Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (810)

Search Parameters:
Keywords = vehicle scheduling optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2368 KB  
Article
Scheduling Optimization of a Vehicle Power Battery Workshop Based on an Improved Multi-Objective Particle Swarm Optimization Method
by Jinjun Tang, Tongyu Dou, Fan Wu, Lipeng Hu and Tianjian Yu
Mathematics 2025, 13(17), 2790; https://doi.org/10.3390/math13172790 (registering DOI) - 30 Aug 2025
Abstract
Power batteries are one of the important components of electric vehicles, but the manufacturing process of vehicle power batteries is complex and diverse. Traditional scheduling methods face challenges such as low production efficiency and inadequate quality control in complex production environments. To address [...] Read more.
Power batteries are one of the important components of electric vehicles, but the manufacturing process of vehicle power batteries is complex and diverse. Traditional scheduling methods face challenges such as low production efficiency and inadequate quality control in complex production environments. To address these issues, a multi-objective optimization model with makespan, total machine load, and processing quality as the established objectives, and a Multi-objective Particle Swarm Energy Valley Optimization (MPSEVO) is proposed to solve the problem. MPSEVO integrates the advantages of Multi-objective Particle Swarm Optimization (MOPSO) and Energy Valley Optimization (EVO). In this algorithm, the particle stability level is combined in MOPSO, and different update strategies are used for particles of different stability to enhance both the convergence and diversity of the solutions. Furthermore, a local search strategy is designed to further enhance the algorithm to avoid the local optimal solutions. The Hypervolume (HV) and Inverted Generational Distance (IGD) indicators are often used to evaluate the convergence and diversity of multi-objective algorithms. The experimental results show that MPSEVO’s HV and IGD indicators are better than other algorithms in 10 computational experiments, which verifies the effectiveness of the proposed strategy and algorithm. The proposed method is also applied to solve the actual battery workshop scheduling problem. Compared with MOPSO, MPSEVO reduces the total machine load by 7 units and the defect rate by 0.05%. In addition, the effectiveness of each part of the improved algorithm was analyzed by ablation experiments. This paper provides some ideas for improving the solution performance of MOPSO, and also provides a theoretical reference for enhancing the production efficiency of the vehicle power battery manufacturing workshop. Full article
Show Figures

Figure 1

22 pages, 1015 KB  
Article
Economic Optimal Scheduling of Virtual Power Plants with Vehicle-to-Grid Integration Considering Uncertainty
by Lei Gao and Wenfei Yi
Processes 2025, 13(9), 2755; https://doi.org/10.3390/pr13092755 - 28 Aug 2025
Abstract
To mitigate the risks posed by uncertainties in renewable energy output and Electric Vehicle (EV) travel patterns on the scheduling of Virtual Power Plants (VPPs), this paper proposes an optimal scheduling model for a VPP incorporating EVs based on Information Gap Decision Theory [...] Read more.
To mitigate the risks posed by uncertainties in renewable energy output and Electric Vehicle (EV) travel patterns on the scheduling of Virtual Power Plants (VPPs), this paper proposes an optimal scheduling model for a VPP incorporating EVs based on Information Gap Decision Theory (IGDT). First, a Monte Carlo load forecasting model is established based on the behavioral characteristics of EV users, and a Sigmoid function is introduced to quantify the dynamic relationship between user response willingness and VPP incentive prices. Second, within the VPP framework, an economic optimal scheduling model considering multi-source collaboration is developed by integrating wind power, photovoltaics, gas turbines, energy storage systems, and EV clusters with Vehicle-to-Grid (V2G) capabilities. Subsequently, to address the uncertain parameters within the model, IGDT is employed to construct a bi-level decision-making mechanism that encompasses both risk-averse and opportunity-seeking strategies. Finally, a case study on a VPP is conducted to verify the correctness and effectiveness of the proposed model and algorithm. The results demonstrate that the proposed method can effectively achieve a 7.94% reduction in the VPP’s comprehensive dispatch cost under typical scenarios, exhibiting superiority in terms of both economy and stability. Full article
21 pages, 2125 KB  
Article
Optimizing Solar-Powered EV Charging: A Techno-Economic Assessment Using Horse Herd Optimization
by Krishan Chopra, M. K. Shah, K. R. Niazi, Gulshan Sharma and Pitshou N. Bokoro
Energies 2025, 18(17), 4556; https://doi.org/10.3390/en18174556 - 28 Aug 2025
Viewed by 116
Abstract
Mass market adoption of EVs is critical for decreasing greenhouse gas emissions and dependence on fossil fuels. However, this transition faces significant challenges, particularly the limited availability of public charging infrastructure. Expanding charging stations and renewable integrated EV parking lots can accelerate the [...] Read more.
Mass market adoption of EVs is critical for decreasing greenhouse gas emissions and dependence on fossil fuels. However, this transition faces significant challenges, particularly the limited availability of public charging infrastructure. Expanding charging stations and renewable integrated EV parking lots can accelerate the adoption of EVs by enhancing charging accessibility and sustainability. This paper introduces an integrated optimization framework to determine the optimal siting of a Residential Parking Lot (RPL), a Commercial Parking Lot (CPL), and an Industrial Fast Charging Station (IFCS) within the IEEE 33-bus distribution system. In addition, the optimal sizing of rooftop solar photovoltaic (SPV) systems on the RPL and CPL is addressed to enhance energy sustainability and reduce grid dependency. The framework aims to minimize overall power losses while considering long-term technical, economic, and environmental impacts. To solve the formulated multi-dimensional optimization problem, Horse Herd Optimization (HHO) is used. Comparative analyses on IEEE-33 bus demonstrate that HHO outperforms well-known optimization algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) in achieving lower energy losses. Case studies show that installing a 400-kW rooftop PV system can reduce daily energy expenditures by up to 51.60%, while coordinated vehicle scheduling further decreases energy purchasing costs by 4.68%. The results underscore the significant technical, economic, and environmental benefits of optimally integrating EV charging infrastructure with renewable energy systems, contributing to more sustainable and resilient urban energy networks. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

12 pages, 596 KB  
Article
Quantum Computing for Intelligent Transportation Systems: VQE-Based Traffic Routing and EV Charging Scheduling
by Uman Khalid, Usama Inam Paracha, Syed Muhammad Abuzar Rizvi and Hyundong Shin
Mathematics 2025, 13(17), 2761; https://doi.org/10.3390/math13172761 - 27 Aug 2025
Viewed by 182
Abstract
Complex optimization problems, such as traffic routing and electric vehicle (EV) charging scheduling, are becoming increasingly challenging for intelligent transportation systems (ITSs), in particular as computational resources are limited and network conditions evolve frequently. This paper explores a quantum computing approach to address [...] Read more.
Complex optimization problems, such as traffic routing and electric vehicle (EV) charging scheduling, are becoming increasingly challenging for intelligent transportation systems (ITSs), in particular as computational resources are limited and network conditions evolve frequently. This paper explores a quantum computing approach to address these issues by proposing a hybrid quantum-classical (HQC) workflow that leverages the variational quantum eigensolver (VQE), an algorithm particularly well suited for execution on noisy intermediate-scale quantum (NISQ) hardware. To this end, the EV charging scheduling and traffic routing problems are both reformulated as binary optimization problems and then encoded into Ising Hamiltonians. Within each VQE iteration, a parametrized quantum circuit (PQC) is prepared and measured on the quantum processor to evaluate the Hamiltonian’s expectation value, while a classical optimizer—such as COBYLA, SPSA, Adam, or RMSProp—updates the circuit parameters until convergence. In order to find optimal or nearly optimal solutions, VQE uses PQCs in combination with classical optimization algorithms to iteratively minimize the problem Hamiltonian. Simulation results exhibit that the VQE-based method increases the efficiency of EV charging coordination and improves route selection performance. These results demonstrate how quantum computing will potentially advance optimization algorithms for next-generation ITSs, representing a practical step toward quantum-assisted mobility solutions. Full article
(This article belongs to the Special Issue Advanced Methods in Intelligent Transportation Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 576 KB  
Article
Optimizing Bus Driver Scheduling: A Set Covering Approach for Reducing Transportation Costs
by Viktor Sándor Árgilán and József Békési
Appl. Syst. Innov. 2025, 8(5), 122; https://doi.org/10.3390/asi8050122 - 25 Aug 2025
Viewed by 172
Abstract
Cutting operational costs is a critical component for transportation agencies. To reduce these costs, agencies must optimize their scheduling. Typically, the total operating costs of transport include vehicle expenses and driver wages. Solving such tasks is complex, and optimal planning is usually broken [...] Read more.
Cutting operational costs is a critical component for transportation agencies. To reduce these costs, agencies must optimize their scheduling. Typically, the total operating costs of transport include vehicle expenses and driver wages. Solving such tasks is complex, and optimal planning is usually broken down into multiple stages. These stages can include vehicle scheduling, driver shift planning, and driver assignment. This paper focuses specifically on developing a near-optimal driver schedule for a specified set of vehicle schedules. It shows how to efficiently assign drivers to predetermined optimal vehicle routes while ensuring compliance with regulatory constraints on driving hours. We address this challenge using a mathematical model based on the set covering problem, building on a framework established perviously. The set covering problem is typically formulated as an integer programming problem, solvable through column generation techniques. Our algorithm combines this method with heuristics, taking into account the practical aspects of the problem. The article also presents a computational analysis of the method using benchmark and real data. Full article
(This article belongs to the Section Applied Mathematics)
Show Figures

Figure 1

18 pages, 1279 KB  
Article
The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles
by Chia-Sheng Tu and Ming-Tang Tsai
Energies 2025, 18(17), 4485; https://doi.org/10.3390/en18174485 - 23 Aug 2025
Viewed by 490
Abstract
This paper aims to explore Virtual Power Plants (VPPs) in combination with Demand Response (DR) concepts, integrating solar power generation, Electric Vehicle (EV) charging and discharging, and user loads to establish an optimal energy management scheduling system. Willingness curves for load curtailment are [...] Read more.
This paper aims to explore Virtual Power Plants (VPPs) in combination with Demand Response (DR) concepts, integrating solar power generation, Electric Vehicle (EV) charging and discharging, and user loads to establish an optimal energy management scheduling system. Willingness curves for load curtailment are derived based on the consumption patterns of industrial, commercial, and residential users, enabling VPPs to design DR mechanisms under Time-of-Use (TOU), two-stage, and critical peak pricing periods. An energy management model for a VPP is developed by integrating DR, EV charging and discharging, and user loads. To solve this model and optimize economic benefits, this paper proposes an Improved Wolf Pack Search Algorithm (IWPSA). Based on the original Wolf Pack Search Algorithm (WPSA), the Improved Wolf Pack Search Algorithm (IWPSA) enhances the key behaviors of detection and encirclement. By reinforcing the attack strategy, the algorithm achieves better search performance and improved stability. IWPSA provides a parameter optimization mechanism with global search capability, enhancing searching efficiency and increasing the likelihood of finding optimal solutions. It is used to simulate and analyze the maximum profit of the VPP under various scenarios, such as different seasons, incentive prices, and DR periods. The verification analysis in this paper demonstrates that the proposed method can not only assist decision makers in improving the operation and scheduling of VPPs, but also serve as a valuable reference for system architecture planning and more effectively evaluating the performance of VPP operation management. Full article
Show Figures

Figure 1

18 pages, 3196 KB  
Article
Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids
by Haiyong Zeng, Yuanyan Huang, Kaijie Zhan, Zichao Yu, Hongyan Zhu and Fangyan Li
Sensors 2025, 25(17), 5226; https://doi.org/10.3390/s25175226 - 22 Aug 2025
Viewed by 468
Abstract
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in [...] Read more.
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. Full article
(This article belongs to the Special Issue Smart Sensors, Smart Grid and Energy Management)
Show Figures

Figure 1

33 pages, 3689 KB  
Article
Research on a Multi-Agent Job Shop Scheduling Method Based on Improved Game Evolution
by Wei Xie, Bin Du, Jiachen Ma, Jun Chen and Xiangle Zheng
Symmetry 2025, 17(8), 1368; https://doi.org/10.3390/sym17081368 - 21 Aug 2025
Viewed by 242
Abstract
As the global manufacturing industry’s transformation accelerates toward being intelligent, “unmanned”, and low-carbon, manufacturing workshops face conflicts between production schedules and transportation tasks, leading to low efficiency and resource waste. This paper presents a multi-agent collaborative scheduling optimization method based on a hybrid [...] Read more.
As the global manufacturing industry’s transformation accelerates toward being intelligent, “unmanned”, and low-carbon, manufacturing workshops face conflicts between production schedules and transportation tasks, leading to low efficiency and resource waste. This paper presents a multi-agent collaborative scheduling optimization method based on a hybrid game–genetic framework to address issues like high AGV (Automated Guided Vehicle) idle rates, excessive energy consumption, and uncoordinated equipment scheduling. The method establishes a trinity system integrating distributed decision-making, dynamic coordination, and environment awareness. In this system, the multi-agent decision-making and collaboration process exhibits significant symmetry characteristics. All agents (machine agents, mobile agents, etc.) follow unified optimization criteria and interaction rules, forming a dynamically balanced symmetric scheduling framework in resource competition and collaboration, which ensures fairness and consistency among different agents in task allocation, path planning, and other links. An improved best-response dynamic algorithm is employed in the decision-making layer to solve the multi-agent Nash equilibrium, while the genetic optimization layer enhances the global search capability by encoding scheduling schemes and adjusting crossover/mutation probabilities using dynamic competition factors. The coordination pivot layer updates constraints in real time based on environmental sensing, forming a closed-loop optimization mechanism. Experimental results show that, compared with the traditional genetic algorithm (TGA) and particle swarm optimization (PSO), the proposed method reduces the maximum completion time by 54.5% and 44.4% in simple scenarios and 57.1% in complex scenarios, the AGV idling rate by 68.3% in simple scenarios and 67.5%/77.6% in complex scenarios, and total energy consumption by 15.7%/10.9% in simple scenarios and 25%/18.2% in complex scenarios. This validates the method’s effectiveness in improving resource utilization and energy efficiency, providing a new technical path for intelligent scheduling in manufacturing workshops. Meanwhile, its symmetric multi-agent collaborative framework also offers a reference for the application of symmetry in complex manufacturing system optimization. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 5637 KB  
Article
Energy-Efficient Scheduling of Multi-Load AGVs Based on the SARSA-TTAO Algorithm
by Hongtao Tang, Hanyue Wang, Yan Zhan and Xuesong Xu
Sustainability 2025, 17(16), 7353; https://doi.org/10.3390/su17167353 - 14 Aug 2025
Viewed by 276
Abstract
The Multi-load Automated Guided Vehicle (M-AGV) has emerged as a key enabling technology for intelligent and sustainable workshop logistics owing to its potential to enhance transportation efficiency and reduce system costs. To address the limitations in energy optimization caused by simplified AGV speed [...] Read more.
The Multi-load Automated Guided Vehicle (M-AGV) has emerged as a key enabling technology for intelligent and sustainable workshop logistics owing to its potential to enhance transportation efficiency and reduce system costs. To address the limitations in energy optimization caused by simplified AGV speed and payload modeling in existing scheduling models, this study develops a multi-factor coupled energy consumption model—integrating vehicle speed, travel distance, and dynamic payload—to minimize the total energy consumption of M-AGV systems. To effectively solve the model, a hybrid optimization algorithm that combines the State–Action–Reward–State–Action (SARSA) learning algorithm with the Triangulation Topology Aggregation Optimizer (TTAO), complemented by a similarity-based individual generation strategy, is designed to jointly enhance the algorithm’s exploration and exploitation capabilities. Comparative experiments were conducted across task scenarios involving three different handling task scales and three levels of M-AGV fleet heterogeneity, demonstrating that the proposed SARSA-TTAO algorithm outperforms Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and the Hybrid Genetic Algorithm with Large Neighborhood Search (GA-LNS) in terms of solution accuracy and convergence performance. The study also reveals the differences between homogeneous and heterogeneous M-AGV fleets in task allocation and resource utilization under energy-optimal conditions. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

30 pages, 1703 KB  
Article
A Three-Stage Stochastic–Robust Scheduling for Oxy-Fuel Combustion Capture Involved Virtual Power Plants Considering Source–Load Uncertainties and Carbon Trading
by Jiahong Wang, Xintuan Wang and Bingkang Li
Sustainability 2025, 17(16), 7354; https://doi.org/10.3390/su17167354 - 14 Aug 2025
Viewed by 319
Abstract
Driven by the “dual carbon” goal, virtual power plants (VPPs) are the core vehicle for integrating distributed energy resources, but the multiple uncertainties in wind power, electricity/heat load, and electricity price, coupled with the impact of carbon-trading cost, make it difficult for traditional [...] Read more.
Driven by the “dual carbon” goal, virtual power plants (VPPs) are the core vehicle for integrating distributed energy resources, but the multiple uncertainties in wind power, electricity/heat load, and electricity price, coupled with the impact of carbon-trading cost, make it difficult for traditional scheduling methods to balance the robustness and economy of VPPs. Therefore, this paper proposes an oxy-fuel combustion capture (OCC)-VPP architecture, integrating an OCC unit to improve the energy efficiency of the system through the “electricity-oxygen-carbon” cycle. Ten typical scenarios are generated by Latin hypercube sampling and K-means clustering to describe the uncertainties of source and load probability distribution, combined with the polyhedral uncertainty set to delineate the boundary of source and load fluctuations, and the stepped carbon-trading mechanism is introduced to quantify the cost of carbon emission. Then, a three-stage stochastic–robust scheduling model is constructed. The simulation based on the arithmetic example of OCC-VPP in North China shows that (1) OCC-VPP significantly improves the economy through the synergy of electric–hydrogen production and methanation (52% of hydrogen is supplied with heat and 41% is methanated), and the cost of carbon sequestration increases with the prediction error, but the carbon benefit of stepped carbon trading is stabilized at the base price of 320 DKK/ton; (2) when the uncertainty is increased from 0 to 18, the total cost rises by 45%, and the cost of purchased gas increases by the largest amount, and the cost of energy abandonment increases only by 299.6 DKK, which highlights the smoothing effect of energy storage; (3) the proposed model improves the solution speed by 70% compared with stochastic optimization, and reduces cost by 4.0% compared with robust optimization, which balances economy and robustness efficiently. Full article
Show Figures

Figure 1

27 pages, 4017 KB  
Article
Co-Optimization of Charging Strategies and Route Planning for Variable-Ambient-Temperature Long-Haul Electric Vehicles Based on an Electrochemical–Vehicle Dynamics Model
by Libin Zhang, Minghang Zhang, Hongying Shan, Guan Xu, Jingsheng Dong and Xuemeng Bai
Sustainability 2025, 17(16), 7349; https://doi.org/10.3390/su17167349 - 14 Aug 2025
Viewed by 280
Abstract
Vehicle electrification is one of the main development directions within the automobile industry. However, due to the range limit of electric vehicles, electric vehicle users generally have range anxiety, especially toward long-haul driving. Therefore, there is an urgent need to effectively coordinate route [...] Read more.
Vehicle electrification is one of the main development directions within the automobile industry. However, due to the range limit of electric vehicles, electric vehicle users generally have range anxiety, especially toward long-haul driving. Therefore, there is an urgent need to effectively coordinate route planning and charging during long-haul driving, especially considering factors such as insufficient charging facilities, long charging times, battery aging, and changes in energy consumption under variable-temperature environments. In this study, the goal is to collaboratively optimize route planning and charging strategies. To achieve this goal, a mixed-integer nonlinear model is developed to minimize the total system cost, an electrochemical model is applied to accurately track the battery state, and a two-layer IACO-SA is proposed. Finally, the highway network in five provinces of China is adopted as an example to compare the optimal scheme results of our model with those of three other models. The comparison results prove the effectiveness of the proposed model and solution algorithm for the collaborative optimization of route planning and charging strategies of electric vehicles during long-haul driving. Full article
Show Figures

Figure 1

32 pages, 3055 KB  
Article
Research on Scheduling Return Communication Tasks for UAV Swarms in Disaster Relief Scenarios
by Zhangquan Tang, Yuanyuan Jiao, Xiao Wang, Xiaogang Pan and Jiawu Peng
Drones 2025, 9(8), 567; https://doi.org/10.3390/drones9080567 - 12 Aug 2025
Viewed by 271
Abstract
This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that [...] Read more.
This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that operates under constraints, including communication base station time windows, battery levels, and task uniqueness. To solve the above model, we propose an enhanced algorithm through integrating Dueling Deep Q-Network (Dueling DQN) into adaptive large neighborhood search (ALNS), referred to as Dueling DQN-ALNS. The Dueling DQN component develops a method to update strategy weights, while the action space defines the destruction and selection strategies for the ALNS scheduling solution across different time windows. Meanwhile, we design a two-stage algorithm framework consisting of centralized offline training and decentralized online scheduling. Compared to traditionally optimized search algorithms, the proposed algorithm could continuously and dynamically interact with the environment to acquire state information about the scheduling solution. The solution ability of Dueling DQN is 3.75% higher than that of the Ant Colony Optimization (ACO) algorithm, 5.9% higher than that of the basic ALNS algorithm, and 9.37% higher than that of the differential evolution algorithm (DE). This verified its efficiency and advantages in the scheduling problem of return communication tasks for UAVs. Full article
Show Figures

Figure 1

29 pages, 1531 KB  
Article
Dynamic Tariff Adjustment for Electric Vehicle Charging in Renewable-Rich Smart Grids: A Multi-Factor Optimization Approach to Load Balancing and Cost Efficiency
by Dawei Wang, Xi Chen, Xiulan Liu, Yongda Li, Zhengguo Piao and Haoxuan Li
Energies 2025, 18(16), 4283; https://doi.org/10.3390/en18164283 - 12 Aug 2025
Viewed by 517
Abstract
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper proposes a real-time pricing optimization framework for large-scale EV charging networks incorporating renewable intermittency, demand elasticity, and infrastructure constraints within a [...] Read more.
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper proposes a real-time pricing optimization framework for large-scale EV charging networks incorporating renewable intermittency, demand elasticity, and infrastructure constraints within a high-dimensional optimization model. The core objective is to dynamically determine spatiotemporal electricity prices that simultaneously reduce system peak load, improve renewable energy utilization, and minimize user charging costs. A rigorous mathematical formulation is developed integrating over 40 system-level constraints, including power balance, transmission capacity, renewable curtailment, carbon targets, voltage regulation, demand-side flexibility, social participation, and cyber resilience. Real-time electricity prices are treated as dynamic decision variables influenced by charging station utilization, elasticity response curves, and the marginal cost of renewable and grid-supplied electricity. The problem is solved over 96 time intervals using a hybrid solution approach, with benchmark comparisons against mixed-integer programming (MILP) and deep reinforcement learning (DRL)-based baselines. A comprehensive case study is conducted on a 500-station EV charging network serving 10,000 vehicles integrated with a modified IEEE 118-bus grid model and 800 MW of variable renewable energy. Historical charging data with ±12% stochastic demand variation and real-world solar and wind profiles are used to simulate realistic operational conditions. Results demonstrate that the proposed framework achieves a 23.4% average peak load reduction per station, a 17.9% improvement in renewable energy utilization, and user cost savings of up to 30% compared to baseline flat-rate pricing. Utilization imbalances across the network are reduced, with congestion mitigation observed at over 90% of high-traffic stations. The real-time pricing model successfully aligns low-price windows with high-renewable periods and off-peak hours, achieving time-synchronized load shifting and system-wide flexibility. Visual analytics including high-resolution 3D surface plots and disaggregated bar charts reveal structured patterns in demand–price interactions, confirming the model’s ability to generate smooth, non-disruptive pricing trajectories. The results underscore the viability of advanced optimization-based pricing strategies for scalable, clean, and responsive EV charging infrastructure management in renewable-rich grid environments. Full article
Show Figures

Figure 1

25 pages, 6081 KB  
Article
Development of Energy Management Systems for Electric Vehicle Charging Stations Associated with Batteries: Application to a Real Case
by Jon Olano, Haritza Camblong, Jon Ander López-Ibarra and Tek Tjing Lie
Appl. Sci. 2025, 15(16), 8798; https://doi.org/10.3390/app15168798 - 8 Aug 2025
Viewed by 378
Abstract
Implementing an effective energy management system (EMS) is essential for optimizing electric vehicle (EV) charging stations (EVCSs), especially when combined with battery energy storage systems (BESSs). This study analyzes a real-world EVCS scenario and compares several EMS approaches, aiming to reduce operating costs [...] Read more.
Implementing an effective energy management system (EMS) is essential for optimizing electric vehicle (EV) charging stations (EVCSs), especially when combined with battery energy storage systems (BESSs). This study analyzes a real-world EVCS scenario and compares several EMS approaches, aiming to reduce operating costs while accounting for BESS degradation. Initially, significant savings were achieved by optimizing the EV charging schedule using genetic algorithms (GAs), even without storage. Next, different BESS-based EMSs, including rule-based and fuzzy logic systems, were optimized via GAs. Finally, in a dynamic scenario with variable electricity prices and demand, the adaptive GA-optimized fuzzy logic EMS was found to achieve the best performance, reducing annual operating costs by 15.6% compared to the baseline strategy derived from real fleet data. Full article
Show Figures

Figure 1

27 pages, 3537 KB  
Article
Battery-Powered AGV Scheduling and Routing Optimization with Flexible Dual-Threshold Charging Strategy in Automated Container Terminals
by Wenwen Guo, Huapeng Hu, Mei Sha, Jiarong Lian and Xiongfei Yang
J. Mar. Sci. Eng. 2025, 13(8), 1526; https://doi.org/10.3390/jmse13081526 - 8 Aug 2025
Viewed by 431
Abstract
Battery-powered automatic guided vehicles (B-AGVs) serve as crucial horizontal transportation equipment in terminals and significantly impact the terminal transportation efficiency. Imbalanced B-AGV availability during terminal peak and off-peak periods is driven by dynamic vessel arrivals. We propose a flexible dual-threshold charging (FDTC) strategy [...] Read more.
Battery-powered automatic guided vehicles (B-AGVs) serve as crucial horizontal transportation equipment in terminals and significantly impact the terminal transportation efficiency. Imbalanced B-AGV availability during terminal peak and off-peak periods is driven by dynamic vessel arrivals. We propose a flexible dual-threshold charging (FDTC) strategy synchronized with vessel dynamics. Unlike the static threshold charging (STC) strategy, FDTC dynamically adjusts its charging thresholds based on terminal workload intensity. And we develop a collaborative B-AGV scheduling and routing optimization model incorporating FDTC. A tailored Dijkstra-Partition neighborhood search (Dijkstra-Pns) algorithm is designed to resolve the problem in alignment with practical scenarios. Compared to the STC strategy, FDTC strategy significantly reduces the maximum B-AGV running time and decreases conflict waiting delays and charging times by 25.04% and 24.41%, respectively. Moreover, FDTC slashes quay crane (QC) waiting time by 40.78%, substantially boosting overall terminal operational efficiency. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop