Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = venom variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 6544 KiB  
Review
Variations in “Functional Site” Residues and Classification of Three-Finger Neurotoxins in Snake Venoms
by R. Manjunatha Kini and Cho Yeow Koh
Toxins 2025, 17(8), 364; https://doi.org/10.3390/toxins17080364 - 24 Jul 2025
Viewed by 204
Abstract
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, [...] Read more.
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, receptor subtype, and species selectivity. Here, we systematically analyzed over 700 amino acid sequences of three-finger neurotoxins that interact with nicotinic acetylcholine receptors. Based on the amino acid residue substitutions in the functional sites and structural features of various classes of neurotoxins, we have classified them into over 150 distinct subgroups. Currently, only a small number of typical examples representing these subgroups have been studied for their structure, function, and subtype selectivity. The functional site residues responsible for their interaction with specific receptor subtypes of several toxins are yet to be identified. The molecular details of each subgroup representative toxin with its target receptor will contribute towards the understanding of subtype- and/or interface-selectivity. Thus, this review will provide new impetus in the toxin research and pave the way for the design of potent, selective ligands for nicotinic acetylcholine receptors. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
14 pages, 1611 KiB  
Article
Explaining Echis: Proteotranscriptomic Profiling of Echis carinatus carinatus Venom
by Salil Javed, Prasad Gopalkrishna Gond, Arpan Samanta, Ajinkya Unawane, Muralidhar Nayak Mudavath, Anurag Jaglan and Kartik Sunagar
Toxins 2025, 17(7), 353; https://doi.org/10.3390/toxins17070353 - 16 Jul 2025
Viewed by 1035
Abstract
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), [...] Read more.
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), spectacled cobra (Naja naja), and common krait (Bungarus caeruleus), leading to a considerable gap in our understanding of saw-scaled viper (Echis carinatus carinatus) venoms. For instance, the venom gland transcriptome and inter- and intra-population venom variation in E. c. carinatus have largely remained uninvestigated. A single study to date has assessed the effectiveness of commercial antivenoms against this species under in vivo conditions. To address these crucial knowledge gaps, we conducted a detailed investigation of E. c. carinatus venom and reported the first venom gland transcriptome. A proteotranscriptomic evaluation revealed snake venom metalloproteinases, C-type lectins, L-amino acid oxidases, phospholipase A2s, and snake venom serine proteases as the major toxins. Moreover, we assessed the intra-population venom variation in this species using an array of biochemical analyses. Finally, we determined the venom toxicity and the neutralising efficacy of a commercial antivenom using a murine model of snake envenoming. Our results provide a thorough molecular and functional profile of E. c. carinatus venom. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
Show Figures

Figure 1

24 pages, 14728 KiB  
Article
Death-Leading Envenomization of Rabbits with Snake Versus Scorpion Venoms: A Comparative Forensic Investigation of Postmortem Decomposition and Beetle Succession
by Afnan Saleh Al-Qurashi, Mohammed Saleh Al-Khalifa, Hathal Mohammed Al Dhafer, Mahmoud Saleh Abdel-Dayem, Hossam Ebaid and Ashraf Mohamed Ahmed
Insects 2025, 16(6), 625; https://doi.org/10.3390/insects16060625 - 13 Jun 2025
Viewed by 570
Abstract
Background:Envenomation by poisonous creatures is a major global cause of mortality. Its concomitant impact on the postmortem corpse decomposition and associated insect succession pattern is still poorly understood. Purpose of the study: This study comparatively investigates the impact of envenomization with [...] Read more.
Background:Envenomation by poisonous creatures is a major global cause of mortality. Its concomitant impact on the postmortem corpse decomposition and associated insect succession pattern is still poorly understood. Purpose of the study: This study comparatively investigates the impact of envenomization with the venoms of the snake Walterinnesia aegyptia L. versus the scorpion, Androctonus crassicauda L., on rabbit corpse decomposition and beetle succession. Methods: Three groups of rabbits (five animals each) were injected with the snake venom, the scorpion venom, or 0.9% saline (control) prior to euthanasia with CO2. The corpse decomposition stages and beetle succession were monitored over 11 days. Results: Four stages of decomposition with venom-dependent duration variation were observed. The scorpion-envenomized corpses showed a longer decay stage and a delayed dry stage. A total of 1094 beetles belonging to 27 species of 14 families were reported. Histeridae, Dermestidae, Scarabaeidae, and Tenebrionidae were the most diversified and prevalent families. Chrysomelidae, Elateridae, Hybosoridae, and Ptinidae were incidentally attracted to control corpses, while Nitidulidae and Zopheridae were only found on control and snake-envenomized ones. Four species belonging to the families Anthicidae, Histeridae, Scarabaeidae, and Tenebrionidae were predominant on all corpses. Four species belonging to the families Chrysomelidae, Curculionidae, Elateridae, and Hybosoridae were distinctively associated with the control corpses. Conclusions: These findings provided evidence that envenomation impacted the decomposition process and beetle succession in a venom-dependent manner, which could be significant for forensic investigations. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

25 pages, 3052 KiB  
Article
Cone Snail Broad-Transcriptomics Elucidate the Evolutionary Diversification and Anti-Microbial Potential of Conopeptides
by José Morim, Yihe Zhao, Lei Huang and Agostinho Antunes
J. Mar. Sci. Eng. 2025, 13(6), 1006; https://doi.org/10.3390/jmse13061006 - 22 May 2025
Viewed by 412
Abstract
Conus venoms are both highly powerful and complex, exhibiting a remarkably intriguing molecular variability. The biologic reasons behind such astonishing molecular diversity are yet to be fully understood. We hypothesized that the current knowledge has been hampered by a lack of studies targeting [...] Read more.
Conus venoms are both highly powerful and complex, exhibiting a remarkably intriguing molecular variability. The biologic reasons behind such astonishing molecular diversity are yet to be fully understood. We hypothesized that the current knowledge has been hampered by a lack of studies targeting the whole Conus genus backed by a feeding habit analysis, as opposed to the abundant studies focused on single species or at the individual level. We aim to enlighten the understanding of the remarkable venom variability in cone snails while pushing to deliver novel peptides for biomedical applications through a broad transcriptomics approach. Here, we assessed 76 publicly available venom-related and unrelated transcriptomes from a total of 20 different Conus species. The shared transcriptomic repertoire revealed several gene variations in accordance with predatory diets (e.g., gene loss in piscivorous species), indicating that feeding habit largely influences venom evolution. Furthermore, evidences of ubiquitous symbiotic relationships within the venom organs were depicted, as biological processes alien to Conus species (e.g., Sorocarp morphogenesis) were found in all analyzed transcriptomes. Moreover, 88 potential anti-microbial peptides were bioinformatically detected, including one showing similarity with the human ACE2 receptor. Our study highlights the importance of in-depth comparative transcriptomic analyses, fostering cross-field synergic assessments by relying on informatic, biologic, and pharmacologic resources. Full article
(This article belongs to the Special Issue Research Progress on Deep-Sea Organisms)
Show Figures

Figure 1

13 pages, 1734 KiB  
Review
Implementing Interventions Under “National Action Plan for Snakebite Envenoming (NAPSE) in India”: Challenges, Lessons Learnt and Way Forward for Stakeholders Participatory Approach
by Ajit Dadaji Shewale, Dipti Mishra, Simmi Tiwari, Tushar Nanasaheb Nale, Jitesh Kuwatada and Nidhi Khandelwal
Trop. Med. Infect. Dis. 2025, 10(5), 132; https://doi.org/10.3390/tropicalmed10050132 - 14 May 2025
Viewed by 784
Abstract
Snakebite envenoming remains a critical yet underrecognized public health issue, particularly in tropical and subtropical regions, with India bearing nearly half of the global burden of snakebite-related deaths. Despite its significant impact, underreporting, delayed medical intervention, and insufficiently trained healthcare professionals continue to [...] Read more.
Snakebite envenoming remains a critical yet underrecognized public health issue, particularly in tropical and subtropical regions, with India bearing nearly half of the global burden of snakebite-related deaths. Despite its significant impact, underreporting, delayed medical intervention, and insufficiently trained healthcare professionals continue to exacerbate the problem. In response, the Government of India launched the National Action Plan for Prevention and Control of Snakebite Envenoming (NAPSE) in March 2024, aiming to halve snakebite-related deaths by 2030. Key challenges during the development and implementation of NAPSE included the limited multisectoral engagement initially, variations in state-level capacities, and logistical barriers in reaching remote populations. Lessons learned include the value of early stakeholder consultations, the importance of inter-ministerial collaboration, and the need for continuous community engagement. This comprehensive strategy emphasizes strengthening surveillance systems, enhancing anti-snake venom (ASV) distribution and quality, improving healthcare infrastructure, and promoting community awareness through a One Health approach. The plan also addresses critical challenges such as inadequate training at primary healthcare levels, inconsistent ASV supply, and inefficient emergency referral systems. By fostering multisectoral collaboration and targeted interventions, such as strengthening Regional Venom Centres and establishing Poison Information Centre, targeted training, and awareness campaigns, NAPSE aims to reduce mortality and disability associated with snakebite envenoming, aligning with global health objectives and setting an example for regional efforts in Southeast Asia. Full article
(This article belongs to the Special Issue Snake Bite: Prevention, Diagnosis and Treatment)
Show Figures

Figure 1

18 pages, 1858 KiB  
Article
A Sting Operation: Risk Assessment and Venom Expenditure by Arizona Bark Scorpions (Centruroides sculpturatus) in a Defensive Context
by Lindsay A. Marston, Gerad A. Fox, Kim Y. Hung, Shannon J. Delo and William K. Hayes
Toxins 2025, 17(4), 198; https://doi.org/10.3390/toxins17040198 - 13 Apr 2025
Viewed by 909
Abstract
Scorpion antipredator behavior incorporates risk assessment that informs decision-making and venom usage. We quantified antipredator behaviors of the clinically significant Arizona bark scorpion (Centruroides sculpturatus) in their natural environment using exposure to two stimuli: a freshly thawed laboratory mouse (Mus [...] Read more.
Scorpion antipredator behavior incorporates risk assessment that informs decision-making and venom usage. We quantified antipredator behaviors of the clinically significant Arizona bark scorpion (Centruroides sculpturatus) in their natural environment using exposure to two stimuli: a freshly thawed laboratory mouse (Mus musculus) and a membrane-covered glass beaker. We videotaped and compared envenomation behaviors between sexes (females, gravid females, and males), across sizes, and between animal orientations (on vertical or horizontal substrates). Results failed to show consistent support for any of our four hypotheses. Females (especially gravid females) were no more likely than males to exhibit higher levels of stinging and venom expenditure. Scorpions on horizontal surfaces compared to those on vertical surfaces, and larger scorpions compared to smaller ones, were likewise no more likely to exhibit higher levels of responsiveness. Mice were more likely to be stung than the membrane-covered beaker, but with fewer and briefer stings, suggesting the scorpions did not attempt to deliver more venom into the mice. Thus, we discerned no clear patterns in risk assessment, stinging, and venom use associated with sex, substrate orientation, body size, or threat stimuli. These findings contrasted with those of several prior laboratory studies. Variation from unaccounted environmental variables may have obfuscated divergent behavioral tactics. Nevertheless, the behaviors we document here provide insights on the range of defensive behaviors exhibited by C. sculpturatus under natural environmental conditions, including the frequency of dry stings (11.8%) to the membrane-covered beakers. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

14 pages, 888 KiB  
Article
Snake Venom Makeover: Age-Dependent Variations in Procoagulant Biochemistry of Egyptian Saw-Scaled Viper (Echis pyramidum pyramidum) Venom
by Alex Barker, Lee Jones, Lachlan A. Bourke, Lorenzo Seneci, Abhinandan Chowdhury, Aude Violette, Rudy Fourmy, Raul Soria, Matt Aldridge and Bryan G. Fry
Toxins 2025, 17(3), 149; https://doi.org/10.3390/toxins17030149 - 19 Mar 2025
Cited by 2 | Viewed by 2775
Abstract
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes [...] Read more.
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes in the venom biochemistry has not been investigated. This study investigated the ontogenetic changes in Echis pyramidum pyramidum venom and its impact on therapeutic efficacy. The efficacy of various antivenoms (Echitab, Echitab+ ICP, Inosan MENA, Inosan Pan African, and SAVP-Echis) was tested against both venom phenotypes. While both neonate and adult venoms were procoagulant, there were differences in the underlying biochemistry. Neonate venom was found to potently pathophysiologically activate Factor VII and Factor X, and to a lesser degree Factor XII. In contrast, adult venom was a slower clotter, less potent in activating FVII, equipotent with neonate venom on FXII, and inactive on FX. This is the first documentation of FVII and FXII activation for any Echis venom. The significant ontogenetic toxicological variations in Echis species were shown to impact antivenom efficacy. Among the tested antivenoms, SAVP-Echis was the most effective against both venom phenotypes, with adult venom being better neutralized. These findings suggest the need for a reconsideration of venom mixture selection in antivenom production through the inclusion of neonate venom. Additionally, the results indicate differential ontogenetic predatory ecology, providing a foundation for future natural history investigations. Full article
(This article belongs to the Special Issue Snake Bite and Related Injury)
Show Figures

Figure 1

17 pages, 2945 KiB  
Article
Fingerprint Analysis and Comparison of Activity Differences of Crude Venom from Five Species of Vermivorous Cone Snail in the South China Sea
by Shibo Sun, Yanling Liao, Jinxing Fu, Yanxia Liang, Yurong Chen, Kailin Mao and Bingmiao Gao
Mar. Drugs 2025, 23(3), 102; https://doi.org/10.3390/md23030102 - 25 Feb 2025
Viewed by 820
Abstract
The South China Sea is rich in cone snail resources, known for producing conotoxins with diverse biological activities such as analgesic, anticancer, and insecticidal effects. In this study, five vermivorous cone snail samples were collected from the South China Sea and their crude [...] Read more.
The South China Sea is rich in cone snail resources, known for producing conotoxins with diverse biological activities such as analgesic, anticancer, and insecticidal effects. In this study, five vermivorous cone snail samples were collected from the South China Sea and their crude venom was extracted to investigate the variations in venom components and activities, aiming to identify highly active samples for further research. Cluster analysis using reverse-phase high-performance liquid chromatography (RP-HPLC) fingerprints and mitochondrial cytochrome c oxidase I (COI) gene sequences revealed that the diversity of venom components across different conotoxin species is genetically correlated. Activity assays demonstrated that all five cone snail venoms exhibited lethal effects on insects and zebrafish. Notably, the crude venom of Conus quercinus showed the highest insecticidal activity with an LD50 of 0.6 μg/mg, while C. tessellatus venom exhibited the most potent zebrafish lethality with an LD50 of 0.2 μg/mg. Furthermore, the crude venom from four cone snail species demonstrated toxicity against ovarian cancer cells, and only C. caracteristicu venom displayed significant analgesic activity. This study systematically identifies cone snail samples with promising insecticidal, anticancer, and analgesic properties, paving the way for the development and utilization of cone snail resources from the South China Sea and offering a novel approach for advancing marine peptide drug research. Full article
Show Figures

Figure 1

23 pages, 3793 KiB  
Article
Comparative Analysis of the Enzymatic, Coagulant, and Neuromuscular Activities of Two Variants of Crotalus durissus ruruima Venom and Antivenom Efficacy
by Poliana J. Demico, Isabele N. Oliveira, Vitória S. Proença-Hirata, Samuel R. Dias, Hugo A. Ghirotti, Elisangela O. Silva, Inês C. Giometti, Francis L. Pacagnelli, Kristian A. Torres-Bonilla, Stephen Hyslop, Nathália C. Galizio, Karen de Morais-Zani, Manuela B. Pucca, Anderson M. Rocha, Jéssica B. Maciel, Marco A. Sartim, Wuelton M. Monteiro and Rafael S. Floriano
Pharmaceuticals 2025, 18(1), 54; https://doi.org/10.3390/ph18010054 - 6 Jan 2025
Cited by 1 | Viewed by 3322
Abstract
Background: We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow—CDRy and white—CDRw) of Crotalus durissus ruruima venom with a sample of C. d. terrificus (CDT) venom and examined their neutralization by antivenom against CDT venom. Methods: The venoms were screened [...] Read more.
Background: We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow—CDRy and white—CDRw) of Crotalus durissus ruruima venom with a sample of C. d. terrificus (CDT) venom and examined their neutralization by antivenom against CDT venom. Methods: The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity. Results: SDS-PAGE showed that the venoms had similar electrophoretic profiles, with the main bands being phospholipase A2 (PLA2), serine proteinases, L-amino acid oxidase (LAAO), and phosphodiesterase. CDRy venom had the highest proteolytic and LAAO activities, CDRw venom had greater PLA2 and esterolytic activities at the highest quantity tested, and CDT had greater PLA2 activity than CDRy. CDRw and CDT venoms had similar proteolytic and LAAO activities, and CDRy and CDT venoms had comparable esterolytic activity. None of the venoms altered the prothrombin time (PT), but all of them decreased the activated partial thromboplastin time (aPPT); this activity was neutralized by antivenom. The minimum coagulant dose potency was CDRw >> CDRy > CDT. All venoms had thrombin-like activity that was attenuated by antivenom. CDRy and CDRw venoms showed α-fibrinogenolytic activity. All venoms partially cleaved the β-chain. CDRy and CDT venoms caused neuromuscular facilitation (enhanced muscle contractions) followed by complete blockade, whereas CDRw venom caused only blockade. Antivenom neutralized the neuromuscular activity to varying degrees. Conclusions: These findings indicate that while CDR and CDT venoms share similarities, they also differ in some enzymatic and biological activities and in neutralization by antivenom. Some of these differences could influence the clinical manifestations of envenomation by C. d. ruruima and their neutralization by the currently used therapeutic antivenom. Full article
(This article belongs to the Special Issue Neuromuscular Disorders: Current Gene and Cell Therapeutic Approaches)
Show Figures

Figure 1

15 pages, 2240 KiB  
Article
First Look at the Venoms of Two Sinomicrurus Snakes: Differences in Yield, Proteomic Profiles, and Immunorecognition by Commercial Antivenoms
by Xiang-Yu Li, Ya-Qi Zhang, Xin-Ru Qian, Hong-Yan Zhao, Hong-Liang Lu and Jian-Fang Gao
Toxins 2025, 17(1), 19; https://doi.org/10.3390/toxins17010019 - 2 Jan 2025
Viewed by 1354
Abstract
Chinese coral snakes (Sinomicrurus) are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the [...] Read more.
Chinese coral snakes (Sinomicrurus) are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the venom profiles of two Chinese coral snakes in terms of their venom yields, proteomic profiles, and immunorecognition by commercial antivenoms. The results showed that Sinomicrurus kelloggi expels more venom (lyophilized venom mass) than Sinomicrurus maccelellandi but possesses a similar solid venom content. These interspecific differences in venom yield were influenced by the snout–vent length. The venoms of these two species varied in their electrophoretic profiles, as well as in the presence or absence and relative abundance of protein families. They exhibited a 3-FTx-predominant phenotype, where the S. maccelellandi venom was dominated by 3-FTx (32.43%), SVMP (23.63%), PLA2 (19.88%), and SVSP (12.61%), while the S. kelloggi venom was dominated by 3-FTx (65.81%), LAAO (11.35%), and AMP (10.09%). While both the commercial Naja atra and Bungarus multicinctus antivenoms could immunorecognize these two Chinese coral snake venoms, the N. atra antivenom possessed a higher neutralization capability than the B. multicinctus antivenom for both species of coral snakes. Our findings show significant interspecific variations in the venom profiles of these Sinomicrurus snakes for the first time. We suggest screening or preparing specific antivenoms with high efficiency for the clinical treatment of envenomation caused by these snakes. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

29 pages, 1387 KiB  
Review
Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice
by Florin-Dan Popescu, Mariana Preda, Darío Antolín-Amérigo, Natalia Rodríguez-Otero, Elena Ramírez-Mateo and Sylwia Smolinska
Int. J. Mol. Sci. 2025, 26(1), 270; https://doi.org/10.3390/ijms26010270 - 31 Dec 2024
Viewed by 2475
Abstract
Hymenoptera venom allergy (HVA) is a potentially life-threatening condition, making accurate diagnosis crucial for identifying significant IgE sensitizations and enabling effective venom immunotherapy. In this review, we provide a detailed overview of biomarkers for the molecular diagnosis of IgE-mediated hypersensitivity to Hymenoptera insect [...] Read more.
Hymenoptera venom allergy (HVA) is a potentially life-threatening condition, making accurate diagnosis crucial for identifying significant IgE sensitizations and enabling effective venom immunotherapy. In this review, we provide a detailed overview of biomarkers for the molecular diagnosis of IgE-mediated hypersensitivity to Hymenoptera insect venoms in clinical practice, and we present, in a structured manner, their importance in differentiating genuine sensitizations versus cross-sensitizations using different diagnostic procedures. Updated algorithms are provided, along with the advantages and limitations of molecular diagnosis approaches. Geographical variations and rare species may pose further challenges in diagnosing and treating HVA, adding complexity to HVA management. This review informs readers about performing tailored diagnostics based on molecular allergen biomarkers and subsequent treatment strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 5938 KiB  
Article
Antibacterial Potential of Honeybee Venom and Monascus purpureus Extracellular Metabolites Against Multidrug-Resistant Pathogenic Bacteria
by Islam I. Teiba, Yasser S. A. Mazrou, Abeer H. Makhlouf, Yasser Nehela, Abdallah E. Mohamed, Ahmed M. Abbas, Islam Mamdouh and Emad H. El-Bilawy
Biology 2025, 14(1), 21; https://doi.org/10.3390/biology14010021 - 28 Dec 2024
Viewed by 1396
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal Monascus purpureus red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts [...] Read more.
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal Monascus purpureus red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against S. aureus (minimum inhibitory concentrations [MIC] = 3.18 and 6.315 μg·mL−1, respectively). Although the three bacterial strains were resistant to the antibiotic ampicillin-sulbactam (10/10 µg), both extracts exhibited superior antibacterial activity against the three bacterial strains compared to five standard antibiotics, especially RD extract, which produced the largest inhibition zone (20 ± 0.20 mm) against S. aureus. The larger inhibition zones against S. aureus suggest its high sensitivity, whereas E. coli and E. faecalis exhibited smaller inhibition zones, indicating less sensitivity to BV and RD extracts. Differences in the inhibition zones suggest the variations in antimicrobial activity between the two extracts and their strain-specific effectiveness. Scanning electron microscopy (SEM) revealed that BV and RD extracts disrupted the bacterial plasma membrane, suggesting that the bioactive compounds penetrate the bacterial cell wall and alter its integrity. Furthermore, GC–MS-based analysis revealed that the chemical composition of BV and RD extracts exhibited highly diverse structures, including complex polycyclic systems, porphyrins, steroids, and esters. For instance, 42 metabolites were identified in the BV extract, which mainly were organic and metal–organic compounds; however, only 23 molecules were identified in RD extract, which mainly were fatty acids and their derivatives. The diversity in the chemical compositions of both extracts highlights their potential applications in pharmaceuticals, materials, and biochemistry fields. Collectively, these findings indicate that honeybee venom and the red dye from M. purpureus have promising antibacterial properties and warrant further investigation as potential alternatives to conventional antibiotics. Further multi-ligand docking-based virtual screening studies are required to identify the most promising detected metabolite(s) within both BV and RD extracts. Full article
Show Figures

Graphical abstract

14 pages, 920 KiB  
Article
Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper (Macrovipera lebetina obtusa) Venoms
by Katrina Kempson, Abhinandan Chowdhury, Aude Violette, Rudy Fourmy, Raul Soria and Bryan G. Fry
Toxins 2024, 16(12), 520; https://doi.org/10.3390/toxins16120520 - 2 Dec 2024
Cited by 3 | Viewed by 3800
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration–response tests, [...] Read more.
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration–response tests, the clotting potency of the neonate venoms fell within the range of their parents’ maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

23 pages, 8050 KiB  
Article
Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins
by Joseph Espín-Angulo and Doris Vela
Toxins 2024, 16(12), 511; https://doi.org/10.3390/toxins16120511 - 27 Nov 2024
Cited by 3 | Viewed by 2132
Abstract
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed [...] Read more.
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of Bothrops asper and Bothrops jararaca, using data from NCBI. Bioinformatics tools were used to assemble, identify, and compare potentially novel proteins in both species, and we performed functional annotation with BLASTX against the NR database. While previous assemblies have been performed for B. jararaca, this is the first assembly of the B. asper venom gland transcriptome. Proteins with potentially novel functions were identified, including arylsulfatase and dihydroorotate dehydrogenase, among others, that could have implications for venom toxicity. These results suggest that the identified proteins may contribute to venom toxic variation and provide new opportunities for antivenom research. The study improves the understanding of the protein composition of Bothrops venom and suggests new possibilities for the development of treatments and antivenoms. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

19 pages, 10473 KiB  
Article
Nematocyst Types and Characteristics in the Tentacles of Gershwinia thailandensis and Morbakka sp. (Cubozoa: Carybdeida) from the Gulf of Thailand
by Thippawan Yasanga, Sineenart Santidherakul, Klintean Wunnapuk, Rochana Phuackchantuck, Lakkana Thaikruea, Thunyaporn Achalawitkun and Purinat Rungraung
Biology 2024, 13(10), 845; https://doi.org/10.3390/biology13100845 - 21 Oct 2024
Cited by 1 | Viewed by 1786
Abstract
Nematocysts, specialized stinging cells in cnidarians, play a crucial role in both defense and prey capture, containing venomous, coiled tubes within a capsule. While box jellyfish are recognized as a medical threat, information on the nematocysts of species like Gershwinia thailandensis and Morbakka [...] Read more.
Nematocysts, specialized stinging cells in cnidarians, play a crucial role in both defense and prey capture, containing venomous, coiled tubes within a capsule. While box jellyfish are recognized as a medical threat, information on the nematocysts of species like Gershwinia thailandensis and Morbakka sp. from Thai waters remains sparse. This study explores the types and morphology of nematocysts found in the tentacles of these species using light and scanning electron microscopy. We identified three nematocyst types: club-shaped microbasic p-mastigophores, oval isorhizas, and oval microbasic p-rhopaloids. Notably, significant differences in capsule sizes were observed, especially in the microbasic p-mastigophores and isorhizas. The discharge tubules tapered from the proximal to the distal ends, featuring arrow-shaped spines in a helical pattern. A distinct lancet structure was present in both microbasic p-mastigophores and p-rhopaloids. These findings suggest that variations in nematocyst size and morphology may be linked to evolutionary adaptations, functional roles, and venom toxicity. Further research into venom discharge mechanisms could offer valuable insights into the ecological and medical importance of these cnidarians. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

Back to TopTop