Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = versatile peroxidase (VP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2737 KiB  
Article
Comparative Analysis of Ligninolytic Potential among Pleurotus ostreatus and Fusarium sp. with a Special Focus on Versatile Peroxidase
by Manisha Parmar, Sayeed A. H. Patel, Urmila Gupta Phutela and Manish Dhawan
Appl. Microbiol. 2024, 4(3), 1348-1361; https://doi.org/10.3390/applmicrobiol4030093 - 18 Sep 2024
Cited by 1 | Viewed by 1824
Abstract
Lignocellulosic biomass is contemplated to be an inexpensive and copious feedstock that can be used for numerous industrial applications. However, lignin forms the lignin sheath and provides a physical barrier to enzymatic hydrolysis. In addition, lignin physically blocks cellulase, preventing it from being [...] Read more.
Lignocellulosic biomass is contemplated to be an inexpensive and copious feedstock that can be used for numerous industrial applications. However, lignin forms the lignin sheath and provides a physical barrier to enzymatic hydrolysis. In addition, lignin physically blocks cellulase, preventing it from being combined with the substrate in a process known as non-productive binding. Therefore, the depletion of lignin is a crucial method for obtaining fermentable sugars from the lignocellulosic biomass. Different white-rot fungi secrete different sets of lignin-mineralizing enzymes and each fungus secretes one or more of the three enzymes essential for lignin degradation. Among efficient redox enzymes, versatile peroxidase is extensively studied for its ability to degrade aromatics without the need for a mediator or polyvalent catalytic site. However, the presence of versatile peroxidase in F. spp. has not been studied. This study was planned with the objective of screening and comparing the production of versatile peroxidase enzymes from F. spp. and a standard culture of Pleurotus ostreatus MTCC-142. These fungal strains were first screened on solid media containing tannic acid, malachite green, or bromocresol green. The potency index for the tannic acid, malachite green, and bromocresol green on the 16th day of incubation was reported to be 1.28, 1.07, 1.09, and 1.10, respectively. Versatile peroxidase production patterns were investigated under solid state fermentation conditions for a period of 25 days at different temperatures ranging from 10 to 35 °C. The highest versatile peroxidase activity (592 UL−1) in F. sp. was observed at 30 °C after the 7th day of incubation. The molecular confirmation showed the presence of the vp gene in F. sp. along with Pleurotus ostreatus MTCC-142. The results determined that F. sp. possesses a versatile peroxidase enzyme and is able to degrade lignin efficiently, and thus it could be utilized as an alternative to other ligninolytic enzyme-producing fungi. Full article
Show Figures

Figure 1

20 pages, 4166 KiB  
Article
Altered Expression of Two Small Secreted Proteins (ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus
by Oded Yarden, Jiwei Zhang, Dor Marcus, Chunoti Changwal, Sameer J. Mabjeesh, Anna Lipzen, Yu Zhang, Emily Savage, Vivian Ng, Igor V. Grigoriev and Yitzhak Hadar
Int. J. Mol. Sci. 2023, 24(23), 16828; https://doi.org/10.3390/ijms242316828 - 27 Nov 2023
Cited by 2 | Viewed by 1910
Abstract
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small [...] Read more.
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development. Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Figure 1

14 pages, 1493 KiB  
Article
Bioremoval and Detoxification of the Anticancer Drug Mitoxantrone Using Immobilized Crude Versatile Peroxidase (icVP/Ba) Bjerkandera adusta CCBAS 930
by Kamila Rybczyńska-Tkaczyk
Biology 2022, 11(11), 1553; https://doi.org/10.3390/biology11111553 - 23 Oct 2022
Viewed by 2058
Abstract
The aim of this study was to evaluate the biodecolorization and detoxification of the anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture on medium [...] Read more.
The aim of this study was to evaluate the biodecolorization and detoxification of the anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture on medium with MTX (µg/mL) addition, immobilized with 4% sodium alginate. MTX removal degree (decolorization), levels of phenolic compounds and free radicals were determined during MTX biotransformation. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (multi-species microbial assay, MARA), and genotoxicity (SOS Chromotest) of MTX were evaluated before and after the biological treatment. The use of icVP/Ba (95 U/mL) significantly shortened the bioremoval of 10 µg/mL MTX (95.57% after 72 h). MTX removal by icVP/Ba was correlated with an 85% and 90% decrease in the levels of phenolic compounds and free radicals, respectively. In addition, the use of icVP/Ba contributed to a decrease in the phyto-, bio-, and genotoxicity of MTX. This is the first study to describe the possibility of removing MTX using immobilized crude fungal peroxidase. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

28 pages, 16027 KiB  
Article
Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930
by Kamila Rybczyńska-Tkaczyk
Molecules 2021, 26(22), 6842; https://doi.org/10.3390/molecules26226842 - 12 Nov 2021
Cited by 4 | Viewed by 2134
Abstract
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin–DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the [...] Read more.
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin–DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity. Full article
(This article belongs to the Special Issue Drugs in the Environment—Risks and Solutions)
Show Figures

Figure 1

17 pages, 4324 KiB  
Article
Isolation of Fungi from a Textile Industry Effluent and the Screening of Their Potential to Degrade Industrial Dyes
by Juvenal Juárez-Hernández, Dalia Castillo-Hernández, Cristhian Pérez-Parada, Soley Nava-Galicia, Jaime Alioscha Cuervo-Parra, Edy Surian-Cruz, Gerardo Díaz-Godínez, Carmen Sánchez and Martha Bibbins-Martínez
J. Fungi 2021, 7(10), 805; https://doi.org/10.3390/jof7100805 - 27 Sep 2021
Cited by 30 | Viewed by 4247
Abstract
Six fungal strains were isolated from the textile industry effluent in which they naturally occur. Subsequently, the fungal strains were identified and characterized in order to establish their potential decolorizing effect on textile industry effluents. The strains of interest were selected based on [...] Read more.
Six fungal strains were isolated from the textile industry effluent in which they naturally occur. Subsequently, the fungal strains were identified and characterized in order to establish their potential decolorizing effect on textile industry effluents. The strains of interest were selected based on their capacity to decolorize azo, indigo, and anthraquinone dyes. Three of the strains were identified as Emmia latemarginata (MAP03, MAP04, and MAP05) and the other three as Mucor circinelloides (MAP01, MAP02, and MAP06), while the efficiency of their decolorization of the dyes was determined on agar plate and in liquid fermentation. All the strains co-metabolized the dyes of interest, generating different levels of dye decolorization. Plate screening for lignin-degrading enzymes showed that the MAP03, MAP04, and MAP05 strains were positive for laccase and the MAP01, MAP02, and MAP06 strains for tyrosinase, while all strains were positive for peroxidase. Based on its decolorization capacity, the Emmia latemarginata (MAP03) strain was selected for the further characterization of its growth kinetics and ligninolytic enzyme production in submerged fermentation under both enzyme induction conditions, involving the addition of Acetyl yellow G (AYG) dye or wheat straw extract, and no-induction condition. The induction conditions promoted a clear inductive effect in all of the ligninolytic enzymes analyzed. The highest level of induced enzyme production was observed with the AYG dye fermentation, corresponding to versatile peroxidase (VP), manganese peroxidase (MnP), and lignin peroxidase (LiP). The present study can be considered the first analysis of the ligninolytic enzyme system of Emmia latemarginata in submerged fermentation under different conditions. Depending on the results of further research, the fungal strains analyzed in the present research may be candidates for further biotechnological research on the decontamination of industrial effluents. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

17 pages, 3565 KiB  
Article
A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants
by Nancy Sofia Hernández-Bueno, Ramón Suárez-Rodríguez, Edgar Balcázar-López, Jorge Luis Folch-Mallol, José Augusto Ramírez-Trujillo and Gabriel Iturriaga
Plants 2021, 10(5), 859; https://doi.org/10.3390/plants10050859 - 23 Apr 2021
Cited by 12 | Viewed by 3186
Abstract
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants [...] Read more.
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops. Full article
(This article belongs to the Special Issue Plant Molecular Breeding and Biotechnology)
Show Figures

Figure 1

23 pages, 4577 KiB  
Article
Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases
by Dolores Linde, Iván Ayuso-Fernández, Marcos Laloux, José E. Aguiar-Cervera, Antonio L. de Lacey, Francisco J. Ruiz-Dueñas and Angel T. Martínez
Int. J. Mol. Sci. 2021, 22(5), 2629; https://doi.org/10.3390/ijms22052629 - 5 Mar 2021
Cited by 30 | Viewed by 5228
Abstract
We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii [...] Read more.
We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii, and LiP from Phanerochaete chrysosporium were produced, and their kinetic constants and reduction potentials determined. Sharp differences were found in the oxidation of nonphenolic simple (veratryl alcohol, VA) and dimeric (veratrylglycerol-β- guaiacyl ether, VGE) lignin model compounds, with LiP showing the highest catalytic efficiencies (around 15 and 200 s−1·mM−1 for VGE and VA, respectively), while the efficiency of the A. auricula-judae DyP was 1–3 orders of magnitude lower, and no activity was detected with the bacterial DyPs. VP and LiP also showed the highest reduction potential (1.28–1.33 V) in the rate-limiting step of the catalytic cycle (i.e., compound-II reduction to resting enzyme), estimated by stopped-flow measurements at the equilibrium, while the T. curvata DyP showed the lowest value (1.23 V). We conclude that, when using realistic enzyme doses, only fungal LiP and VP, and in much lower extent fungal DyP, oxidize nonphenolic aromatics and, therefore, have the capability to act on the main moiety of the native lignin macromolecule. Full article
(This article belongs to the Special Issue Universe of DyP-type Peroxidase)
Show Figures

Figure 1

14 pages, 2391 KiB  
Article
Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering
by Raja Mohan Gopalakrishnan, Tamilvendan Manavalan, Janani Ramesh, Kalaichelvan Puthupalayam Thangavelu and Klaus Heese
Microorganisms 2020, 8(2), 159; https://doi.org/10.3390/microorganisms8020159 - 23 Jan 2020
Cited by 18 | Viewed by 4309
Abstract
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma [...] Read more.
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma lucidum RMK1 versatile peroxidase gene (vp1) in the Rut-C30 strain of T. reesei. The expression of purified 6×His-tag–containing recombinant G. lucidum-derived protein (rVP1) was confirmed through western blot, which exhibited a single band with a relative molecular weight of 39 kDa. In saccharification and delignification studies using rice straw, the transformant (tVP7, T. reesei Rut-C30 expressing G. lucidum-derived rVP1) showed significant improvement in the yield of total reducing sugar and delignification, compared with that of the parent T. reesei Rut-C30 strain. Scanning electron microscopy (SEM) of tVP7-treated paddy straw showed extensive degradation of several layers of its surface compared with the parent strain due to the presence of G. lucidum-derived rVP1. Our results suggest that the expression of ligninolytic enzymes in cellulase hyperproducing systems helps to integrate the pre-treatment and saccharification steps that may ultimately reduce the costs of bioethanol production. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Biotechnology)
Show Figures

Graphical abstract

17 pages, 343 KiB  
Review
Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification
by Xiaolu Wang, Bin Yao and Xiaoyun Su
Int. J. Mol. Sci. 2018, 19(11), 3373; https://doi.org/10.3390/ijms19113373 - 28 Oct 2018
Cited by 110 | Viewed by 7571
Abstract
The major enzymes involved in lignin degradation are laccase, class II peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase) and dye peroxidase, which use an oxidative or peroxidative mechanism to deconstruct the complex and recalcitrant lignin. Laccase and manganese peroxidase directly oxidize phenolic [...] Read more.
The major enzymes involved in lignin degradation are laccase, class II peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase) and dye peroxidase, which use an oxidative or peroxidative mechanism to deconstruct the complex and recalcitrant lignin. Laccase and manganese peroxidase directly oxidize phenolic lignin components, while lignin peroxidase and versatile peroxidase can act on the more recalcitrant non-phenolic lignin compounds. Mediators or co-oxidants not only increase the catalytic ability of these enzymes, but also largely expand their substrate scope to those with higher redox potential or more complicated structures. Neither laccase nor the peroxidases are stringently selective of substrates. The promiscuous nature in substrate preference can be employed in detoxification of a range of organics. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
18 pages, 1536 KiB  
Review
Enzymatic Degradation of Lignin in Soil: A Review
by Rahul Datta, Aditi Kelkar, Divyashri Baraniya, Ali Molaei, Amitava Moulick, Ram Swaroop Meena and Pavel Formanek
Sustainability 2017, 9(7), 1163; https://doi.org/10.3390/su9071163 - 3 Jul 2017
Cited by 316 | Viewed by 19776
Abstract
Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to [...] Read more.
Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to understand the lignin polymeric structure better and develop simpler, economical, and bio-friendly methods of degradation. Certain enzymes from specialized bacteria and fungi have been identified by researchers that can metabolize lignin and enable utilization of lignin-derived carbon sources. In this review, we attempt to provide an overview of the complexity of lignin’s polymeric structure, its distribution in forest soils, and its chemical nature. Herein, we focus on lignin biodegradation by various microorganism, fungi and bacteria present in plant biomass and soils that are capable of producing ligninolytic enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). The relevant and recent reports have been included in this review. Full article
(This article belongs to the Special Issue Soil Science in Conservation Agricultural Systems)
Show Figures

Figure 1

Back to TopTop