Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = vertical greenery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 16366 KB  
Article
Assessment of Seismic Performance and Structural Health Monitoring of a Retrofitted Reinforced Concrete Structure with Polyurethane-Based Interventions and Vertical Greenery Systems
by Theodoros Rousakis, Vachan Vanian, Martha Lappa, Adamantis G. Zapris, Ioannis P. Xynopoulos, Maristella E. Voutetaki, Stefanos Kellis, George M. Sapidis, Maria C. Naoum, Nikos A. Papadopoulos, Violetta K. Kytinou, Martha Karabini, Athanasia Thomoglou and Constantin E. Chalioris
Polymers 2025, 17(23), 3104; https://doi.org/10.3390/polym17233104 - 22 Nov 2025
Viewed by 452
Abstract
This study examines Phase B of the GREENERGY project focusing on the seismic performance and structural health monitoring of a renovated single-story RC frame with brick masonry infills that received significant strategic structural interventions. The columns were confined with basalt fiber ropes (FR, [...] Read more.
This study examines Phase B of the GREENERGY project focusing on the seismic performance and structural health monitoring of a renovated single-story RC frame with brick masonry infills that received significant strategic structural interventions. The columns were confined with basalt fiber ropes (FR, 4 mm thickness, two layers) in critical regions, the vertical interfaces between infill and concrete were filled with polyurethane PM forming PUFJ (PolyUrethane Flexible Joints), and glass fiber mesh embedded in polyurethane PS was applied as FRPU (Fiber Reinforced PolyUrethane) jacket on the infills. Further, greenery renovations included the attachment of five double-stack concrete planters (each weighing 153 kg) with different support-anchoring configurations and of eight steel frame constructions (40 kg/m2) simulating vertical living walls (VLW) with eight different connection methods. The specimen was subjected to progressively increasing earthquake excitation based on the Thessaloniki 1978 earthquake record with peak ground acceleration ranging from EQ0.07 g to EQ1.40 g. Comprehensive instrumentation included twelve accelerometers, eight draw wire sensors, twenty-two strain gauges, and a network of sixty-one PZTs utilizing the EMI (Electromechanical Impedance) technique. Results demonstrated that the structure sustained extremely high displacement drift levels of 2.62% at EQ1.40 g while maintaining structural integrity and avoiding collapse. The PUFJ and FRPU systems maintained their integrity throughout all excitations, with limited FRPU fracture only locally at extreme crushing zones of two opposite bottom bricks. Columns’ longitudinal reinforcement entered yielding and strain hardening at top and bottom critical regions provided the FR confinement. VLW frames exhibited equally remarkably resilient performance, avoiding collapse despite local anchor degradation in some investigated cases. The planter performance varied significantly, yet avoiding overturning in all cases. Steel rod anchored planter demonstrated superior performance while simply supported configurations on polyurethane pads exhibited significant rocking and base sliding displacement of ±4 cm at maximum intensity. PZT structural health monitoring (SHM) sensors successfully tracked damage progression. RMSD indices of PZT recordings provided quantifiable damage assessment. Elevated RMSD values corresponded well to visually observed local damages while lower RMSD values in columns 1 and 2 compared with columns 3 and 4 suggested that basalt rope wrapping together with PUFJ and FRPU jacketed infills in two directions could restrict concrete core disintegration more effectively. The experiments validate the advanced structural interventions and vertical forest renovations, ensuring human life protection during successive extreme EQ excitations of deficient existing building stock. Full article
Show Figures

Figure 1

35 pages, 4041 KB  
Review
Nature-Based Solutions for Urban Buildings—The Potential of Vertical Greenery: A Brief Review of Benefits and Challenges of Implementation
by Ifigeneia Theodoridou, Katerina Vatitsi, Maria Stefanidou, Vachan Vanian, Theodora Fanaradelli, Makrini Macha, Adamantis Zapris, Violetta Kytinou, Maristella Voutetaki, Theodoros Rousakis, Giorgos Mallinis and Constantin Chalioris
Urban Sci. 2025, 9(10), 398; https://doi.org/10.3390/urbansci9100398 - 30 Sep 2025
Cited by 4 | Viewed by 3368
Abstract
The global rapid urbanization intensifies environmental challenges related to climate change, such as air pollution and the urban heat island (UHI) effect in built environments. The need to optimize nature-based solutions (NBSs) is imperative to mitigate climate change and adapt to extreme weather [...] Read more.
The global rapid urbanization intensifies environmental challenges related to climate change, such as air pollution and the urban heat island (UHI) effect in built environments. The need to optimize nature-based solutions (NBSs) is imperative to mitigate climate change and adapt to extreme weather phenomena. Against this background, this review offers an analysis regarding the integration of vertical greenery systems (VGSs) into urban environments so as to capitalize on their environmental, social, and economic benefits. Key aspects of the review include the positive role of VGSs in UHI mitigation, air quality improvement, stormwater management, and biodiversity enhancement, while examining social aspects (i.e., improved well-being and mental health, noise reduction, and urban built aesthetics). Finally, parameters related to economic benefits and energy efficiency are assessed. The submission further analyses the significant challenges that VGSs face, such as high maintenance costs, structural risks, plant health issues, fire hazards, and other limitations (legislative and technical). The crucial need for interdisciplinary collaborations among urban planners, architects, environmental engineers, and stakeholders is highlighted, in order to successfully integrate VGSs into urban buildings. Thus, this paper aims to identify key strategies for optimizing VGSs’ implementation and provide valuable insights for policymakers and researchers aiming to enhance urban sustainability through vertical greening. Full article
Show Figures

Figure 1

26 pages, 2982 KB  
Article
Perception of Vertical Greening Applications on Historic Buildings
by Eda Kale, Marie De Groeve, Yonca Erkan and Tim De Kock
Heritage 2025, 8(8), 316; https://doi.org/10.3390/heritage8080316 - 8 Aug 2025
Cited by 1 | Viewed by 1534
Abstract
The implementation of Vertical Greening Systems (VGS), like green façades, on historic building facades is approached with caution due to concerns regarding material compatibility, visual impact, and potential compromises to cultural significance. However, VGS can offer significant contributions to urban sustainability when integrated [...] Read more.
The implementation of Vertical Greening Systems (VGS), like green façades, on historic building facades is approached with caution due to concerns regarding material compatibility, visual impact, and potential compromises to cultural significance. However, VGS can offer significant contributions to urban sustainability when integrated with knowledge and care of historic buildings by reducing the urban heat island effect, improving air quality, fostering a green economy, and creating greener environments. These tensions highlight a critical research gap: how can VGS contribute to urban sustainability while respecting the values of historic building façades? This study addresses this gap by exploring professional interest groups’ opinions on implementing VGS on historic buildings, focusing on the perceived benefits and concerns from environmental, social, economic, cultural, legal, and technical aspects. A mixed-methods approach was employed, combining the findings from the literature review with a survey targeting individuals involved in VGS implementations or heritage conservation. The survey included both open- and closed-ended questions. Of the 165 individuals contacted, 83 valid responses were analyzed. Results from the open-ended questions showed that 89% of respondents recognized the environmental benefits of VGS, while 85% raised technical issues, particularly regarding material compatibility. An important insight emerged from comparing open-ended and closed-ended responses: respondents were more likely to acknowledge the benefits of VGS when prompted. This indicates that raising awareness about the use of VGS on historic buildings is essential. The findings offer practical implications for early-stage planning, stakeholder engagement, and the design of heritage conservation policy. They illustrate a need for an informed decision-making process for the integration of VGS onto historic building facades, aligning with conservation ethics and urban sustainability. Preface: This study aims to create a discussion on the potential synergies between vertical greening and historic buildings, with the intention of guiding future conservation strategies to enhance urban sustainability. We do not advocate for vertical greenery as a universal solution, but rather seek to explore under which conditions vertical greening may be compatible with conservation practice. For the purposes of this study, “historic buildings” refer to structures that possess cultural, architectural, or historical significance, whether they are formally protected or informally valued by their communities. We acknowledge that the term may vary in meaning across different national and cultural contexts. Moreover, our analysis focuses on cases where both the vertical greening and historic façades are presumed to be in structurally sound and well-maintained condition. Full article
(This article belongs to the Section Architectural Heritage)
Show Figures

Figure 1

26 pages, 918 KB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Cited by 12 | Viewed by 11322
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

30 pages, 3534 KB  
Systematic Review
The Role of Urban Greenery in Enhancing Thermal Comfort: Systematic Review Insights
by Nandini Halder, Manoj Kumar, Akshay Deepak, Shailendra K. Mandal, Amjad Azmeer, Basit A. Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Sustainability 2025, 17(6), 2545; https://doi.org/10.3390/su17062545 - 14 Mar 2025
Cited by 12 | Viewed by 5658
Abstract
As cities grapple with rising temperatures, the integration of urban greenery has gained recognition as a viable solution to mitigate these effects and enhance outdoor thermal conditions. This paper identifies widely used and emerging numerical models, highlights research gaps, and addresses key insights [...] Read more.
As cities grapple with rising temperatures, the integration of urban greenery has gained recognition as a viable solution to mitigate these effects and enhance outdoor thermal conditions. This paper identifies widely used and emerging numerical models, highlights research gaps, and addresses key insights from the selected literature. Grounded in a PRISMA-based review, it offers insights to optimize strategies for mitigating urban heat islands and enhancing livability. The study explores synergies and trade-offs between green infrastructure and the built environment, aiming to provide insights into optimizing these elements for sustainable urban development. In this research, a mixed-methods approach was adopted by combining a systematic review and a bibliometric review using the PRISMA 2020 and VOSviewer 1.6.19 of 48 relevant studies. The PRISMA process led to the selection of the papers used for both the qualitative synthesis and bibliometric analysis. The results indicate a significant increase in research output in the last decades with a marked focus on green roofs, urban parks, and vertical greening systems. Our findings provide an elaborate conceptual framework that maps the interrelation between the research topics. Also, the study highlights existing research gaps in numerical modeling software for evaluating the cooling potential of urban greenery and its impact on thermal comfort across diverse urban contexts. The study recommends developing standardized frameworks and metrics for evaluating thermal comfort in urban areas, as well as suggesting that advancing numerical modeling software is essential to accurately simulate the complex interactions between urban greenery, microclimates, and urban forms. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

17 pages, 5421 KB  
Article
The Novel Application of a Geosynthetic as Vegetation Substrate for Ecological Restoration on Steep Concrete and Rock Slopes
by Jun Guo, Tao Qiu, Leyao Chen, Zhuoxuan Chen, Zhao Liu, Jiajun Liao, Jingying Chu, Yunhui Zhou and Bingfa Zou
Sustainability 2025, 17(6), 2444; https://doi.org/10.3390/su17062444 - 11 Mar 2025
Viewed by 1327
Abstract
Civil, transportation, and hydraulic projects often result in concrete or rocky slope surfaces that have difficultly sustaining vegetation due to the lack of suitable substrate. A geosynthetic-based vegetation substrate was proposed to replace traditional soil-based vegetation substrates for vegetation restoration on steep concrete [...] Read more.
Civil, transportation, and hydraulic projects often result in concrete or rocky slope surfaces that have difficultly sustaining vegetation due to the lack of suitable substrate. A geosynthetic-based vegetation substrate was proposed to replace traditional soil-based vegetation substrates for vegetation restoration on steep concrete or rock surfaces. The geosynthetic vegetation substrate (GVS) provides the following four key functions for vegetation restoration: 1. Germination environment for seeds. 2. Room for root development and vegetation fixation. 3. Allowing water and nutrients to be transported and stored within the substrate. 4. Sufficient strength to support vegetation on steep or vertical surfaces. An 8-month field study revealed the following: vegetation leaf length peaked at over 400 mm by the 100th day, with annual fresh biomass reaching 2.99 kg/m2 (94% from stems/leaves). The geosynthetics maintained 91.6% to 99.5% of initial tensile strength and 82.9% to 98.2% creep resistance. These findings establish GVS as a viable solution for ecological restoration on engineered slopes. Full article
Show Figures

Figure 1

21 pages, 13945 KB  
Review
The Carbon Sequestration Potential of Skyscraper Greenery: A Bibliometric Review (2003–2023)
by Mo Wang, Haoyu Xu, Jiayu Zhao, Chuanhao Sun, Yongqi Liu and Jianjun Li
Sustainability 2025, 17(5), 1774; https://doi.org/10.3390/su17051774 - 20 Feb 2025
Cited by 4 | Viewed by 1999
Abstract
Nature-based solutions (NBS) encompass a diverse range of ecosystem-based strategies aimed at addressing urban sustainability challenges. Among these, skyscraper greenery emerges as a specialized application of NBS, integrating vertical vegetation systems into high-rise architecture to enhance carbon sequestration, mitigate urban heat islands, and [...] Read more.
Nature-based solutions (NBS) encompass a diverse range of ecosystem-based strategies aimed at addressing urban sustainability challenges. Among these, skyscraper greenery emerges as a specialized application of NBS, integrating vertical vegetation systems into high-rise architecture to enhance carbon sequestration, mitigate urban heat islands, and improve air quality. By extending NBS principles into the vertical dimension of cities, this approach offers a scalable solution for climate adaptation in high-density urban environments. This study provides a comprehensive bibliometric analysis of skyscraper greenery research from 2003 to 2023, employing advanced tools such as CiteSpace and Bibliometrix to assess publication trends, elucidate key research themes, and identify prevailing knowledge gaps. The findings underscore the environmental benefits of skyscraper greenery, including its role in alleviating the urban heat island effect, improving air quality, and enhancing urban biodiversity. Additionally, economic advantages, such as reductions in energy consumption and operational costs, further highlight its multifaceted utility. Carbon sequestration within skyscraper greenery primarily occurs through vegetation’s photosynthetic processes, which are influenced by plant species, substrate composition, and system design. Thermal performance, ecosystem services, and biodiversity emerge as pivotal themes driving research in this domain. However, the field faces persistent challenges, including inconsistent methodologies for measuring carbon sequestration, a lack of technical standards, and limited public awareness. Future studies must prioritize the standardization of carbon measurement protocols, optimization of plant and substrate selection, and integration of skyscraper greenery within comprehensive urban sustainability frameworks. Addressing socio-economic barriers and enhancing policy incentives will be essential for widespread adoption. This review emphasizes the transformative potential of skyscraper greenery as a multifunctional strategy for climate mitigation, advancing resilient, low-carbon, and sustainable urban environments. Full article
Show Figures

Figure 1

25 pages, 9445 KB  
Article
Exploratory Analysis of a Novel Modular Green Wall’s Impact on Indoor Temperature and Energy Consumption in Residential Buildings: A Case Study from Belgium
by Milana Radujković, Alexis Versele and Hilde Breesch
Energies 2024, 17(21), 5267; https://doi.org/10.3390/en17215267 - 23 Oct 2024
Cited by 4 | Viewed by 3818
Abstract
One possible solution that mitigates the effects of climate change is the implementation of vertical greenery systems, which have the potential to reduce the need for cooling and provide energy savings for heating. This paper evaluates the effects of an innovative modular green [...] Read more.
One possible solution that mitigates the effects of climate change is the implementation of vertical greenery systems, which have the potential to reduce the need for cooling and provide energy savings for heating. This paper evaluates the effects of an innovative modular green wall on indoor temperature and energy use in a residential case study building. This research was carried out on a residential house in the city of Ghent, Belgium, whose southwest facade is covered with a specific type of modular green wall (a structure with a specific substrate and plants that have the ability to purify water so that it can be reused in the house). The monitoring process included four different temperatures (in front of and behind the green wall, in the substrate, and on the wall without greenery) during winter and summer periods. To analyze the effect on the internal temperature and energy use, a DesignBuilder simulation model was built and validated against these experimental results. This green wall has proven to have the greatest effect during the hottest summer days by reducing the indoor temperature by up to 3.5 °C. It also effectively increases the indoor temperature by up to 1.4 °C on a cold winter day, leading to energy savings of 6% on an annual basis. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

15 pages, 4510 KB  
Article
Assessing the Impact of Vertical Greenery Systems on the Thermal Performance of Walls in Mediterranean Climates
by Francesco Nocera, Vincenzo Costanzo, Maurizio Detommaso and Gianpiero Evola
Energies 2024, 17(20), 5090; https://doi.org/10.3390/en17205090 - 13 Oct 2024
Cited by 3 | Viewed by 2845
Abstract
This study investigates the impact of vertical greenery systems (VGSs) applied to several typical wall configurations on indoor thermal conditions in a building module situated in the Mediterranean climate of Catania, Italy. By means of dynamic simulations in TRNSYS vers.18, the research compares [...] Read more.
This study investigates the impact of vertical greenery systems (VGSs) applied to several typical wall configurations on indoor thermal conditions in a building module situated in the Mediterranean climate of Catania, Italy. By means of dynamic simulations in TRNSYS vers.18, the research compares the thermal behavior of walls made of either hollow clay blocks (Poroton) or lava stone blocks against a lightweight wall setup already in place at the University of Catania. The primary focus is on evaluating the VGSs’ capability of reducing peak inner surface temperatures and moderating heat flux fluctuations entering the building. The findings indicate that adding an outer vertical greenery layer to heavyweight walls can decrease the peak inner surface temperature by up to 1.0 °C compared to the same bare wall. However, the greenery’s positive impact is less pronounced than in the case of the lightweight wall. This research underscores the potential of green facades in enhancing the indoor thermal environment in buildings in regions with climates like the Mediterranean one, providing valuable insights for sustainable building design and urban planning. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

18 pages, 4988 KB  
Article
Living Walls and Green Façades: An Implementation Code for Energy Simulation
by Valeria Nesci, Ilaria Ballarini, Pietro Rando Mazzarino and Vincenzo Corrado
Buildings 2024, 14(7), 2040; https://doi.org/10.3390/buildings14072040 - 4 Jul 2024
Cited by 7 | Viewed by 3168
Abstract
The impacts of climate change, excessive greenhouse gas emissions, and the current energy crisis have motivated the European Union to adopt mitigation and adaptation strategies. These strategies primarily focus on the building sector due to its crucial role in addressing these issues. Among [...] Read more.
The impacts of climate change, excessive greenhouse gas emissions, and the current energy crisis have motivated the European Union to adopt mitigation and adaptation strategies. These strategies primarily focus on the building sector due to its crucial role in addressing these issues. Among the strategies, the implementation of resilient technologies for the building envelope, such as vertical greenery systems (VGSs) is gaining ground. The literature analysis shows that existing models are not sufficiently detailed in their description of the overall thermo-physical phenomena of VGSs. The aim of this work is to overcome the research gaps by selecting and improving two mathematical models for green façades and living walls. A dedicated calculation code to estimate the effect of VGSs on a building’s energy performance and indoor thermal comfort has been developed and implemented within the EnergyPlus calculation software (version 23.2). A BESTest Case from ASHRAE 140 was chosen to test the models and to assess benefits of VGSs. The results show that adopting green solutions for the building envelope can contribute to achieving the building’s energy efficiency goals and that the modelling of these technologies can be easily carried out within a dynamic energy simulation of the building. Full article
Show Figures

Figure 1

25 pages, 35547 KB  
Review
A Systematic Review of the Vertical Green System for Balancing Ecology and Urbanity
by Jiayu Zhao, Qiuyi Rao, Chuanhao Sun, Rana Muhammad Adnan Ikram, Chengliang Fan, Jianjun Li, Mo Wang and Dongqing Zhang
Water 2024, 16(11), 1472; https://doi.org/10.3390/w16111472 - 22 May 2024
Cited by 8 | Viewed by 6604
Abstract
Skyrise greenery, including green roofs and vertical gardens, has emerged as an indispensable tool for sustainable urban planning with multiple ecological and economic benefits. A bibliometric analysis was used to provide a systematic review of the functions associated with skyrise greenery in urban [...] Read more.
Skyrise greenery, including green roofs and vertical gardens, has emerged as an indispensable tool for sustainable urban planning with multiple ecological and economic benefits. A bibliometric analysis was used to provide a systematic review of the functions associated with skyrise greenery in urban landscapes. Key research tools, including the “Bibliometrix” R package and “CiteSpace” 6.2 R4, highlight the depth and breadth of the literature covering skyrise greenery. In 2000–2022, a total of 1474 original journal articles were retrieved. Over this period, there was an exponential increase in the number of publications, reflecting both enhanced knowledge and increasing concerns regarding climate change, the urban heat island, and urbanization. Of the total, ~58% of the articles originated from China, followed by the USA, Italy, Australia, and Canada. The research themes, such as urban heat islands, carbon sequestration, hydrology, and air quality, have been identified as the frontier in this fields. Furthermore, researchers from developed countries contributed the most publications to this domain, while developing countries, such as China, play an increasing role in the design and performance evaluation of vertical greenery. Key benefits identified in vertical green systems (e.g., green roofs and walls) include thermal regulation, sustainable water management, air-quality improvement, noise reduction, and biodiversity enhancement. In addition, several potential future research prospectives are highlighted. This review provides a comprehensive insight into exploring the pivotal role of skyrise greenery in shaping sustainable, resilient urban futures, coupled with sustainable urban planning. Full article
Show Figures

Figure 1

28 pages, 5094 KB  
Article
Sustainable Design of Vertical Greenery Systems: A Comprehensive Framework
by Mitra Manouchehri, Joaquín Santiago López and Mercedes Valiente López
Sustainability 2024, 16(8), 3249; https://doi.org/10.3390/su16083249 - 12 Apr 2024
Cited by 17 | Viewed by 7096
Abstract
The greening of buildings’ facades is not a new practice; it has been used since ancient times for protection and aesthetic purposes. Nowadays, the approach used towards the greening of facades has changed considerably. Vertical greenery systems (VGS) have been proposed as one [...] Read more.
The greening of buildings’ facades is not a new practice; it has been used since ancient times for protection and aesthetic purposes. Nowadays, the approach used towards the greening of facades has changed considerably. Vertical greenery systems (VGS) have been proposed as one of the innovative solutions to promote sustainable building functions. Present-day facade greenery not only offers traditional architectural potential but also incorporates advanced materials and technologies to adapt to the requirements of modern urban life. In recent years, the number of buildings that use this technology has increased considerably, and accordingly, the technology involved and the methods of application have changed to be in line with the new necessities. Various types of VGS have been introduced to provide users with a wider range of options that are applicable in different climates and conditions. As a result, different methods of VGS implementation have been adopted; however, there is no established standardization for VGS designs or their variations. Choosing the proper type of VGS is a crucial step in the decision-making process for VGS design. In this research, we provide an overview of the most significant existing classifications of vertical greenery systems and propose a comprehensive classification based on an analysis of their features and classification criteria. Moreover, influential factors in VGS design are investigated. This article presents a comprehensive framework for the sustainable design of vertical greenery systems by outlining the primary parameters that are crucial to identifying and selecting the most suitable type of VGS. The framework also incorporates design aspects, thus stressing the necessity of considering changes to attributes that could affect the overall functionality of a VGS and, as a result, impact the decision-making process. The results of this study provide a valuable resource to systematically study greenery systems, and their parameters, and also to make informed decisions that are aligned with current the sustainability objectives of future research in terms of cost, energy consumption, and maintenance. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

21 pages, 4744 KB  
Article
Investigating the Effect of Living Walls on Cooling Energy Consumption in Various Urban Microclimates, Building Heights, and Greenery Coverage Areas
by Vahid Bakhtyari, Kaveh Fattahi, Khosro Movahed and Anna Franz
Sustainability 2024, 16(2), 920; https://doi.org/10.3390/su16020920 - 22 Jan 2024
Cited by 7 | Viewed by 6569
Abstract
With the aim of addressing the significant contribution of buildings to global energy consumption and the growing need to establish a more harmonious connection between humans and nature in urban environments, the concept of green vertical systems has garnered considerable attention. These systems [...] Read more.
With the aim of addressing the significant contribution of buildings to global energy consumption and the growing need to establish a more harmonious connection between humans and nature in urban environments, the concept of green vertical systems has garnered considerable attention. These systems possess the potential to enhance the energy efficiency and environmental sustainability of buildings. This study seeks to explore the impact of living walls on the energy performance of buildings, specifically investigating the influence of a living-walled urban block on the ambient air temperature and its subsequent effect on building energy consumption. By comparing the cooling energy consumption of two typical buildings situated in Shiraz, southern Iran, with varying levels of greenery in different microclimates, we further ascertain the effectiveness of living walls in reducing energy consumption. To conduct this analysis, we employed coupled simulations utilizing EnergyPlus and Envi-met, which incorporated both the outdoor microclimate and the cooling energy consumption of the buildings. The urban block under consideration consisted of 48 three-story buildings (Case A) and five-story buildings (Case B) within a site measuring 120 m × 150 m. Our findings substantiate that the implementation of a living wall system can lower the ambient air temperature by a significant extent, with an average decrease of 1.35 °C and a maximum decrease of 2.25 °C. Consequently, living walls can effectively mitigate the urban heat island phenomenon by decreasing the temperatures of the surrounding buildings. Additionally, our investigations revealed a maximum energy saving of 15%, with microclimate exerting a 4.3% influence on these savings. Full article
(This article belongs to the Collection Toward a Restorative Economy)
Show Figures

Figure 1

24 pages, 10827 KB  
Article
Toward Precision Agriculture in Outdoor Vertical Greenery Systems (VGS): Monitoring and Early Detection of Stress Events
by Noa Zuckerman, Yafit Cohen, Victor Alchanatis and Itamar M. Lensky
Remote Sens. 2024, 16(2), 302; https://doi.org/10.3390/rs16020302 - 11 Jan 2024
Cited by 5 | Viewed by 2827
Abstract
Vertical greenery systems (VGS) have been proposed as a nature-based solution to mitigate the adverse effects of urban heat islands and climate change in cities. However, large-scale VGS are costly and require ongoing maintenance, typically carried out manually through trial and error based [...] Read more.
Vertical greenery systems (VGS) have been proposed as a nature-based solution to mitigate the adverse effects of urban heat islands and climate change in cities. However, large-scale VGS are costly and require ongoing maintenance, typically carried out manually through trial and error based on professional experience. Advanced management is essential for the sustainability of VGS due to its limited accessibility and associated costs. To address these challenges, we examined the use of remote sensing methods for outdoor VGS monitoring as a basis for a precision agriculture approach for VGS management and maintenance. This study presents the first ongoing monitoring of real-scale VGS using thermal, hyperspectral, and RGB vegetation indices. These indices were employed for the early detection of vegetation stress, focusing on two case studies exhibiting visible yellowing symptoms. Through the application of unsupervised classification techniques, stressed pixels were successfully detected 14–35 days before visual yellowing, achieving an accuracy of 0.85–0.91. Additionally, the thermal index provided valuable information regarding the spatial distribution of watering along the VGS. Stress maps based on noninvasive methods were demonstrated, forming the basis of a spatial decision support system capable of detecting issues related to plant vitality and VGS irrigation management. Full article
Show Figures

Figure 1

17 pages, 912 KB  
Review
Façade Greening for Healthy Urban Air: An Umbrella Review on Particulate Matter Reduction, Challenges, and Future Directions
by Philipp Spörl, Simone Trimmel, Daniela Haluza, Susan Sauerbrey, Johanna Irrgeher, Thomas Prohaska and Ulrike Pitha
Sustainability 2024, 16(1), 446; https://doi.org/10.3390/su16010446 - 4 Jan 2024
Cited by 8 | Viewed by 3435
Abstract
Particulate matter (PM) exposure in urban areas is a continuous threat to human health and requires sustainable solutions for effective reduction. The aim of this study is to provide a comprehensive overview of façade greening and its effects on PM and to identify [...] Read more.
Particulate matter (PM) exposure in urban areas is a continuous threat to human health and requires sustainable solutions for effective reduction. The aim of this study is to provide a comprehensive overview of façade greening and its effects on PM and to identify knowledge gaps. We systematically screened, analyzed, and re-evaluated previous reviews according to the criteria established for an umbrella review. As a result, this study covers and discusses common measurement methods, influencing factors, the effectiveness of façade greening, leaf characteristics, and plant species from different subtopics. The main findings are that inconsistent measurement methods limit the comparability of the analyzed reviews, and different climatic conditions affecting the use of plant species lead to different international effects. Despite the existing studies reporting a positive effect on the reduction of PM, comparability is difficult due to methodological differences and external influences. Given the complexity, interdisciplinary collaboration with experts is essential to increase the effectiveness of façade greening for PM accumulation for healthy urban air. We suggest that this umbrella review provides a foundation for future research and practical implementations, such as a suitable plant selection or façade design, by integrating the results. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop