Historical earthquake records are crucial for analyzing high-intensity earthquakes that occur over long periods. Since good instrumental data only date back to 1980, there are gaps in our knowledge, and qualitative assessments remain essential to expand our knowledge and integrate more information into the number of variables under analysis. This study examined the hydrological and hydrogeological effects of the 1755 Lisbon earthquake, focusing on regions near rivers and proposing new insights for intensity scales. This information is relevant for seismic risk management and mitigation, to be discussed in regional and national territorial planning strategies. Mapping revealed that most phenomena occurred along the Porto–Tomar tectonic fault, with some extending to other probable faults or geological contrasts. A comparative chart between existing intensity scales and the proposed descriptors highlights agreements and discrepancies, emphasizing the need for more detailed descriptors for intensity levels below X for river-related phenomena. The proposed descriptors include a flow increase with course alterations (intensities VI–VIII), flow suppression and eventual reset (intensity VIII or higher), abnormal current agitation and vertical wave movements (intensities VI–VIII), and cloudy (turbid) water (intensities V–VIII). This work also highlights the need to cross-reference data and the complexity of establishing correlations between effects, ancient descriptions, and descriptors for these intensity scales. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

27 pages, 49480 KiB  
Article
Analyzing Recent Tectonic Activity Along the Karak Wadi Al Fayha Fault System Using Seismic, Earthquake, and Remote Sensing Data
by Mu’ayyad Al Hseinat, Malek AlZidaneen and Ghassan Sweidan
Geosciences 2025, 15(5), 177; https://doi.org/10.3390/geosciences15050177 - 14 May 2025
Viewed by 1096
Abstract
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been [...] Read more.
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been previously mapped using field observations, gravity, magnetic, and reflection seismic methods. However, these approaches lacked the vertical resolution necessary to characterize its shallow structure, leaving its influence on recent deposits and surface topography poorly understood. This study employs reflection seismic sections integrated with a Digital Elevation Model to refine terrain analysis and enhance fault mechanism solutions for determining the regional stress field pattern. Our results provide compelling evidence of the KWF’s upward propagation into the surface, as demonstrated by deformation of the uppermost Cretaceous and Cenozoic successions, distinct geomorphic features in the Digital Elevation Model, alignment of earthquake epicenters along the fault, and active landslides associated with its movement. We suggest that the reactivation of the KWF has been influenced by changing stress fields from the Late Cretaceous (Turonian) to the present. The Northwestern Arabian plate has undergone multiple tectonic stress transitions, including WNW–ESE compression associated with the Syrian Arc Fold-Belt system (Turonian–Plio-Pleistocene) and subsequent NNE–SSW extension linked to Red Sea rifting (Neogene–present). The analysis of fault mechanism solutions suggests that the latest fault movements result from the continued activity of the Irbid Rift event (Eocene) and the Dead Sea Transform Fault since the Miocene. Full article
(This article belongs to the Special Issue Applied Geophysics for Geohazards Investigations)
Show Figures

Figure 1

18 pages, 6145 KiB  
Article
Classification and Analysis of Dominant Lithofacies of the Fengcheng Formation Shale Oil Reservoirs in the Mahu Sag, Junggar Basin, NW China
by An Xie, Heyuan Wu, Yong Tang, Wenjun He, Jingzhou Zhao, Weitao Wu, Jun Li, Yubin Bai and Liang Yue
Processes 2025, 13(4), 1065; https://doi.org/10.3390/pr13041065 - 2 Apr 2025
Viewed by 433
Abstract
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic [...] Read more.
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic movement, hot and dry paleoclimate, and the close provenance supply distance, unique saline–alkaline lacustrine deposits formed during the depositional period of the Fengcheng Formation. The lithologies of the Fengcheng Formation are highly diverse, with endogenous rocks, volcanic rocks, terrigenous debris, and mixed rocks overlapping and forming vertical reservoir changes ranging from meters to centimeters. Owing to the complexity of rock types and scarcity of rock samples, the evaluation of reservoirs in mixed-rock has progressed slowly. Hence, we aimed to evaluate the characteristics of Fengcheng Formation shale oil reservoirs. Centimeter-level core characteristics were analyzed based on the lithological change and structural characteristics. To investigate the lithofacies of the Fengcheng Formation in the Mahu Sag and factors affecting reservoir development, high-frequency sedimentary structures were analyzed using sub-bio-buffering electron microscopy, energy spectrum testing, and fluorescence analysis. The results showed that the shale oil reservoirs in the study area can be divided into four categories: glutenite, volcanic rock, mixed rock, and endogenous rock. The reservoir capacity has improved and can be divided into eight subcategories. Mixed-rock reservoirs can be further divided into four subcategories based on differences in structure and composition. Differences in the bedding and dolomite content are the main factors controlling the differences in the physical properties of this type of reservoir. This study provides a reference for the classification and characteristic study of shale oil reservoirs in saline–alkali lake basins. Full article
Show Figures

Figure 1

24 pages, 25220 KiB  
Article
Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications
by Federico Pietrolungo, Giusy Lavecchia, Asier Madarieta-Txurruka, Federica Sparacino, Eshaan Srivastava, Daniele Cirillo, Rita de Nardis, Carlo Andrenacci, Simone Bello, Nicolò Parrino, Attilio Sulli and Mimmo Palano
Remote Sens. 2024, 16(24), 4765; https://doi.org/10.3390/rs16244765 - 20 Dec 2024
Cited by 3 | Viewed by 1630
Abstract
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain [...] Read more.
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain and stress fields. The results allow the detection of features such as the arc-parallel extension along the Himalayan Arc and the coexistence of strike-slip and normal faulting across Tibet. We discuss our findings concerning the relevant geodynamic models proposed in the literature. While earlier studies largely emphasized the role of either compressional or extensional processes, our findings suggest a more complex interaction between them. In general, our study highlights the critical role of both surface and deep processes in shaping the geodynamic processes. The alignment between tectonic stress and strain rate patterns indicates that the crust is highly elastic and influenced by present-day tectonics. Stress and strain orientations show a clockwise rotation at 31°N, reflecting deep control by the underthrusted Indian Plate. South of this boundary, compression is driven by basal drag from the underthrusting Indian Plate, while northward, escape tectonics dominate, resulting in eastward movement of the Tibetan Plateau. Localized stretching along the Himalaya is likely driven by the oblique convergence resulting from the India–Eurasia collision generating a transtensional regime over the Main Himalayan Thrust. In Tibet, stress variations appear mainly related to changes in the vertical axis, driven by topographically induced stresses linked to the uniform elevation of the plateau. From a broader perspective, these findings improve the understanding of driving crustal forces in the Himalaya–Tibet region and provide insights into how large-scale geodynamics drives surface deformation. Additionally, they contribute to the ongoing debate regarding the applicability of the stress–strain comparison and offer a more comprehensive framework for future research in similar tectonic settings worldwide. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

17 pages, 12379 KiB  
Article
Artificial-Intelligence-Based Classification to Unveil Geodynamic Processes in the Eastern Alps
by Christian Bignami, Alessandro Pignatelli, Giulia Romoli and Carlo Doglioni
Remote Sens. 2024, 16(23), 4364; https://doi.org/10.3390/rs16234364 - 22 Nov 2024
Viewed by 969
Abstract
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. [...] Read more.
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. Despite these improvements, classifying and interpreting such vast datasets remains a significant challenge. InSAR analysts and geologists frequently have to manually analyze the time series from Persistent Scatterer Interferometry (PSI) to model the complexity of geological and tectonic phenomena. This process is time-consuming and impractical for large-scale monitoring. Utilizing Artificial Intelligence (AI) to classify and detect deformation processes presents a promising solution. In this study, vertical ground deformation time series from northeastern Italy were obtained from the European Ground Motion Service and classified by experts into different deformation categories. Convolutional and pre-trained neural networks were then trained and tested using both numerical time-series data and trend images. The application of the best performing trained network to test data showed an accuracy of 83%. Such a result demonstrates that neural networks can successfully identify areas experiencing distinct geodynamic processes, emphasizing the potential of AI to improve PSI data interpretation. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Space Geodesy Applications)
Show Figures

Figure 1

22 pages, 64724 KiB  
Article
Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault
by Yongqi Chen, Rui Ding, Shimin Zhang, Dawei Jiang, Luyao Li and Diwei Hua
Remote Sens. 2024, 16(20), 3826; https://doi.org/10.3390/rs16203826 - 14 Oct 2024
Cited by 1 | Viewed by 1091
Abstract
The Lijiang–Jinpingshan fault (LJF) is an important secondary boundary fault that obliquely cuts the Sichuan–Yunnan rhombic block. It is of great significance for understanding the tectonic evolution of the Sichuan–Yunnan rhombic block and even the southeastern margin of the Tibet Plateau. Based on [...] Read more.
The Lijiang–Jinpingshan fault (LJF) is an important secondary boundary fault that obliquely cuts the Sichuan–Yunnan rhombic block. It is of great significance for understanding the tectonic evolution of the Sichuan–Yunnan rhombic block and even the southeastern margin of the Tibet Plateau. Based on a digital elevation model (DEM), this work combines ArcGIS with MATLAB script programs to extract geomorphic indices including slope, the relief degree of the land surface (RDLS), hypsometric integral (HI), and channel steepness index (ksn) of 593 sub–watersheds and strip terrain profiles around the LJF. By analyzing the spatial distribution characteristics of the geomorphic indices and combining the regional lithology and precipitation conditions, the spatial distribution of the geomorphic indices around the study area was analyzed to reveal the implications of the LJF’s activity. The results of this work indicate that (1) the distribution of geomorphic indices around the LJF may not be controlled by climate and lithological conditions, and the LJF is the dominant factor controlling the geomorphic evolution of the region. (2) The spatial distribution patterns of geomorphic indices and strip terrain profiles reveal that the vertical movement of the LJF resulted in a pronounced uplift on its northwest side, with tectonic activity gradually diminishing from northeast to southwest. Furthermore, based on the spatial distribution characteristics of these geomorphic indices, the activity intensity of the LJF can be categorized into four distinct segments: Jianchuan–Lijiang, Lijiang–Ninglang, Ninglang–Muli, and Muli–Shimian. (3) The activity of the LJF obtained from tectonic geomorphology is consistent with the conclusions obtained in previous geological and geodesic studies. This work provides evidence of the activity and segmentation of the LJF in tectonic geomorphology. The results provide insight for the discussion of tectonic deformation and earthquake disaster mechanisms in the southeastern margin of the Tibet Plateau. Full article
Show Figures

Figure 1

16 pages, 7497 KiB  
Article
The Tectonic-Sedimentary Evolution of the Yan’an Formation in the Ordos Basin and Its Petroleum Geological Significance
by Taping He, Yaoqi Zhou, Yuanhao Li, Zhenwei Zhang, Yue Zhang and Gaixia Cui
Appl. Sci. 2024, 14(20), 9278; https://doi.org/10.3390/app14209278 - 12 Oct 2024
Cited by 4 | Viewed by 1538
Abstract
Utilizing well logging data, outcrop profiles, and previous research, this study analyzes the sedimentary and tectonic evolution of the Yan’an Formation in the Ordos Basin, correlating the resulting sedimentary facies with hydrocarbon reservoirs to establish the necessary connections. The study reveals that: (1) [...] Read more.
Utilizing well logging data, outcrop profiles, and previous research, this study analyzes the sedimentary and tectonic evolution of the Yan’an Formation in the Ordos Basin, correlating the resulting sedimentary facies with hydrocarbon reservoirs to establish the necessary connections. The study reveals that: (1) Vertically, the sediment grain size shows a pattern of coarser grains at the bottom and top, with finer grains in the middle. Horizontally, the grain size tends to become finer from the northern, western, and southern parts of the basin toward the central-western region. (2) Tectonic movements during the Yan’an period controlled the sedimentary environment. These tectonic activities, through uplift and subsidence, caused the Yan’an Formation to experience four stages of sedimentary environments: braided river, lake, delta, and meandering river. (3) The Yan’an Formation exhibits four types of reservoir sandbody stacking patterns—continuous superposition, intermittent superposition, interbedded sand-mud, and single sandbody types—with continuous and intermittent stacking being the most common. (4) The hydrocarbons in the Yan’an Formation originated from the Chang 7 Member of the Yanchang Formation and migrated into the Yan’an reservoirs. The oil is characterized by its low density, low viscosity, and low pour point, indicating it is a high-maturity, high-quality crude oil. Full article
Show Figures

Figure 1

17 pages, 30435 KiB  
Article
Improvement of the Estimation of the Vertical Crustal Motion Rate at GNSS Campaign Stations Based on the Information of GNSS Reference Stations
by Jiazheng Jiang, Kaihua Ding and Guanghong Lan
Remote Sens. 2024, 16(17), 3144; https://doi.org/10.3390/rs16173144 - 26 Aug 2024
Viewed by 1011
Abstract
With the enrichment of GNSS data and the improvement in data processing accuracy, GNSS technology has been widely applied in fields such as crustal deformation. The Crustal Movement Observation Network of China (CMONOC) has provided decades of Global Navigation Satellite System (GNSS) data [...] Read more.
With the enrichment of GNSS data and the improvement in data processing accuracy, GNSS technology has been widely applied in fields such as crustal deformation. The Crustal Movement Observation Network of China (CMONOC) has provided decades of Global Navigation Satellite System (GNSS) data and related data products for crustal deformation research on the Chinese mainland. The coordinate time series of continuously observed reference stations contain abundant information on crustal movements. In contrast, the coordinate time series of periodically observed campaign stations have limited data, making it difficult to separate or remove instantaneous non-tectonic movements from the time series, as performed with reference stations, to obtain a stable and reliable crustal movement velocity field. To address this issue, this paper proposes a method to improve the estimation of crustal movement velocity at campaign stations using the information of neighboring reference stations. This method constructs a Delaunay triangulation of reference stations and fits the periodic movement of each campaign station using an inverse distance weighted interpolation algorithm based on the reference station information. The crustal movement velocity of the campaign stations is then estimated after removing the periodic movement. This method was verified by its application to the estimation of the vertical motion rate at some reference and campaign stations in Yunnan Province. The results show that the accuracy of vertical motion rate estimation for virtual and real campaign stations improved by an average of 24.4% and 9.6%, respectively, demonstrating the effectiveness of the improved method, which can be applied to estimate crustal movement velocity at campaign stations in other areas. Full article
Show Figures

Graphical abstract

15 pages, 72980 KiB  
Article
Exploring Fault Geometry and Holocene Deformation of the Littoral Fault Zone within the Seismic Gap South of Greater Bay Area, China
by Xiangming Dai, Zhigang Li, Litian Hu, Peizhen Zhang, Xiaoqiang Yang, Rafael Almeida and Guanhua Li
J. Mar. Sci. Eng. 2024, 12(8), 1350; https://doi.org/10.3390/jmse12081350 - 8 Aug 2024
Viewed by 2213
Abstract
Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of [...] Read more.
Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of China, home to over 70 million people. Despite previous studies on deeper crustal structures and geodynamic processes, the shallow structural architecture and recent tectonic activity of the LFZ within the seismic gap remain poorly understood due to limited offshore geophysical investigations. Here, we present new offshore geophysical data to explore the shallow crustal architecture and Holocene activity of the LFZ within this seismic gap. Multichannel seismic data reveal that the LFZ comprises a high-angle listric main normal fault along with several secondary normal faults. The main fault trends northeast and dips southeast in the shallow crustal architecture, serving as the basin-controlling fault in the north of the Pearl River Mouth Basin, with accumulated displacements ranging from 1.5 to 1.8 km. Furthermore, analysis of single-channel seismic data, and 14C dating results from the borehole, indicate that the most recent movement of the main fault occurred within the last ~10,000 years, with minimum vertical offsets of 1.2 m. Based on these findings, we emphasize the LFZ’s potential to generate a significant earthquake, estimated at Mw 7.0–7.5, within the inferred seismic gap. Our study highlights the potential earthquake hazard posed by the LFZ to the Greater Bay Area of China, while also providing valuable insights for the assessment of active submarine faults worldwide. Full article
Show Figures

Figure 1

33 pages, 3852 KiB  
Review
Chromite Composition and Platinum-Group Elements Distribution in Tethyan Chromitites of the Mediterranean Basin: An Overview
by Federica Zaccarini, Maria Economou-Eliopoulos, Basilios Tsikouras and Giorgio Garuti
Minerals 2024, 14(8), 744; https://doi.org/10.3390/min14080744 - 24 Jul 2024
Cited by 1 | Viewed by 1845
Abstract
This study provides a comprehensive literature review of the distribution, the platinum- group elements (PGE) composition, and mineral chemistry of chromitites associated with Mesozoic Tethyan ophiolites in the Mediterranean Basin. These suites outcrop in the northern Italian Apennines, the Balkans, Turkey, and Cyprus. [...] Read more.
This study provides a comprehensive literature review of the distribution, the platinum- group elements (PGE) composition, and mineral chemistry of chromitites associated with Mesozoic Tethyan ophiolites in the Mediterranean Basin. These suites outcrop in the northern Italian Apennines, the Balkans, Turkey, and Cyprus. Most chromitites occur in depleted mantle tectonites, with fewer found in the mantle-transition zone (MTZ) and supra-Moho cumulates. Based on their Cr# = (Cr/(Cr + Al)) values, chromitites are primarily classified as high-Cr, with a subordinate presence of high-Al chromitites. Occasionally, high-Al and high-Cr chromitites co-exist within the same ophiolite complex. High-Cr chromitites are formed in supra-subduction zone (SSZ) environments, where depleted mantle interacts with high-Mg boninitic melts. Conversely, high-Al chromitites are typically associated with extensional tectonic regimes and more fertile peridotites. The co-existence of high-Al and high-Cr chromitites within the same ophiolite is attributed to tectonic movements and separate magma intrusions from variably depleted mantle sources, such as mid-ocean ridge basalts (MORB) and back-arc basin basalts. These chromitites formed in different geodynamic settings during the transition of the oceanic lithosphere from a mid-ocean ridge (MOR) to a supra-subduction zone (SSZ) regime or, alternatively, within an SSZ during the differentiation of a single boninitic magma batch. Distinct bimodal distribution and vertical zoning were observed: high-Cr chromitites formed in the deep mantle, while Al-rich counterparts formed at shallower depths near the MTZ. Only a few of the aforementioned chromitites, particularly the high-Cr ones, are enriched in the refractory IPGE (iridium-group PGE: Os, Ir, Ru) relative to PPGE (palladium-group PGE: Rh, Pt, Pd), with an average PPGE/IPGE ratio of 0.66, resulting in well-defined negative slopes in PGE patterns. The IPGE enrichment is attributed to their compatible geochemical behavior during significant degrees of partial melting (up to 30%) of the host mantle. It is suggested that the boninitic melt, which crystallized the high-Cr chromitites, was enriched in IPGE during melt-rock reactions with the mantle source, thus enriching the chromitites in IPGE as well. High-Al chromitites generally exhibit high PPGE/IPGE ratios, up to 3.14, and strongly fractionated chondrite-normalized PGE patterns with positive slopes and significant enrichments in Pt and Pd. The PPGE enrichment in high-Al chromitites is attributed to the lower degree of partial melting of their mantle source and crystallization from a MOR-type melt, which contains fewer IPGE than the boninitic melt above. High-Al chromitites forming at higher stratigraphic levels in the host ophiolite likely derive from progressively evolving parental magma. Thus, the PPGE enrichment in high-Al chromitites is attributed to crystal fractionation processes that consumed part of the IPGE during the early precipitation of co-existing high-Cr chromitites in the deep mantle. Only a few high-Al chromitites show PPGE enrichment due to local sulfur saturation and the potential formation of an immiscible sulfide liquid, which could concentrate the remaining PPGE in the ore-forming system. Full article
Show Figures

Figure 1

20 pages, 7369 KiB  
Article
Low-Temperature Thermochronology Records the Convergence between the Anatolide–Tauride Block and the Arabian Platform along the Southeast Anatolian Orogenic Belt
by Semih Gildir, Fatih Karaoğlan and Erhan Gülyüz
Minerals 2024, 14(6), 614; https://doi.org/10.3390/min14060614 - 15 Jun 2024
Cited by 2 | Viewed by 1814
Abstract
SE Anatolia is witnessing the final stage of the Wilson Cycle, where a continental collision between the Tauride–Anatolide block and Arabian platform occurred, and a 1.5 km Eastern Tauride mountain chain formed. We present new low-temperature thermochronology (LTT) ages, including eight apatite fission [...] Read more.
SE Anatolia is witnessing the final stage of the Wilson Cycle, where a continental collision between the Tauride–Anatolide block and Arabian platform occurred, and a 1.5 km Eastern Tauride mountain chain formed. We present new low-temperature thermochronology (LTT) ages, including eight apatite fission track (AFT) and seven apatite and zircon U-Th-Sm/He (AHe, ZHe) ages, for the metamorphic rocks from the Nappe Zone of the Southeast Anatolian Orogenic Belt. The ZHe ages vary from 51.2 ± 0.7 Ma to 30.4 ± 0.6 Ma, the AFT ages range from 33.1 ± 1.6 Ma to 18.1 ± 0.9 Ma, and the AHe ages range from 23.6 ± 2.5 Ma to 6 ± 1.9 Ma. The LTT data show a continuous slow uplift of the region. However, the thermal modeling results suggest an Eocene and middle–late Miocene fast uplift of the region. Similar to our results, the LTT studies along the SAOB show that the vertical movements initiated during the Eocene period have continued in a steady-state regime to recent times. The Eocene epoch is identified by arc–back-arc setting in the region, whereas the Miocene epoch is marked by the continental collision. Within this tectonic framework, vertical movements on the overriding plate are controlled by both extensional and compressional tectonics. The LTT data obtained along the SAOB show fingerprints of thrust propagation from north to south. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

20 pages, 28034 KiB  
Article
The Largest Geodetic Coseismic Assessment of the 2020 Mw = 6.4 Petrinja Earthquake
by Marko Pavasović, Drago Babić, Antonio Banko and Gábor Timár
Remote Sens. 2024, 16(12), 2112; https://doi.org/10.3390/rs16122112 - 11 Jun 2024
Viewed by 2909
Abstract
On 28 December 2020, the area of the city of Petrinja was hit by two strong earthquakes of magnitudes 5.0 and 4.7 on the Richter scale, and the following day, 29 December 2020, the same area was hit by an even stronger earthquake [...] Read more.
On 28 December 2020, the area of the city of Petrinja was hit by two strong earthquakes of magnitudes 5.0 and 4.7 on the Richter scale, and the following day, 29 December 2020, the same area was hit by an even stronger earthquake of magnitude 6.2. It was one of the two strongest instrumentally recorded earthquakes that hit the territory of the Republic of Croatia in the last hundred years, and the strongest earthquake in the Banovina area after the great earthquake in 1909. Increased seismic activity in this area is caused by two vertical strike–slip faults, Pokupski and Petrinjski. This article aims to determine the displacements of the Earth’s crust caused by seismic activity in this area using GNSS measurements and InSAR techniques and comparing their results. Our study showed that horizontal coseismic displacements of 20 cm and more were limited to a radius of 20 km from the epicenter, with a maximum displacement of around half a meter. Considering the original plate tectonic movements of the region and the time elapsed since the previous earthquake of similar magnitude, the geodynamic movements of the Dinarides area are in substantial part sudden displacements associated with earthquakes. Full article
Show Figures

Figure 1

21 pages, 3879 KiB  
Article
Relative Sea Level and Coastal Vertical Movements in Relation to Volcano-Tectonic Processes at Mayotte Island, Indian Ocean
by Julien Gargani
GeoHazards 2024, 5(2), 329-349; https://doi.org/10.3390/geohazards5020017 - 12 Apr 2024
Cited by 3 | Viewed by 1830
Abstract
During the last 10 kyr, significant subsidence and uplift occurred on Mayotte Island in the Comoros archipelago (Indian Ocean), but the role of volcanic processes in Holocene vertical movements has been neglected in the research so far. Here, we show that an abrupt [...] Read more.
During the last 10 kyr, significant subsidence and uplift occurred on Mayotte Island in the Comoros archipelago (Indian Ocean), but the role of volcanic processes in Holocene vertical movements has been neglected in the research so far. Here, we show that an abrupt subsidence of 6–10 m occurred between 9.4 and 10 kyr ago, followed by an uplift of the same amplitude at a rate of 9 mm/yr from 8.1 to 7 kyr ago. A comparison of the relative sea level of Mayotte and a reference sea level curve for the global ocean has been conducted using a modeling approach. This shows that an increasing and decreasing pressure at depth, equivalent to the process caused by a deep magma reservoir (50–70 km), was responsible for ~6–10 m subsidence and 6–10 m uplift, whereas loading by new volcanic edifices caused subsidence during the last few thousand years. Surface movements and deep pressure variations may be caused by pulses from the deep mantle, related to superplume activity, but uncertainties and unknowns about these phenomena are still present and further studies are needed. A better understanding of the volcano-tectonic cycle may improve assessments of volcanic hazards. Full article
Show Figures

Figure 1

Back to TopTop