Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (696)

Search Parameters:
Keywords = vertical balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2828 KiB  
Article
Determining the Ground Reaction Force Value and Location for Each Foot During Bipedal Stance Exercises from a Single Forceplate
by Adrián Schmedling, Erik Macho, Francisco J. Campa, Ruben Valenzuela, Mikel Diez, Javier Corral, Paul Diego, Saioa Herrero and Charles Pinto
Sensors 2025, 25(15), 4796; https://doi.org/10.3390/s25154796 - 4 Aug 2025
Abstract
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present [...] Read more.
In the study of biomechanical models, balance represents a complex problem due to the issue of indeterminate forces while standing. In order to solve this problem, it is essential to measure the ground reaction forces (GRFs) applied to each foot independently. The present work proposes a methodology for determining the independent GRF applied to each foot while standing when only one forceplate is available. For this purpose, an analytical method is proposed to determine the distribution of vertical GRFs and the position of the independent center of pressure (CoP) in each foot. Concurrently, several neural network (NN) models are trained to improve the results obtained. This hypothesis is experimentally validated by a self-developed device that allows one to simultaneously obtain the vertical GRF and CoP location of each foot at the same time that the GRF and the global CoP location are obtained from a single forceplate. The results obtained achieve a CoP position error of less than 8% and a vertical force error of 2%. The analytical hypothesis is demonstrated to offer a satisfactory level of precision, while the NN is shown to result in considerable improvement in some cases. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

11 pages, 1617 KiB  
Article
Mechanics of Interfacial Debonding in FRP Strengthening Systems: Energy Limits and Characteristic Bond Lengths
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2025, 9(8), 412; https://doi.org/10.3390/jcs9080412 - 4 Aug 2025
Abstract
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending [...] Read more.
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending branch. The investigation focuses on the interaction between the elastic energy stored in the FRP and the adhesive interface, as well as the characteristic lengths that control the debonding process. Analytical expressions for the strain energy stored in both the FRP plate and the adhesive interface are derived, enabling the identification and evaluation of two critical characteristic lengths as the bond stress at the loaded end approaches its maximum value lc, at which the elastic energies of the FRP and the adhesive interface converge, signaling energy saturation; and lmax, where the adhesive interface attains its peak energy absorption. Upon reaching the energy saturation state, the system undergoes failure through the sudden and complete debonding of the FRP from the substrate. The onset of unstable debonding is rigorously analyzed in terms of the first and second derivatives of the total potential energy with respect to the bond length. It is further demonstrated that abrupt debonding may also occur in cases where the length exceeds lc when the bond stress reaches its maximum, and the bond–slip law is characterized by a vertical branch. The findings provide significant insights into the energy balance and stability criteria governing the debonding failure mode in FRP-strengthened structures, highlighting the pivotal role of characteristic lengths in predicting both structural performance and failure mechanisms. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 254
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

23 pages, 30771 KiB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 311
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

38 pages, 16643 KiB  
Article
Numerical Investigation of Inclination Effects on a Submerged Plate as Breakwater and Wave Energy Converter Under Realistic Sea State Waves
by Vitor Eduardo Motta, Gabrielle Ücker Thum, Maycon da Silveira Paiva, Rafael Adriano Alves Camargo Gonçalves, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, Bianca Neves Machado and Liércio André Isoldi
J. Mar. Sci. Eng. 2025, 13(8), 1438; https://doi.org/10.3390/jmse13081438 - 28 Jul 2025
Viewed by 211
Abstract
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations [...] Read more.
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations were conducted using ANSYS Fluent. Regular waves were generated by Stokes’s second-order theory, while the WaveMIMO technique was employed to generate irregular waves. Using the volume of fluid (VOF) method to model the water–air interaction, both approaches generate waves by imposing their vertical and horizontal velocity components at the inlet of the wave flume. The SP’s performance as a BW was analyzed based on the upstream and downstream free surface elevations of the device; in turn, its performance as a WEC was determined through its axial velocity beneath the plate. The results indicate that performance varies between regular and irregular wave conditions, underscoring the importance of accurately characterizing the sea state at the intended installation site. These findings demonstrate that the inclination of the SP plays a critical role in balancing its dual functionality, with certain configurations enhancing WEC efficiency by over 50% while still offering relevant BW performance, even under realistic irregular sea conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 5613 KiB  
Article
Generative Design-Driven Optimization for Effective Concrete Structural Systems
by Hossam Wefki, Mona Salah, Emad Elbeltagi and Majed Alinizzi
Buildings 2025, 15(15), 2646; https://doi.org/10.3390/buildings15152646 - 27 Jul 2025
Viewed by 430
Abstract
The process of designing reinforced concrete (RC) buildings has traditionally relied on manually evaluating a limited number of layout alternatives—a time-intensive process that may not always yield the most functionally efficient solution. This research introduces a parametric algorithmic model for the automated optimization [...] Read more.
The process of designing reinforced concrete (RC) buildings has traditionally relied on manually evaluating a limited number of layout alternatives—a time-intensive process that may not always yield the most functionally efficient solution. This research introduces a parametric algorithmic model for the automated optimization of RC buildings with solid slab systems. The model automates and optimizes the layout process, yielding measurable improvements in spatial efficiency while maintaining compliance with structural performance criteria. Unlike prior models that address structural or architectural parameters separately, the proposed framework integrates both domains through a unified generative design approach within a BIM environment, enabling automated evaluation of structurally viable and architecturally coherent slab layouts. Developed within the parametric visual programming environment in Dynamo for Revit, the model employs a generative design (GD) engine to explore and refine various design alternatives while adhering to structural constraints. By leveraging a BIM-based framework, this method enhances efficiency, optimizes resource utilization, and systematically balances structural and architectural requirements. The model was validated through three case studies, demonstrating cost reductions between 2.7% and 17%, with material savings of up to 13.38% in concrete and 20.87% in reinforcement, achieved within computational times ranging from 120 to 930 s. Despite the current development being limited to vertical load scenarios and being most suitable for regular slab-based configurations, the results demonstrated the model’s effectiveness in optimizing grid dimensions and reducing material quantities and costs, and highlighted its ability to streamline early-stage design processes. Full article
(This article belongs to the Special Issue Advancing Construction and Design Practices Using BIM)
Show Figures

Figure 1

18 pages, 970 KiB  
Article
Effects of AMCOP® Elastodontic Devices on Skeletal Divergence and Airway Dimensions in Growing Patients
by Gianna Dipalma, Alessio Danilo Inchingolo, Filippo Cardarelli, Antonio Di Lorenzo, Fabio Viapiano, Laura Ferrante, Francesco Inchingolo, Daniela Di Venere, Andrea Palermo, Grazia Marinelli and Angelo Michele Inchingolo
J. Clin. Med. 2025, 14(15), 5297; https://doi.org/10.3390/jcm14155297 - 27 Jul 2025
Viewed by 343
Abstract
Objectives: This study aimed to evaluate the effects of AMCOP® elastodontic appliances on cephalometric parameters of skeletal divergence and upper airway dimensions in growing patients, comparing treated individuals with an untreated control group. Methods: A total of 60 subjects (30 [...] Read more.
Objectives: This study aimed to evaluate the effects of AMCOP® elastodontic appliances on cephalometric parameters of skeletal divergence and upper airway dimensions in growing patients, comparing treated individuals with an untreated control group. Methods: A total of 60 subjects (30 treated with AMCOP® devices and 30 controls) were selected, with mean ages of 8.67 ± 1.3 and 9.19 ± 0.8 years, respectively. The AMCOP® appliances, designed for mixed dentition, were worn for 1 h during the day and throughout the night for 6–8 months. Cephalometric analyses were conducted at the beginning (T0) and end (T1) of treatment. Statistical analyses were performed using multivariable linear regression models to assess changes in skeletal and airway parameters, with significance set at p < 0.05. Results: Significant reductions were observed in Ans-Snp^Go-Gn (p = 0.0351), SN^Go-Gn (p = 0.0091), and FMA (p < 0.001) in the treated group compared to controls, indicating improved mandibular rotation. Upper airway spaces (SPAS, MAS, IAS) increased significantly, suggesting enhanced airway patency. Regression models confirmed the positive impact of AMCOP® therapy on skeletal and airway outcomes, particularly in subjects with pronounced vertical discrepancies. Conclusions: AMCOP® elastodontic devices effectively promote anterior mandibular rotation and reduce mandibular plane inclination in hyperdivergent patients, contributing to balanced craniofacial growth. The expansion of pharyngeal spaces indicates potential respiratory benefits. Future research is needed to confirm long-term stability and address variability in treatment response. Full article
(This article belongs to the Special Issue Orthodontics: Current Advances and Future Options)
Show Figures

Figure 1

20 pages, 937 KiB  
Article
Timber Industrial Policies and Export Competitiveness: Evidence from China’s Wood-Processing Sector in the Context of Sustainable Development
by Yulan Sun, Fangzheng Wang, Weiming Lin, Yongwu Dai and Jiajun Lin
Forests 2025, 16(8), 1232; https://doi.org/10.3390/f16081232 - 26 Jul 2025
Viewed by 303
Abstract
In the era of climate change, the strategic importance of forestry products for sustainable development is increasingly recognized. Amid a global resurgence of industrial policy aimed at addressing environmental challenges, this study investigates the impact of China’s central and provincial green industrial policies [...] Read more.
In the era of climate change, the strategic importance of forestry products for sustainable development is increasingly recognized. Amid a global resurgence of industrial policy aimed at addressing environmental challenges, this study investigates the impact of China’s central and provincial green industrial policies on the export competitiveness of wood-processing enterprises. Utilizing firm-level data from the China Industrial Enterprise Database and China Customs Export Database (2000–2013), we apply a double machine learning (DML) approach and construct a heterogeneous competitiveness model to evaluate policy effects along two dimensions: export quantity (volume and intensity) and export quality (product complexity and consumer-perceived quality). Our findings reveal a clear dichotomy in policy outcomes. While industrial policies have significantly improved export product complexity—reflecting China’s comparative advantage in labor-intensive production—they have had limited or even negative effects on export volume, intensity, and product quality. This suggests that current policy frameworks disproportionately reward horizontal innovation (product diversification) while neglecting vertical upgrading (quality enhancement), thereby hindering comprehensive export performance gains. Those results highlight the need for more balanced and targeted policy design. By aligning industrial policy instruments with both complexity and quality objectives, policymakers can better support the sustainable transformation of China’s forestry sector and enhance its competitiveness in global value chains. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

15 pages, 1242 KiB  
Article
Single-Night Sleep Extension Enhances Morning Physical and Cognitive Performance Across Time of Day in Physically Active University Students: A Randomized Crossover Study
by Eya Bouzouraa, Wissem Dhahbi, Aymen Ferchichi, Vlad Adrian Geantă, Mihai Ioan Kunszabo, Hamdi Chtourou and Nizar Souissi
Life 2025, 15(8), 1178; https://doi.org/10.3390/life15081178 - 24 Jul 2025
Viewed by 525
Abstract
This study investigated the effects of a single-night sleep extension protocol on physical performance and cognitive function in physically active university students across different times of day. Using a within-subjects, counterbalanced crossover design, 24 physically active university students (17 males, 7 females; age: [...] Read more.
This study investigated the effects of a single-night sleep extension protocol on physical performance and cognitive function in physically active university students across different times of day. Using a within-subjects, counterbalanced crossover design, 24 physically active university students (17 males, 7 females; age: 22.7 ± 1.6 years) completed performance assessments under normal-sleep and sleep-extension conditions. Participants’ sleep was monitored via wrist actigraphy, and a comprehensive assessment battery comprising vertical jumps, Y-Balance tests, medicine-ball throws, 5 m shuttle-run tests, reaction-time tests, and digit-cancellation tests was administered at baseline (8 PM), morning (8 AM), and afternoon (4 PM). Sleep extension increased total sleep time by approximately 55 min (531.3 ± 56.8 min vs. 476.5 ± 64.2 min; p < 0.001, d = 0.91). Significant improvements were observed in 5 m shuttle-run performance at 8 AM (best distance: 102.8 ± 11.9 m vs. 93.3 ± 8.5 m, p < 0.001, d = 0.93; fatigue index: 13.1 ± 8.3% vs. 21.2 ± 9.5%, p < 0.001, d = 0.90), squat-jump heights (28.2 ± 8.0 cm vs. 26.3 ± 7.2 cm, p = 0.005, d = 0.25), simple reaction time (252.8 ± 55.3 ms vs. 296.4 ± 75.2 ms, p < 0.001, d = 0.66), and digit-cancellation performance (67.6 ± 12.6 vs. 63.0 ± 10.0 targets, p = 0.006, d = 0.40). Sleep extension significantly enhances both physical and cognitive performance in physically active individuals, with effects more pronounced during morning hours, partially attenuating typical circadian performance decline and establishing sleep extension as an effective, non-pharmacological strategy for optimizing performance capabilities. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

24 pages, 8445 KiB  
Article
DEM-Based Simulation Study on the Operational Performance of a Single Horizontal Shaft Forced-Action Mixer
by Haipeng Yang, Guanguo Ma and Wei Zhao
Buildings 2025, 15(15), 2627; https://doi.org/10.3390/buildings15152627 - 24 Jul 2025
Viewed by 293
Abstract
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the [...] Read more.
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the mixing uniformity. A 1:2 scale model was developed, incorporating Newton’s laws of motion and a soft-sphere contact model to simulate the particle trajectories and interactions during mixing. The results indicate that top–bottom feeding enhances mixing efficiency significantly by forming vertical convective circulation, achieving a mixing uniformity above 0.9. A moderate rotation speed of 30 rpm provides the best balance between energy consumption and mixing performance. As the coarse aggregate size increases (from 9 mm to 15 mm), the enhanced particle inertia leads to a decrease in mixing uniformity (from 0.9 to 0.6). Additionally, the discrepancy between simulation and experimental results is less than 0.1, validating the reliability of the model. This research offers theoretical guidance for the structural optimization and parameter selection of single-shaft mixers, contributing to improved mixing efficiency and concrete quality in engineering applications. Full article
Show Figures

Figure 1

11 pages, 948 KiB  
Article
Finite Element Analysis of Stress Distribution in Canine Lumbar Fractures with Different Pedicle Screw Insertion Angles
by Ziyao Zhou, Xiaogang Shi, Jiahui Peng, Xiaoxiao Zhou, Liuqing Yang, Zhijun Zhong, Haifeng Liu, Guangneng Peng, Chengli Zheng and Ming Zhang
Vet. Sci. 2025, 12(7), 682; https://doi.org/10.3390/vetsci12070682 - 19 Jul 2025
Viewed by 367
Abstract
Pedicle screw fixation is a critical technique for stabilizing lumbar fractures in canines, yet the biomechanical implications of insertion angles remain underexplored. This study aims to identify optimal screw trajectories by analyzing stress distribution and deformation patterns in beagle lumbar segments (L6-L7) using [...] Read more.
Pedicle screw fixation is a critical technique for stabilizing lumbar fractures in canines, yet the biomechanical implications of insertion angles remain underexplored. This study aims to identify optimal screw trajectories by analyzing stress distribution and deformation patterns in beagle lumbar segments (L6-L7) using finite element analysis (FEA). A 3D finite element model was reconstructed from CT scans of a healthy beagle, incorporating cortical/cancellous bone, intervertebral disks, and cartilage. Pedicle screws (2.4 mm diameter, 22 mm length) were virtually implanted at angles ranging from 45° to 65°. A 10 N vertical load simulated standing conditions. Equivalent stress and total deformation were evaluated under static loading. The equivalent stress occurred at screw–rod junctions, with maxima at 50° (11.73 MPa) and minima at 58° (3.25 MPa). Total deformation ranged from 0.0033 to 0.0064 mm, with the highest at 55° and the lowest at 54°. The 58° insertion angle demonstrated optimal biomechanical stability with minimal stress concentration, with 56–60° as a biomechanically favorable range for pedicle screw fixation in canine lumbar fractures, balancing stress distribution and deformation control. Future studies should validate these findings in multi-level models and clinical settings. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
Show Figures

Figure 1

20 pages, 606 KiB  
Article
Temporal Governance and the Politics of Time Beyond Delay in Spatial Planning
by Jorge Gonçalves, Beatriz Condessa and Sofia Bizarro
Urban Sci. 2025, 9(7), 279; https://doi.org/10.3390/urbansci9070279 - 17 Jul 2025
Viewed by 285
Abstract
This article examines how governance structures and procedural timing influence the effectiveness of Territorial Management Instruments (TMIs) in Portugal. Anchored in a comparative analysis of two key legal reforms (Decree-Law No. 380/1999 and Decree-Law No. 80/2015), the study explores the tensions between democratic [...] Read more.
This article examines how governance structures and procedural timing influence the effectiveness of Territorial Management Instruments (TMIs) in Portugal. Anchored in a comparative analysis of two key legal reforms (Decree-Law No. 380/1999 and Decree-Law No. 80/2015), the study explores the tensions between democratic legitimacy and regulatory complexity. While the 1999 framework emphasized vertical coordination and participatory rights, it often led to procedural rigidity and institutional inertia. Conversely, the 2015 reform promoted digital tools and streamlined processes but introduced new governance gaps, reduced stakeholder diversity, and compressed consultation timelines. Drawing on a qualitative analysis of legal texts, policy documents, and technical documentation, the article introduces the concept of temporal governance, the idea that planning time is not merely a constraint but a governable resource. Through this lens, planning delays are reframed as either pathological (caused by inefficiency and fragmentation) or productive (used strategically to enhance environmental assessment and stakeholder engagement). A new conceptual framework is proposed to classify types of planning time, differentiate delays, and support temporal calibration in governance design. Findings show that effective planning outcomes hinge not only on legal architecture or participatory norms but also on the institutional ability to balance speed with deliberation and strategic foresight with procedural pragmatism. The paper concludes by calling for adaptive governance models that integrate time as a dynamic dimension of spatial planning, with implications for environmental resilience, democratic value, and, above all, institutional trust. Full article
Show Figures

Figure 1

49 pages, 7424 KiB  
Article
ACIVY: An Enhanced IVY Optimization Algorithm with Adaptive Cross Strategies for Complex Engineering Design and UAV Navigation
by Heming Jia, Mahmoud Abdel-salam and Gang Hu
Biomimetics 2025, 10(7), 471; https://doi.org/10.3390/biomimetics10070471 - 17 Jul 2025
Viewed by 303
Abstract
The Adaptive Cross Ivy (ACIVY) algorithm is a novel bio-inspired metaheuristic that emulates ivy plant growth behaviors for complex optimization problems. While the original Ivy Optimization Algorithm (IVYA) demonstrates a competitive performance, it suffers from limited inter-individual information exchange, inadequate directional guidance for [...] Read more.
The Adaptive Cross Ivy (ACIVY) algorithm is a novel bio-inspired metaheuristic that emulates ivy plant growth behaviors for complex optimization problems. While the original Ivy Optimization Algorithm (IVYA) demonstrates a competitive performance, it suffers from limited inter-individual information exchange, inadequate directional guidance for local optima escape, and abrupt exploration–exploitation transitions. To address these limitations, ACIVY integrates three strategic enhancements: the crisscross strategy, enabling horizontal and vertical crossover operations for improved population diversity; the LightTrack strategy, incorporating positional memory and repulsion mechanisms for effective local optima escape; and the Top-Guided Adaptive Mutation strategy, implementing ranking-based mutation with dynamic selection pools for smooth exploration–exploitation balance. Comprehensive evaluations on the CEC2017 and CEC2022 benchmark suites demonstrate ACIVY’s superior performance against state-of-the-art algorithms across unimodal, multimodal, hybrid, and composite functions. ACIVY achieved outstanding average rankings of 1.25 (CEC2022) and 1.41 (CEC2017 50D), with statistical significance confirmed through Wilcoxon tests. Practical applications in engineering design optimization and UAV path planning further validate ACIVY’s robust performance, consistently delivering optimal solutions across diverse real-world scenarios. The algorithm’s exceptional convergence precision, solution reliability, and computational efficiency establish it as a powerful tool for challenging optimization problems requiring both accuracy and consistency. Full article
Show Figures

Figure 1

27 pages, 22085 KiB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 231
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 2730 KiB  
Article
The Influence of Insertion Torque on Stress Distribution in Peri-Implant Bones Around Ultra-Short Implants: An FEA Study
by Mario Ceddia, Lorenzo Montesani, Luca Comuzzi, Alessandro Cipollina, Douglas A. Deporter, Natalia Di Pietro and Bartolomeo Trentadue
J. Funct. Biomater. 2025, 16(7), 260; https://doi.org/10.3390/jfb16070260 - 14 Jul 2025
Viewed by 842
Abstract
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which [...] Read more.
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which affects implant stability and long-term success. Materials and Methods: This study used finite element analysis (FEA) to examine how different insertion torques (35 N·cm and 75 N·cm) affect stress distribution in cortical and trabecular bone types D2 and D4 surrounding ultra-short implants. Von Mises equivalent stress values were compared with ultimate bone strength thresholds to evaluate the potential for microdamage during insertion. Results: The findings demonstrate that increasing IT from 35 N·cm to 75 N·cm led to a significant increase in peri-implant bone stress. Specifically, cortical bone stress in D4 bone increased from approximately 79 MPa to 142 MPa with higher IT, exceeding physiological limits and elevating the risk of microfractures and bone necrosis. In contrast, lower IT values kept stress within safe limits, ensuring optimal primary stability without damaging the bone. These results underscore the need to strike a balance between achieving sufficient implant stability and avoiding mechanical trauma to the surrounding bone. Conclusions: Accurate control of insertion torque during the placement of ultra-short dental implants is crucial to minimize bone damage and promote optimal osseointegration. Excessive torque, especially in low-density bone, can compromise implant success by inducing excessive stress, thereby increasing the risk of early failure. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

Back to TopTop