Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = vertical heat flux distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5750 KiB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 212
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

21 pages, 7532 KiB  
Article
Stand Density Management of Cypress Plantations Based on the Influence of Soil Hydrothermal Conditions on Fine Root Dynamics in Southwestern China
by Guirong Hou, Jinfeng Zhang, Chuan Fan, Xianwei Li, Gang Chen, Kuangji Zhao, Yunqi Zhang, Jiangkun Zheng and Yong Wang
Forests 2025, 16(1), 46; https://doi.org/10.3390/f16010046 - 30 Dec 2024
Cited by 2 | Viewed by 901
Abstract
The mechanisms by which the soil physical structure, nutrient conditions, understory vegetation diversity and forest meteorological factors influence fine root (<2 mm diameter) characteristics mediated by soil moisture content (SMC) and soil heat flux (SHF) remain uncertain under climate change. Therefore, in this [...] Read more.
The mechanisms by which the soil physical structure, nutrient conditions, understory vegetation diversity and forest meteorological factors influence fine root (<2 mm diameter) characteristics mediated by soil moisture content (SMC) and soil heat flux (SHF) remain uncertain under climate change. Therefore, in this research, continuous observations were made of the fine root growth, death and turnover of cypress plantations, as well as the SMC and SHF under the management of four thinning intensities in hilly areas in central Sichuan from 2021 to 2023. The fine root data were obtained using the microroot canals (minirhizotron) in the study, and the soil hydrothermal data were obtained using the ECH2O soil parameter sensor and the PC-2R SHF data logger. In the time series, the fine root growth, death and turnover of the cypress plantations with different thinning intensities first increased and then decreased throughout the year; the vertical center of the gravity of the fine roots of cypress was concentrated in the 30–50 cm range. This research also revealed that the variability in the SMC decreased with increasing soil depth. Additionally, the SHF was transmitted from greater soil depths to the surface in unthinned cypress plantation at a rate of 0.036 per year, which decreased the heat in the fine root region. However, SHF was transmitted from the soil surface to greater depths at rates of 0.012 per year, 0.08 per year and 0.002 per year, which increased the heat in the fine root area. The redundancy analysis (RDA) and structural equation model (SEM) results indicated that the SMC and soil heat energy distribution pattern obviously affected fine root growth, death and turnover in the cypress plantation. However, the climate conditions in the forest, the characteristics of vegetation in the understory and the physical and chemical characteristics of the soil directly or indirectly affect the characteristics of the fine roots of cypress plantations with changes in thinning intensity. This research provides a basis for understanding ecosystem structure, nutrient cycling and carbon balance and may guide artificial plantation development and management. Full article
Show Figures

Figure 1

12 pages, 14472 KiB  
Article
Research on the Relative Placement Angle of the Induction Heater and the Channel in a Four-Channel Induction-Heating Tundish
by Xiqing Chen, Pu Wang, Hong Xiao, Siyan Lei, Haiyan Tang and Jiaquan Zhang
Materials 2024, 17(12), 3011; https://doi.org/10.3390/ma17123011 - 19 Jun 2024
Cited by 2 | Viewed by 1055
Abstract
In order to optimize the application effect of induction heating (IH) tundishes, a four-channel IH tundish is taken as the research object. Based on numerical simulation methods, the influence of different relative placement angles of induction heaters and channels on the electromagnetic field, [...] Read more.
In order to optimize the application effect of induction heating (IH) tundishes, a four-channel IH tundish is taken as the research object. Based on numerical simulation methods, the influence of different relative placement angles of induction heaters and channels on the electromagnetic field, flow field and temperature field of the tundish is investigated. We focus on comparing the magnetic flux density (B) and electromagnetic force (EMF) distribution of the channel. The results show that regardless of the relative placement angle between the heater and the channel, the distribution of B in the central circular cross-section of the channel is eccentric. When the heater rotates around channel 1 towards the bottom of the tundish, the distribution of B in the central circular cross-section of the channel changes from a horizontal eccentricity to a vertical one. Through the analysis of the B contour in the longitudinal section of the channel, the difference in effective magnetic flux density area (ΔAB) between the upper and lower parts of the channel can be obtained, thereby quantitatively analyzing the distribution of B in this section. The distribution pattern of ΔAB is consistent with the distribution pattern of the electromagnetic force in the vertical direction (FZ) of the channel centerline. The ΔAB and FZ of channel 1 gradually increase as the heater rotates downwards, while those of channel 2 reach their maximum value at a rotation angle of 60°. Compared to the conventional placement, when the heater rotation angle is 60°, the outlet flow velocities at channel 1 and channel 2 decrease by 15% and 12%, respectively. However, the outlet temperature at channel 2 increases by 1.96 K, and the molten steel flow at the outlet of channel 1 and channel 2 no longer exhibits significant downward flow. This shows that when the heater rotation angle is 60°, it has a dual advantage. On the one hand, it is helpful to reduce the erosion of the molten steel on the channel and the bottom of the discharging chamber, and on the other hand, it can more effectively exert the heating effect of the induction heater on the molten steel in the channel. This presents a new approach to enhance the application effectiveness of IH tundish. Full article
Show Figures

Figure 1

17 pages, 1575 KiB  
Article
Optimization of Dropwise Condensation of Steam over Hybrid Hydrophobic–Hydrophilic Surfaces via Enhanced Statistically Based Heat Transfer Modelization
by Giulio Croce and Nicola Suzzi
Energies 2024, 17(11), 2742; https://doi.org/10.3390/en17112742 - 4 Jun 2024
Viewed by 1035
Abstract
Steam condensation over a hybrid hydrophobic–hydrophilic surface is modeled via simplified heat transfer modelization. Filmwise condensation is assumed over the hydrophilic region. The standard film model is improved, accounting for the liquid flow rate crossing the hydrophobic–hydrophilic boundaries. A threshold for flooding occurrence [...] Read more.
Steam condensation over a hybrid hydrophobic–hydrophilic surface is modeled via simplified heat transfer modelization. Filmwise condensation is assumed over the hydrophilic region. The standard film model is improved, accounting for the liquid flow rate crossing the hydrophobic–hydrophilic boundaries. A threshold for flooding occurrence is also presented. Dropwise condensation is assumed over the hydrophobic region. Compared to the heat transfer models in the literature, based on the statistical drop size distribution, a novel correlation is used for the size distribution of small droplets. The correlations of both the liquid flow rate crossing the hydrophobic–hydrophilic boundary and the size distribution of small drops are derived via Lagrangian simulations, using an in-house code previously developed and validated by the authors. The heat transfer model is validated with experimental data in the literature involving a hybrid surface, composed by alternate vertical hydrophobic–hydrophilic stripes. Then, the optimization of the hybrid surface geometry is performed in terms of hydrophobic width and hydrophilic width, with the aim of enhancing the heat flux. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

29 pages, 22091 KiB  
Article
Investigations of Energy Conversion and Surface Effect for Laser-Illuminated Gold Nanorod Platforms
by Piotr Radomski, Federica Zaccagnini, Paweł Ziółkowski, Francesca Petronella, Luciano De Sio, Aimad Koulali and Dariusz Mikielewicz
Energies 2024, 17(11), 2587; https://doi.org/10.3390/en17112587 - 27 May 2024
Cited by 4 | Viewed by 1198
Abstract
Achieving a quick temperature increase is a burning issue for biophysical applications, like germ inactivation and tumor ablation, and for energy performances, like solar collectors and steam generators. Based on the plasmon resonance phenomenon, noble metallic nanoparticles have emerged as promising weapons due [...] Read more.
Achieving a quick temperature increase is a burning issue for biophysical applications, like germ inactivation and tumor ablation, and for energy performances, like solar collectors and steam generators. Based on the plasmon resonance phenomenon, noble metallic nanoparticles have emerged as promising weapons due to their very high biocompatibility, optical properties, and high surface-to-volume ratio, increasing energy conversion and allowing the maximum temperature to be reached faster. This work examines the energy conversion in sandwiched glassy platforms with gold nanorods. The platforms are kept vertically in the air and illuminated by a 0.5 W near-infrared laser (808 nm). To describe this aspect theoretically, the size and conversion efficiency of the electromagnetic properties are compromised between the proposed model and the stability of the nanorods. As a research approach, our model of cross-sections and polarizability for the surface effect is proposed, coupled with classical CFD numerical calculations. The results of the proposed model, validated by a thermal camera and spectroscopy measurements, indicate that as long as the energy conversion is visible with relatively low-power lasers (ΔT = 18.5 °C), the platforms do not offer fast heat dissipation. The results indicate that, despite the flow forcing by the air inflow, the entropy generation due to heat conduction is more than three orders higher than the dynamic entropy production. Flow forcing corresponds to the value of the velocity for classical convective motions. Therefore, the delivered heat flux must be distributed via convective transport or the associated high-conductive materials. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 6658 KiB  
Communication
Triggering Pyro-Convection in a High-Resolution Coupled Fire–Atmosphere Simulation
by Flavio Tiago Couto, Jean-Baptiste Filippi, Roberta Baggio, Cátia Campos and Rui Salgado
Fire 2024, 7(3), 92; https://doi.org/10.3390/fire7030092 - 16 Mar 2024
Cited by 5 | Viewed by 2473
Abstract
This study aimed to assess fire–atmosphere interactions using the fully coupled Meso-NH–ForeFire system. We focused on the Pedrógão Grande wildfire (28,914 ha), which occurred in June 2017 and was one of the deadliest and most damaging fires in Portugal’s history. Two simulations (control [...] Read more.
This study aimed to assess fire–atmosphere interactions using the fully coupled Meso-NH–ForeFire system. We focused on the Pedrógão Grande wildfire (28,914 ha), which occurred in June 2017 and was one of the deadliest and most damaging fires in Portugal’s history. Two simulations (control and fully coupled fire–atmosphere) were performed for three two-way nested domains configured with horizontal resolutions of 2 km, 0.4 km, and 0.08 km, respectively, in the atmospheric model Meso-NH. Fire propagation was modeled within the innermost domain with ForeFire, which solves the fire front with a 20 m resolution, producing the heat and vapor fluxes which are then injected into the atmospheric model. A simplified homogeneous fuel distribution was used in this case study. The fully coupled experiment helped us to characterize the smoke plume structure and identify two different regimes: (1) a wind-driven regime, with the smoke plume transported horizontally southward and in the lower troposphere, and (2) a plume-dominated regime, in which the simulated smoke plume extended vertically up to upper levels, favoring the formation of a pyro-cloud. The simulations were compared, and the results suggest that the change in the fire regime was caused by an outflow that affected the main fire front. Furthermore, the fully coupled simulation allowed us to explore the change in meteorology caused by an extreme fire, namely through the development of a pyro-cloud that also induced outflows that reached the surface. We show that the Meso-NH–ForeFire system may strongly contribute to an improved understanding of extreme wildfires events and associated weather phenomena. Full article
Show Figures

Figure 1

14 pages, 4117 KiB  
Article
Water Properties and Diffusive Convection in the Canada Basin
by Ling Qu, Shuangxi Guo, Shengqi Zhou, Yuanzheng Lu, Mingquan Zhu, Xianrong Cen, Di Li, Wei Zhou, Tao Xu, Miao Sun and Rui Zeng
J. Mar. Sci. Eng. 2024, 12(2), 290; https://doi.org/10.3390/jmse12020290 - 5 Feb 2024
Viewed by 1328
Abstract
The aim of this study is to better understand diffusive convection (DC) and its role in the upper ocean dynamic environment and sea ice melting in the Canada Basin. Based on a moored dataset with 6737 profiles collected from August 2003 to August [...] Read more.
The aim of this study is to better understand diffusive convection (DC) and its role in the upper ocean dynamic environment and sea ice melting in the Canada Basin. Based on a moored dataset with 6737 profiles collected from August 2003 to August 2011 in the upper layer of the Canada Basin, DC between the warm and salty Atlantic Water (AW) and the colder and less salty Lower Halocline Water (LHW) were investigated. The moorings were designated at four stations: A, B, C, and D, located at the southwestern, southeastern, northeastern, and northwestern parts of the basin, respectively. During the observation period, the temperature, salinity, and depth of the AW and LHW exhibited unique temporal variations. The temperature and salinity of the AW varied among stations, with a decreasing trend from northwest to southeast, consistent with the propagation path of the AW in the Canada Basin. The temperature and salinity of the LHW were similar at all stations. The AW and LHW cores were located between depths of 320–500 m and 160–300 m, respectively, and both gradually deepened over time. Distinct DC staircase structures were observed between the AW and LHW, more pronounced at stations C and D than at stations A and B, which is speculated to be related to eddies at stations A and B during the observation period. The vertical heat fluxes through the DC staircase layer at stations C and D (FHc_C and FHc_D) were estimated using an empirical formula. FHc_C ranged from 0.05 to 0.94 W/m2, and FHc_D ranged from 0.05 to 0.6 W/m2, with the maximum probability value for both at approximately 0.2 W/m2. The effective diffusivities at these two stations (KT_C and KT_D) are similar, ranging from 2 × 10−6 to 3 × 10−5 m2/s, with the highest probability occurring at 6 × 10−6 m2/s. Both the probability density function of the heat flux and the effective diffusivity skewed towards larger values and obey a lognormal distribution, indicating turbulence intermittency of the DC staircase in the Canada Basin. These finding offers new insights into the heat transport and turbulence in the DC staircase, and then bring a deeper understanding of sea ice melting in the Canada Basin. Full article
(This article belongs to the Special Issue Investigating the Air-Sea Interaction Processes)
Show Figures

Figure 1

14 pages, 4556 KiB  
Article
The Impact of Thermal Radiation on Mixed Convective Unsteady Nanofluid Flow in a Revolving Vertical Cone
by Shweta Mishra, Hiranmoy Mondal, Ramandeep Behl and Mehdi Salimi
Mathematics 2024, 12(2), 349; https://doi.org/10.3390/math12020349 - 22 Jan 2024
Cited by 4 | Viewed by 1262
Abstract
This study investigates the effects of an unsteady mixed convection nanofluid flow in a rotating vertical cone submerged in spinning nanofluid. Our analysis considered the impacts of heat flux, chemical reactions, and thermal radiation, with the thermal and concentration Biot numbers serving as [...] Read more.
This study investigates the effects of an unsteady mixed convection nanofluid flow in a rotating vertical cone submerged in spinning nanofluid. Our analysis considered the impacts of heat flux, chemical reactions, and thermal radiation, with the thermal and concentration Biot numbers serving as constraints at the boundary. The governing unsteady and coupled partial differential equations were solved through appropriate similarity transformations, addressing the nonlinear terms inherent in these equations. The spectral quasi-linearisation method (SQLM) was employed to solve the higher-order nonlinear differential equations. This study elucidates and assesses the impact of diverse physical constraints and parameters through the use of graphical representations. Notably, the temperature distribution of the liquefied substance was intensified as the thermal and solutal Biot numbers increased. Full article
Show Figures

Figure 1

14 pages, 4438 KiB  
Technical Note
Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation
by Jia-Yi Lin, Hua Ho, Zhe-Wen Zheng, Yung-Cheng Tseng and Da-Guang Lu
Remote Sens. 2024, 16(1), 205; https://doi.org/10.3390/rs16010205 - 4 Jan 2024
Cited by 1 | Viewed by 2891
Abstract
Sea surface temperature (SST) responses have been perceived as crucial to consequential tropical cyclone (TC) intensity development. In addition to regular cooling responses, a few TCs could cause extreme SST drops (ESSTDs) (e.g., SST drops more than 6 °C) during their passage. Given [...] Read more.
Sea surface temperature (SST) responses have been perceived as crucial to consequential tropical cyclone (TC) intensity development. In addition to regular cooling responses, a few TCs could cause extreme SST drops (ESSTDs) (e.g., SST drops more than 6 °C) during their passage. Given the extreme temperature differences and the consequentially marked air–sea flux modulations, ESSTDs are intuitively supposed to play a serious role in modifying TC intensities. Nevertheless, the relationship between ESSTDs and consequential storm intensity changes remains unclear. In this study, satellite-observed microwave SST drops and the International Best Track Archive for Climate Stewardship TC data from 2001 to 2021 were used to elucidate the relationship between ESSTDs and the consequential TC intensity changes in the Western North Pacific typhoon season (July–October). Subsequently, the distributed characteristics of ESSTDs were systematically examined based on statistical analyses. Among them, Typhoon Kilo (2015) triggered an unexpected ESSTD behind its passage, according to existing theories. Numerical experiments based on the Regional Ocean Modeling System were carried out to explore the possible mechanisms that resulted in the ESSTD due to Kilo. The results indicate that heavy rainfall leads to additional SST cooling through the enhanced sensible heat flux leaving the surface layer in addition to the cooling from momentum-driven vertical mixing. This process enhanced the sensible heat flux leaving the sea surface since the temperature of the raindrops could be much colder than the SST in the tropical ocean, specifically under heavy rainfall and relatively less momentum entering the upper ocean during Kilo. Full article
Show Figures

Figure 1

19 pages, 6757 KiB  
Article
Numerical Investigation of Heat Production in the Two-Wheeler Electric Vehicle Battery via Torque Load Variation Test
by Hariyotejo Pujowidodo, Bambang Teguh Prasetyo, Respatya Teguh Soewono, Himawan Sutriyanto, Achmad Maswan, Muhammad Penta Helios, Kanon Prabandaru Sumarah, Bhakti Nuryadin, Andhy Muhammad Fathoni, Dwi Handoko Arthanto, Riki Jaka Komara, Agus Prasetyo Nuryadi, Fitrianto, Chairunnisa and I.G.A. Uttariyani
World Electr. Veh. J. 2024, 15(1), 13; https://doi.org/10.3390/wevj15010013 - 2 Jan 2024
Cited by 3 | Viewed by 2343
Abstract
Experimental studies were conducted to investigate the effect of varying torque loads on the temperature distribution on the surface of lithium-ion batteries (72 volts–20 Ah) in real commercial two-wheeler electric vehicles as part of our previous research. An electric vehicle engine was installed [...] Read more.
Experimental studies were conducted to investigate the effect of varying torque loads on the temperature distribution on the surface of lithium-ion batteries (72 volts–20 Ah) in real commercial two-wheeler electric vehicles as part of our previous research. An electric vehicle engine was installed in a dyno testing laboratory and used as the main load for the battery. Ambient temperature and relative humidity were controlled using an air conditioning system. The test results are presented as surface temperature distributions on each side of the battery at various torque loads. The highest temperature on the battery’s surface was found to be approximately 40 °C at a torque load of 100%. Unfortunately, the heat generated by the battery during testing could not be measured for further research. This paper presents a numerical study of battery heat generation at 100% torque load using Ansys Fluent 2020 R1©. This tool is employed to calculate the heat flux from the battery surface to the ambient air. The CFD tool was initially validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the current predictions and experimental data were observed for laminar flow regimes. Convective heat transfer between the battery surface and ambient air was simulated. The results indicate that the commonly used heat transfer correlation for vertical plates accurately predicts the heat transfer rate on the battery surface, and it was found that the heat generation rate is 1199 W/m3. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries for Electric Vehicle)
Show Figures

Figure 1

19 pages, 3718 KiB  
Article
Universal Relationship between Mass Flux and Properties of Layered Heterogeneity on the Contaminant-Flushing Process
by Zehao Chen and Hongbin Zhan
Water 2023, 15(18), 3292; https://doi.org/10.3390/w15183292 - 18 Sep 2023
Viewed by 1916
Abstract
To remove contaminants from a layered heterogeneous porous system where the flow direction is parallel to the horizontal layering, the flushing front may advance faster in one layer than the other, resulting in a significant vertical concentration gradient across the layer interface. This [...] Read more.
To remove contaminants from a layered heterogeneous porous system where the flow direction is parallel to the horizontal layering, the flushing front may advance faster in one layer than the other, resulting in a significant vertical concentration gradient across the layer interface. This gradient leads to mass exchange between the layers due to the vertical dispersive transport. Such a mass exchange phenomenon can greatly alter the mass (and heat if the temperature is a concern) distribution in a multi-layer porous media system but has never been investigated before in a quantitative manner. In this study, high-resolution finite-element numerical models have been employed to investigate how transport properties affect contaminant transport during flushing, using a two-layer system as an example. The results showed that the porosity and retardation factor play similar roles in affecting mass flux across the interface. Increasing the porosity (or retardation factor) of one layer with a faster flushing velocity would decrease the total mass flux across the interface of the layers, while increasing the porosity (or retardation factor) of the layer with a slower flushing velocity played an adverse influence. Furthermore, increasing the transverse dispersivity of any layer increased the mass flux across the interface of the two layers. However, changes in the transverse dispersivity did not affect the spatial range (or gap along the flow direction) in which significant vertical mass flux occurs. This study has important implications for managing contaminant remediation in layered aquifers. Full article
(This article belongs to the Special Issue Modeling Flow and Transport in Porous and Fractured Media)
Show Figures

Figure 1

30 pages, 13117 KiB  
Article
Three-Dimensional Distributions of the Direct Effect of anExtended and Intense Dust Aerosol Episode (16–18 June 2016) over the Mediterranean Basin on Regional Shortwave Radiation, Atmospheric Thermal Structure, and Dynamics
by Maria Gavrouzou, Nikos Hatzianastassiou, Marios-Bruno Korras-Carraca, Michalis Stamatis, Christos Lolis, Christos Matsoukas, Nikos Michalopoulos and Ilias Vardavas
Appl. Sci. 2023, 13(12), 6878; https://doi.org/10.3390/app13126878 - 6 Jun 2023
Cited by 1 | Viewed by 1858
Abstract
In the present study, we used the FORTH deterministic spectral Radiation Transfer Model (RTM) to estimate detailed three-dimensional distributions of the Direct Radiative Effects (DREs) and their consequent modification of the thermal structure of the regional atmosphere during an intense dust episode that [...] Read more.
In the present study, we used the FORTH deterministic spectral Radiation Transfer Model (RTM) to estimate detailed three-dimensional distributions of the Direct Radiative Effects (DREs) and their consequent modification of the thermal structure of the regional atmosphere during an intense dust episode that took place from 16 to 18 June 2016 over the Mediterranean Basin (MB). The RTM operated on a 3-hourly temporal and 0.5 × 0.625° spatial resolution, using 3-D aerosol optical properties (i.e., aerosol optical depth, single scattering albedo, and asymmetry parameter) and other surface and atmospheric properties from the MERRA-2 reanalysis and cloud properties (i.e., cloud amount, cloud optical depth, and cloud top height) from the ISCCP-H dataset. The model ran with and without dust aerosols, yielding the upwelling and downwelling solar fluxes at the top of the atmosphere, in the atmosphere, and at the Earth’s surface as well as at 50 levels in the atmosphere. The dust direct radiative effect (DDRE) was estimated as the difference between the two (one taking into account all aerosol types and one taking into account all except for dust aerosols) flux outputs. The atmospheric heating rates and subsequent convection induced by dust radiative absorption were calculated at 50 levels to determine how the DDRE affects the thermal structure and dynamics of the atmosphere. The results showed that such a great and intense dust transport event significantly reduces the net surface solar radiation over the MB (by up to 62 W/m2 on a daily mean basis, and up to 200 W/m2 on an hourly basis, at 12:00 UTC) while increasing the atmospheric solar absorption (by up to 72 W/m2 daily and 187 W/m2 hourly, at 12:00 UTC). At the top of the atmosphere, both heating (over desert areas) and cooling (over oceanic and other continental areas) are observed due to the significantly different surface albedos. Transported dust causes considerable heating of the region’s atmosphere, which becomes maximum at altitudes where the dust loadings are highest (0.14 K/3 h on 17 June 2016, 12:00 UTC, at 3–5 km above sea level). The dust solar absorption and heating induce a buoyancy as strong as 0.014 m/s2, resulting in considerable changes in vertical air motions and possibly contributing to the formation of middle- and high-level clouds over the Mediterranean Basin. Full article
Show Figures

Figure 1

29 pages, 12996 KiB  
Article
Numerical Study of Velocity and Mixture Fraction Fields in a Turbulent Non-Reacting Propane Jet Flow Issuing into Parallel Co-Flowing Air in Isothermal Condition through OpenFOAM
by Abdolreza Aghajanpour and Seyedalireza Khatibi
AppliedMath 2023, 3(2), 468-496; https://doi.org/10.3390/appliedmath3020025 - 27 May 2023
Cited by 1 | Viewed by 2289
Abstract
This research employs computational methods to analyze the velocity and mixture fraction distributions of a non-reacting Propane jet flow that is discharged into parallel co-flowing air under iso-thermal conditions. This study includes a comparison between the numerical results and experimental results obtained from [...] Read more.
This research employs computational methods to analyze the velocity and mixture fraction distributions of a non-reacting Propane jet flow that is discharged into parallel co-flowing air under iso-thermal conditions. This study includes a comparison between the numerical results and experimental results obtained from the Sandia Laboratory (USA). The objective is to improve the understanding of flow structure and mixing mechanisms in situations where there is no involvement of chemical reactions or heat transfer. In this experiment, the Realizable k-ε eddy viscosity turbulence model with two equations was utilized to simulate turbulent flow on a nearly 2D plane (specifically, a 5-degree partition of the experimental cylinder domain). This was achieved using OpenFOAM open-source software and swak4Foam utility, with the reactingFoam solver being manipulated carefully. The selection of this turbulence model was based on its superior predictive capability for the spreading rate of both planar and round jets, as compared to other variants of the k-ε models. Numerical axial and radial profiles of different parameters were obtained for a mesh that is independent of the grid (mesh B). These profiles were then compared with experimental data to assess the accuracy of the numerical model. The parameters that are being referred to are mean velocities, turbulence kinetic energy, mean mixture fraction, mixture fraction half radius (Lf), and the mass flux diagram. The validity of the assumption that w߰ = v߰ for the determination of turbulence kinetic energy, k, seems to hold true in situations where experimental data is deficient in w߰. The simulations have successfully obtained the mean mixture fraction and its half radius, Lf, which is a measure of the jet’s width. These values were determined from radial profiles taken at specific locations along the X-axis, including x/D = 0, 4, 15, 30, and 50. The accuracy of the mean vertical velocity fields in the X-direction (Umean) is noticeable, despite being less well-captured. The resolution of mean vertical velocity fields in the Y-direction (Vmean) is comparatively lower. The accuracy of turbulence kinetic energy (k) is moderate when it is within the range of Umean and Vmean. The absence of empirical data for absolute pressure (p) is compensated by the provision of numerical pressure contours. Full article
Show Figures

Figure 1

29 pages, 7672 KiB  
Article
Thermographic Investigation on Fluid Oscillations and Transverse Interactions in a Fully Metallic Flat-Plate Pulsating Heat Pipe
by Luca Pagliarini, Luca Cattani, Vincent Ayel, Maksym Slobodeniuk, Cyril Romestant and Fabio Bozzoli
Appl. Sci. 2023, 13(10), 6351; https://doi.org/10.3390/app13106351 - 22 May 2023
Cited by 4 | Viewed by 1912
Abstract
The present investigation deals with the quantification of fluid oscillation frequencies in a metallic pulsating heat pipe tested at varying heat loads and orientations. The aim is to design a robust technique for the study of the inner fluid dynamics without adopting typical [...] Read more.
The present investigation deals with the quantification of fluid oscillation frequencies in a metallic pulsating heat pipe tested at varying heat loads and orientations. The aim is to design a robust technique for the study of the inner fluid dynamics without adopting typical experimental solutions, such as direct fluid visualizations through transparent inserts. The studied device is made of copper, and it is partially filled with a water–ethanol mixture (20 wt.% of ethanol). Heat fluxes locally exchanged between the working fluid and the device walls are first assessed through the inverse heat conduction problem resolution approach by processing outer wall temperature distributions acquired by thermography. The estimated local heat transfer quantities are therefore processed to quantify the fluid oscillatory behavior in every device branch during the intermittent flow and full activation regimes, thus providing a deeper insight into the heat transfer modes. After dealing with a further validation of the inverse approach in terms of oscillation frequency restoration capability, the wall-to-fluid heat fluxes referred to each channel are processed by means of the wavelet method. Scalograms and power spectra of the considered signals are presented for a time-based analysis of the working fluid oscillations, as well as for the identification of dominant oscillation frequencies. Fluid motion is then quantified in terms of the continuity of fluid oscillations and activity of channels by applying a scalogram denoising technique named K-means clustering method. Moreover, a statistical reduction of the channel-wise dominant oscillation frequencies is performed to provide useful references for the interpretation of the overall oscillatory behavior. The link between oscillations and transverse interactions is finally investigated. The vertical bottom-heated mode exhibits stronger fluid oscillations with respect to the horizontal mode, with fluid oscillation frequencies ranging from 0.78 up to 1 Hz. Nonetheless, the fluid motion is more stable in terms of oscillation frequency between channels when the device operates in the horizontal orientation probably due to negligible buoyancy effects. Moreover, thermal interactions between adjacent channels are found to be stronger when the oscillatory behavior presents similar features from channel to channel in horizontal orientation. The proposed method for fluid oscillation analyses in fully metallic flat-plate pulsating heat pipes can be effectively adopted to other flat-plate layouts without any need for transparent windows, thus reducing the overall complexity of experimental set-ups and providing, at the same time, a good insight into the inner fluid dynamics. Full article
(This article belongs to the Special Issue Recent Progress in Infrared Thermography)
Show Figures

Figure 1

Back to TopTop