The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles
Abstract
1. Introduction
2. Problem Formulation
2.1. The Willingness Curve of Load Curtailment for Users [37]
2.2. The Model of the EVs
2.3. The Profit of the VPP
- (1)
- The profit of the VPP before the start of DR is calculated as follows:
- (2)
- The profit of the VPP during the DR interval is described as follows:
- (3)
- The profit of the VPP after the end of DR is shown as follows:
- (1)
- VPP energy balance constraint
- (2)
- Rebate constraints
- (3)
- The capacity of the battery
3. Methodology
- (1)
- Searching and Roaming Behavioral Strategy: This strategy simulates the wolves’ random search for prey within their territory.
- (2)
- Calling and Chasing Behavioral Strategy: This strategy simulates the wolves’ coordinated chase and pursuit of identified prey.
- (3)
- Attacking and Capturing Behavioral Strategy: This strategy simulates the wolves’ collective attack on prey after it has been cornered.
- ➢
- Roaming Movement (): The step size of the roaming movement is defined in Equation (17).
- ➢
- Chasing Movement (): The step size of the chasing movement is defined in Equation (18).
- ➢
- Attacking Movement (): The step size of the attacking movement is defined in Equation (19).
- ➢
- The lack of necessary information exchange among the wolf pack may cause the wolves’ scouting behavior to become too dispersed, resulting in the algorithm moving away from the global optimum.
- ➢
- The step size parameter of the attacking movement is constant. If it is set improperly, the convergence performance of the algorithm may degrade.
3.1. Searching and Roaming Behavioral Strategy
3.2. Calling and Chasing Behavioral Strategy
3.3. Attacking and Capturing Behavioral Strategy
3.4. Wolf King Generation Rule in the Wolf Pack
- Compare the current wolf with the best objective value with the previous generation’s wolf king.
- If the current wolf has a better objective value, update the wolf king’s position.
- If multiple wolves have the same optimal value, randomly select one to become the new wolf king.
3.5. Wolf Pack Update Mechanism
3.6. Solution Process
4. Case Study
- TOU period: 10:00–16:00;
- Two-stage period: 10:00–12:00 and 13:00–16:00;
- Critical peak period: 13:00–15:00.
4.1. The VPP’s Profits in Non-Summer
4.2. The VPP’s Profits in Summer
4.3. The DR of VPP with Solar and EV Charging/Discharging
4.4. The Influence of the Incentive Price
5. Conclusions
- Utilizing the Improved Wolf Pack Search Algorithm (IWPSA) to calculate the daily profit of a Virtual Power Plant (VPP) by considering Demand Response (DR) and Electric Vehicles (EVs). DR events are implemented for TOU, two-stage, and critical peak periods, and the relationship between incentive price multipliers and the amount of load curtailment is analyzed.
- After the power company announces DR incentives, the VPP integrates regional electricity purchasing and selling, calculates user load curtailment, and uses the IWPSA to determine the maximum daily profit of the VPP.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DG | Distributed Generator |
DER | Distributed Energy Resource |
DR | Demand Response |
DSM | Demand Side Management |
EESs | Energy Storage Systems |
ESG | Environmental, Social, and Governance |
EV | Electric Vehicle |
GHG | greenhouse gas |
IWPSA | Improved Wolf Pack Search Algorithm |
TOU | Time-of-Use |
WPSA | Wolf Pack Search Algorithm |
V2G | Vehicle-to-Grid |
VPPs | Virtual Power Plants |
References
- UNFCC. 2025. Available online: https://unfccc.int/2860.php (accessed on 20 March 2025).
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Nebey, A.H. Recent advancement in demand side energy management system for optimal energy utilization. Energy Rep. 2024, 11, 5422–5435. [Google Scholar] [CrossRef]
- Naval, N.; Yusta, J.M. Virtual power plant models and electricity markets—A review. Renew. Sustain. Energy Rev. 2021, 149, 111393. [Google Scholar] [CrossRef]
- Mahmud, M.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- Che, L.; Zhang, X.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. Optimal interconnection planning of community microgrids with renewable energy sources. IEEE Trans. Smart Grid 2017, 8, 1054–1063. [Google Scholar] [CrossRef]
- Liu, C.; Yang, R.J.; Yu, X.; Sun, C.; Wong, S.P.; Zhao, H. Virtual power plants for a sustainable urban future. Sustain. Cities Soc. 2021, 65, 102640. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. A comprehensive review on electric vehicles integrated in virtual power plants. Sustain. Energy Technol. Assess. 2021, 48, 101678. [Google Scholar] [CrossRef]
- İnci, M.; Savrun, M.M.; Çeli, Q. Integrating electric vehicles as virtual power plants: A comprehensive review on vehicle-to-grid (V2G) concepts, interface topologies, marketing and future prospects. J. Energy Storage 2022, 55, 105579. [Google Scholar] [CrossRef]
- Wang, G.; Lin, Z.; Chen, Y.; Qiu, R.; Zhang, H.; Yan, J. Carbon-billed future for virtual power plants: A comprehensive review. Renew. Sustain. Energy Rev. 2025, 217, 115719. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, C.; Liu, Y. Short-term bidding strategy for a price-maker virtual power plant based on interval optimization. Energies 2019, 2, 3662. [Google Scholar] [CrossRef]
- Lyu, X.; Xu, Z.; Wang, N.; Fu, M.; Xu, W. A Two-Layer Interactive Mechanism for Peer-to-Peer Energy Trading Among Virtual Power Plants. Energies 2019, 12, 3628. [Google Scholar] [CrossRef]
- Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G. Optimal Offering Strategy of a Virtual Power Plant: A Stochastic Bi-Level Approach. IEEE Trans. Smart Grid 2016, 7, 794–806. [Google Scholar] [CrossRef]
- Shafiekhani, M.; Badri, A.; Khah, M.; Catalao, J. Strategies bidding of virtual power plant in energy markets: A bi-level multi-objective approach. Int. J. Electr. Power Energy Syst. 2019, 113, 208–219. [Google Scholar] [CrossRef]
- Yi, Z.; Xu, Y.; Zhou, Z.; Wu, W.; Sun, H. Bi-Level Programming for Optimal Operation of an Active Distribution Network with Multiple Virtual Power Plants. IEEE Trans. Sustain. Energy 2020, 11, 2855–2869. [Google Scholar] [CrossRef]
- Dbbagh, S.R.; Kazem, M. A profit sharing scheme for distributed energy resources integrated into a virtual power plant. Appl. Energy 2016, 184, 313–328. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, X.; Ullah, Z.; Qazi, H.S.; Hasanien, H.M. A novel solution strategy for scheduling optimization of virtual power plant considering multiple participants and Peak Energy Market. Renew. Energy 2025, 250, 123275. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Hooshmand, R.; Gholipour, E. Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy. Appl. Energy 2016, 64, 590–606. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Ye, B.; Xu, B. Optimal dispatch and bidding strategy of a virtual power plant based on a Stackelberg game. IET Gener. Transm. Distrib. 2020, 14, 552–563. [Google Scholar] [CrossRef]
- Cao, J.; Zheng, Y.; Han, X.; Yang, D.; Yu, J.; Tomin, N.; Dehghanian, P. Two-stage optimization of a virtual power plant incorporating with demand response and energy complementation. Energy Rep. 2022, 8, 7374–7385. [Google Scholar] [CrossRef]
- Cui, J.; Wu, J.; Wu, C.; Moura, S. Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies. Applied Energy 2023, 352, 121984. [Google Scholar] [CrossRef]
- Tang, J.; Li, X. Two-Stage Dual-Level Dispatch Optimization Model for Multiple Virtual Power Plants with Electric Vehicles and Demand Response Based on a Stackelberg Game. Energies 2025, 18, 896. [Google Scholar] [CrossRef]
- Gough, M.; Santos, S.F.; Javadi, M.S.; Home-Ortiz, J.M.; Castro, R.; Catalão, J.P. Bi-level stochastic energy trading model for technical virtual power plants considering various renewable energy sources, energy storage systems and electric vehicles. J. Energy Storage 2023, 68, 107742. [Google Scholar] [CrossRef]
- Guo, J.; Dou, C.; Zhang, Z.; Yue, D. Bi-level economic dispatch strategy for virtual power plants based on electric vehicles aggregation. Electr. Power Syst. Res. 2023, 225, 109783. [Google Scholar] [CrossRef]
- Wang, J.; Guo, C.; Yu, C.; Liang, Y. Virtual power plant containing electric vehicles scheduling strategies based on deep reinforcement learning. Electr. Power Syst. Res. 2022, 205, 107714. [Google Scholar] [CrossRef]
- Feng, B.; Liu, Z.; Huang, G.; Guo, C. Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles. Appl. Energy 2023, 349, 121615. [Google Scholar] [CrossRef]
- Rashidizadeh-Kermani, H.; Vahedipour-Dahraie, M.; Shafie-Khah, M.; Siano, P. A stochastic short-term scheduling of virtual power plants with electric vehicles under competitive markets. Int. J. Electr. Power Energy Syst. 2021, 124, 106343. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, K.; Li, W.; Sun, X. Multi-objective optimization of virtual energy hub plant integrated with data center and plug-in electric vehicles under a mixed robust-stochastic model. J. Clean. Prod. 2022, 363, 132365. [Google Scholar] [CrossRef]
- Yang, D.; He, S.; Wang, M.; Pandžić, H. Bidding strategy for virtual power plant considering the large-scale integrations of electric vehicles. IEEE Trans. Ind. Appl. 2020, 56, 5890–5900. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Xu, Q. Two-stage robust optimal scheduling method for virtual power plants considering the controllability of electric vehicles. Electr. Power Syst. Res. 2023, 225, 109785. [Google Scholar] [CrossRef]
- Azimi, Z.; Hooshmand, R.A.; Soleymani, S. Optimal integration of demand response programs and electric vehicles in coordinated energy management of industrial virtual power plants. J. Energy Storage 2021, 41, 102951. [Google Scholar] [CrossRef]
- Choi, S.; Cho, K. A Scenario-Based Approach to Using Electric Vehicle Batteries in Virtual Power Plants: Insights from Environmental, Social, and Governance and Monte Carlo Simulations. Sustainability 2025, 17, 3224. [Google Scholar] [CrossRef]
- Steren, A.; Parag, Y.; Teschner, N.; Zemah-Shamir, S. Consumer preferences and willingness to pay for EV charging: Implications for incentives to promote off-peak charging and renewables integration. Appl. Energy 2025, 392, 125981. [Google Scholar] [CrossRef]
- Li, C.M.; Du, Y.C.; Wu, J.X.; Lin, C.H.; Ho, Y.R.; Lin, Y.J.; Chen, T. Synchronizing chaotification with support vector machine and wolf pack search algorithm for estimation of peripheral vascular occlusion in diabetes mellitus. Biomed. Signal Process. Control. 2014, 9, 45–55. [Google Scholar] [CrossRef]
- Wang, P.; Rao, Y.; Luo, Q. An Effective Discrete Grey Wolf Optimization Algorithm for Solving the Packing Problem. IEEE Access 2020, 8, 115559–115571. [Google Scholar] [CrossRef]
- Xiao, W.; Dong, N.; He, K. A hybrid global wolf pack algorithm-based incremental conductance method under partial shading conditions. Sol. Energy 2025, 291, 113388. [Google Scholar] [CrossRef]
- Chandra, R.; Radhakrishnan, K.K.; Panda, S.K. Transactive control of air-conditioning systems in buildings for participation in Singapore’s Demand Response market through load curtailment. Sustain. Energy Grids Netw. 2022, 31, 100742. [Google Scholar] [CrossRef]
Incentive Price | Time (hour) | TOU Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) | Two-Stage Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) | Critical Peak Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) |
---|---|---|---|---|---|---|---|---|---|---|
2 times of | 10 | 4 | 126.55 | 163.28 | 4 | 126.55 | 163.28 | - | 0 | 0 |
11 | 4 | 127.61 | 164.50 | 4 | 127.61 | 164.50 | - | 0 | 0 | |
12 | 4 | 124.38 | 168.54 | - | 0 | 0 | - | 0 | 0 | |
13 | 4 | 117.69 | 165.00 | 4 | 117.69 | 165.00 | 4 | 117.69 | 165.00 | |
14 | 4.01 | 125.98 | 158.23 | 4 | 125.11 | 157.68 | 4 | 125.11 | 157.68 | |
15 | 4.01 | 126.77 | 163.25 | 4 | 125.89 | 162.68 | - | 0 | 0 | |
16 | 4 | 127.37 | 165.94 | 4 | 127.37 | 165.94 | - | 0 | 0 | |
4 times of | 10 | 7.88 | 491.50 | 475.63 | 7.96 | 500.61 | 484.45 | - | 0 | 0 |
11 | 7.92 | 500.24 | 483.63 | 7.96 | 504.83 | 488.07 | - | 0 | 0 | |
12 | 7.92 | 487.57 | 495.51 | - | 0 | 0 | - | 0 | 0 | |
13 | 7.99 | 469.81 | 494.01 | 7.96 | 465.58 | 489.56 | 7.99 | 469.81 | 494.01 | |
14 | 8.03 | 503.92 | 476.35 | 7.96 | 494.92 | 467.84 | 7.99 | 499.42 | 472.09 | |
15 | 8.03 | 507.08 | 491.46 | 7.96 | 498.02 | 482.67 | - | 0 | 0 | |
16 | 7.96 | 503.88 | 492.34 | 7.96 | 503.88 | 492.34 | - | 0 | 0 |
Incentive Price | TOU Period (TWD) | Two-Stage Period (TWD) | Critical Peak Period (TWD) |
---|---|---|---|
2 times of | 59,509.98 | 59,573.63 | 59,824.68 |
4 times of | 61,705.01 | 61,421.55 | 60,440.79 |
Incentive Price | Time (Hour) | TOU Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) | Two-Stage Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) | Critical Peak Period (TWD) | Industrial Load (kW) | Residential/Commercial Load (kW) |
---|---|---|---|---|---|---|---|---|---|---|
Two times | 10 | 4.12 | 150.40 | 183.48 | 4.27 | 160.61 | 189.89 | - | 0 | 0 |
11 | 4.21 | 155.96 | 191.14 | 4.27 | 159.77 | 193.59 | - | 0 | 0 | |
12 | 4.23 | 155.01 | 193.12 | - | 0 | 0 | - | 0 | 0 | |
13 | 4.25 | 146.71 | 186.49 | 4.27 | 147.88 | 187.28 | 4.30 | 150.23 | 188.86 | |
14 | 4.34 | 160.72 | 186.22 | 4.27 | 155.77 | 183.13 | 4.30 | 158.24 | 184.67 | |
15 | 4.32 | 162.26 | 189.79 | 4.27 | 158.48 | 187.42 | - | 0 | 0 | |
16 | 4.37 | 164.22 | 198.09 | 4.27 | 156.74 | 193.19 | - | 0 | 0 | |
Four times | 10 | 8.24 | 601.60 | 566.72 | 8.53 | 642.43 | 605.18 | - | 0 | 0 |
11 | 8.42 | 623.85 | 602.29 | 8.53 | 639.08 | 616.99 | - | 0 | 0 | |
12 | 8.46 | 620.03 | 610.87 | - | 0 | 0 | - | 0 | 0 | |
13 | 8.50 | 586.83 | 592.14 | 8.53 | 591.53 | 596.88 | 8.60 | 600.93 | 606.36 | |
14 | 8.68 | 642.87 | 602.19 | 8.53 | 623.07 | 583.64 | 8.60 | 632.97 | 592.91 | |
15 | 8.64 | 649.04 | 611.56 | 8.53 | 633.93 | 597.33 | - | 0 | 0 | |
16 | 8.75 | 656.86 | 645.07 | 8.53 | 626.98 | 615.72 | - | 0 | 0 |
Incentive Price | TOU Period (TWD) | Two-Stage Period (TWD) | Critical Peak Period (TWD) |
---|---|---|---|
Two times | 68,609.04 | 68,652.72 | 68,876.66 |
Four times | 74,932.88 | 74,583.93 | 72,884.66 |
Hour | Original Load (kW) | TOU Period (kW) | Two-Stage Period (kW) | Critical Peak Period (kW) |
---|---|---|---|---|
1 | 3830.82 | 957.71 | 957.71 | 957.71 |
2 | 3702.06 | 925.52 | 925.52 | 925.52 |
3 | 3522.72 | 880.68 | 880.68 | 880.68 |
4 | 3298.20 | 824.55 | 824.55 | 824.55 |
5 | 3307.74 | 826.94 | 826.94 | 826.94 |
6 | 3356.34 | 839.09 | 839.09 | 839.09 |
7 | 3452.10 | 732.70 | 732.70 | 732.70 |
8 | 4027.44 | 2214.67 | 2214.67 | 2214.67 |
9 | 4874.88 | 2797.68 | 3112.05 | 3112.05 |
10 | 5128.26 | 3575.30 * | 3681.37 * | 3329.65 |
11 | 5483.94 | 3825.02 * | 3928.83 * | 3575.12 |
12 | 5609.82 | 3945.63 * | 3695.93 * | 3695.93 |
13 | 5728.80 | 4069.10 * | 4158.77 | 4070.75 |
14 | 6092.64 | 4636.71 * | 4401.55 * | 4651.00 * |
15 | 6277.02 | 4656.80 * | 4455.21 * | 4693.87 * |
16 | 6178.20 | 4225.48 * | 4327.00* | 3972.44 |
17 | 5864.04 | 3390.11 | 3390.11 | 3390.11 |
18 | 5504.88 | 3130.15 | 3130.15 | 3130.15 |
19 | 5296.38 | 3317.76 | 3317.76 | 3317.76 |
20 | 5489.40 | 3436.36 | 3436.36 | 3436.36 |
21 | 5519.40 | 3455.14 | 3455.14 | 3455.14 |
22 | 5329.80 | 3336.45 | 3336.45 | 3336.45 |
23 | 4736.28 | 1184.07 | 1184.07 | 1184.07 |
24 | 4171.32 | 1042.83 | 1042.83 | 1042.83 |
Total | 62,226.45 | 62,255.45 | 61,395.53 |
Hour | Original Load (kW) | TOU Period (kW) | Two-Stage Period (kW) | Critical Peak Period (kW) |
---|---|---|---|---|
1 | 4824.50 | 1321.91 | 1321.91 | 1321.91 |
2 | 4392.90 | 1203.65 | 1203.65 | 1203.65 |
3 | 4092.53 | 1121.35 | 1121.35 | 1121.35 |
4 | 3828.11 | 1048.90 | 1048.90 | 1048.90 |
5 | 3662.07 | 1003.41 | 1003.41 | 1003.41 |
6 | 3821.85 | 1047.19 | 1047.19 | 1047.19 |
7 | 4003.95 | 857.39 | 857.39 | 857.39 |
8 | 4465.55 | 2464.60 | 2464.60 | 2464.60 |
9 | 5211.55 | 2973.62 | 2973.62 | 2973.62 |
10 | 5497.35 | 3890.26 * | 4079.66 * | 3551.97 |
11 | 5914.13 | 4284.62 * | 4435.47 * | 3905.06 |
12 | 6163.95 | 4483.07 * | 4096.57 * | 4096.57 |
13 | 6312.90 | 4589.25 * | 4722.45 | 4514.79 |
14 | 6776.78 | 5250.46 * | 5001.75 * | 5252.16 * |
15 | 6924.60 | 5277.26 * | 5079.29 * | 5291.70 * |
16 | 6729.53 | 4798.65 * | 4874.00 * | 4347.89 |
17 | 6500.63 | 3828.03 | 3828.03 | 3828.03 |
18 | 6615.23 | 3834.93 | 3834.93 | 3834.93 |
19 | 6472.65 | 4057.44 | 4057.44 | 4057.44 |
20 | 6923.25 | 4333.95 | 4333.95 | 4333.95 |
21 | 7125.08 | 4460.30 | 4460.30 | 4460.30 |
22 | 6545.07 | 4097.21 | 4097.21 | 4097.21 |
23 | 6006.07 | 1645.66 | 1645.66 | 1645.66 |
24 | 5450.69 | 1493.49 | 1493.49 | 1493.49 |
Total | 73,366.61 | 73,082.22 | 71,513.18 |
Month | Incentive Price | Load Curtailment | The Profit of VPP (NT$) | |||
---|---|---|---|---|---|---|
Industrial Load (kW) | Residential/Commercial Load (kW) | TOU Period | Two-Stage Period | Critical Peak Period | ||
Non-summer | Two times | 5 | 10 | 59,509.98 | 59,573.63 | 59,824.68 |
Four times | 19.82 | 29.73 | 61,705.01 | 61,421.55 | 60,440.79 | |
* Four times | 19.82 | 29.73 | 62,226.45 | 62,255.45 | 61,395.53 | |
* Six times | 44.57 | 59.55 | 70,780.91 | 69,601.06 | 63,873.04 | |
Summer | Two times | 5.67 | 10 | 68,609.04 | 68,652.72 | 68,876.66 |
Four times | 22.88 | 33.95 | 74,932.88 | 74,583.93 | 72,884.66 | |
* Four times | 22.88 | 33.95 | 73,366.61 | 73,082.22 | 71,513.18 | |
* Six times | 48.96 | 63.27 | 81,903.44 | 80,377.89 | 73,951.35 |
Algorithm | Incentive Price | The profit of VPP (NT$) | |||
---|---|---|---|---|---|
TOU Period | Two-Stage Period | Critical Peak Period | |||
Non-summer | WPSA | 4 times | 62,055.25 | 61,838.17 | 61,293.58 |
6 times | 70,278.62 | 68,953.73 | 63,516.39 | ||
IWPSA | 4 times | 62,226.45 | 62,255.45 | 61,395.53 | |
6 times | 70,780.91 | 69,601.06 | 63,873.04 | ||
Summer | WPSA | 4 times | 72,683.06 | 72,945.24 | 71,151.52 |
6 times | 81,808.91 | 79,898.99 | 73,527.57 | ||
IWPSA | 4 times | 73,366.61 | 73,082.22 | 71,513.18 | |
6 times | 81,903.44 | 80,377.89 | 73,951.35 |
The Profit of VPP (TWD) | ||
---|---|---|
Algorithm | Summer | Non-Summer |
EP | 72,645.63 | 62,012.56 |
PSO | 72,235.69 | 61,987.25 |
GA | 72,123.56 | 61,912.47 |
WPSA | 72,683.06 | 62,055.25 |
IWPSA | 73,366.61 | 62,226.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, C.-S.; Tsai, M.-T. The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles. Energies 2025, 18, 4485. https://doi.org/10.3390/en18174485
Tu C-S, Tsai M-T. The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles. Energies. 2025; 18(17):4485. https://doi.org/10.3390/en18174485
Chicago/Turabian StyleTu, Chia-Sheng, and Ming-Tang Tsai. 2025. "The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles" Energies 18, no. 17: 4485. https://doi.org/10.3390/en18174485
APA StyleTu, C.-S., & Tsai, M.-T. (2025). The Optimal Energy Management of Virtual Power Plants by Considering Demand Response and Electric Vehicles. Energies, 18(17), 4485. https://doi.org/10.3390/en18174485