Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = vehicle failure mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1306 KiB  
Article
Risk Perception in Complex Systems: A Comparative Analysis of Process Control and Autonomous Vehicle Failures
by He Wen, Zaman Sajid and Rajeevan Arunthavanathan
AI 2025, 6(8), 164; https://doi.org/10.3390/ai6080164 - 22 Jul 2025
Viewed by 320
Abstract
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and [...] Read more.
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and 30 from autonomous vehicles (AVs), to examine differences in risk triggers, perception paradigms, and interaction failures between humans and artificial intelligence (AI). Results: Our findings reveal that PCS risks are predominantly internal to the system and detectable through deterministic, rule-based mechanisms, whereas AVs’ risks are externally driven and managed via probabilistic, multi-modal sensor fusion. More importantly, despite these architectural differences, both domains exhibit recurring human–AI interaction failures, including over-reliance on automation, mode confusion, and delayed intervention. In the case of PCSs, these failures are historically tied to human–automation interaction; this article extrapolates these patterns to anticipate potential human–AI interaction challenges as AI adaptation increases. Conclusions: This study highlights the need for a hybrid risk perception framework and improved human-centered design to enhance situational awareness and responsiveness. While AI has not yet been implemented in PCS incident studies, this work interprets human–automation failures in these cases as indicative of potential challenges in human–AI interaction that may arise in future AI-integrated process systems. Implications extend to developing safer intelligent systems across industrial and transportation sectors. Full article
Show Figures

Figure 1

15 pages, 4334 KiB  
Article
Research on Wheel Polygonal Wear Based on the Vehicle–Track Coupling Vibration of Metro
by Yixuan Shi, Qingzhou Mao, Qunsheng Wang, Huanyun Dai, Xinyu Peng and Cuijun Dong
Machines 2025, 13(7), 587; https://doi.org/10.3390/machines13070587 - 7 Jul 2025
Viewed by 248
Abstract
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking [...] Read more.
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking tests and numerical simulations were conducted. The modal analysis focused on the vehicle–track coupling system, incorporating various track structures to explore the formation mechanisms and key influencing factors of polygonization. Test results revealed dominant polygonal wear patterns of the seventh to ninth order, inducing forced vibrations in the 50–70 Hz frequency range. These frequencies closely match the P2 resonance frequency generated by wheel–rail interaction. When vehicle–track coupling is considered, the track’s frequency response shows multiple peaks within this range, indicating susceptibility to resonance excitation. Additionally, rail joint irregularities act as geometric excitation sources that trigger polygonal development, while the P2 force resonance mode plays a critical role in its amplification. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

30 pages, 9068 KiB  
Article
Dynamic Behavior of Lighting GFRP Pole Under Impact Loading
by Mahmoud T. Nawar, Ahmed Elbelbisi, Mostafa E. Kaka, Osama Elhosseiny and Ibrahim T. Arafa
Buildings 2025, 15(13), 2341; https://doi.org/10.3390/buildings15132341 - 3 Jul 2025
Viewed by 246
Abstract
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base [...] Read more.
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base material behavior and energy absorption of GFRP lighting pole structures under impact loads. A finite element (FE) model of a 5 m-tall tapered GFRP pole with a steel base sleeve, base plate, and anchor bolts was developed. A 500 kg drop-weight impact at 400 mm above the base simulated vehicle collision conditions. The model was validated against experimental data, accurately reproducing the observed failure mode and peak force within 6%. Parametric analyses explored variations in pole diameter, wall thickness, base plate size and thickness, sleeve height, and anchor configuration. Results revealed that geometric parameters—particularly wall thickness and base plate dimensions—had the most significant influence on energy absorption. Doubling the wall thickness reduced normalized energy absorption by approximately 76%, while increases in base plate size and thickness reduced it by 35% and 26%, respectively. Material strength and anchor bolt configuration showed minimal impact. These findings underscore the importance of optimizing pole geometry to enhance crashworthiness. Controlled structural deformation improves energy dissipation, making geometry-focused design strategies more effective than simply increasing material strength. This work provides a foundation for designing safer roadside poles and highlights areas for further exploration in base configurations and connection systems. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

31 pages, 5327 KiB  
Article
Global Fixed-Time Fault-Tolerant Control for Tracked Vehicles with Hierarchical Unknown Input Observers
by Xihao Yan, Dongjie Wang, Aixiang Ma, Weixiong Zheng and Sihai Zhao
Actuators 2025, 14(7), 330; https://doi.org/10.3390/act14070330 - 1 Jul 2025
Viewed by 222
Abstract
This paper addresses the issues of sensor failures and actuator faults in mining tracked mobile vehicles (TMVs) operating in harsh environments by proposing a global fixed-time fault-tolerant control strategy based on a hierarchical unknown input observer structure. First, a kinematic and dynamic model [...] Read more.
This paper addresses the issues of sensor failures and actuator faults in mining tracked mobile vehicles (TMVs) operating in harsh environments by proposing a global fixed-time fault-tolerant control strategy based on a hierarchical unknown input observer structure. First, a kinematic and dynamic model of the TMV is established considering side slip and track slip, and its linear parameter-varying (LPV) model is constructed through parameter-dependent linearization. Then, a distributed structure consisting of four collaborating low-dimensional observers is designed, including a state observer, a disturbance observer, a position sensor fault observer, and a wheel speed sensor fault observer, and the fixed-time convergence of the closed-loop system is proven. Additionally, by equivalently treating actuator faults as power losses, an observer capable of identifying and compensating for motor efficiency losses is designed. Finally, an adaptive fault-tolerant control law is proposed by combining nominal control, disturbance compensation, and sliding mode switching terms, achieving global fixed-time stability and fault tolerance. Experimental results demonstrate that the proposed control system maintains excellent trajectory tracking performance even in the presence of sensor faults and actuator power losses, with tracking errors less than 0.1 m. Full article
Show Figures

Figure 1

20 pages, 7443 KiB  
Article
Parameter Stress Response Prediction for Vehicle Dust Extraction Fan Impeller Based on Feedback Neural Network
by Feng Zhang, Yuxiang Tian, Ruijie Du, Yuxiao Xu, Yang Gao and Xin Li
Machines 2025, 13(6), 496; https://doi.org/10.3390/machines13060496 - 6 Jun 2025
Viewed by 734
Abstract
Vehicles exhibit complex failure modes and mechanisms because of their extreme service environments and severe external loads. The increasing level of integration in these vehicles is also driving more stringent reliability requirements, but conventional methods for reliability analysis require significant calculations, necessitating the [...] Read more.
Vehicles exhibit complex failure modes and mechanisms because of their extreme service environments and severe external loads. The increasing level of integration in these vehicles is also driving more stringent reliability requirements, but conventional methods for reliability analysis require significant calculations, necessitating the use of surrogate models. At present, in the field of the reliability analysis of vehicle dust extraction impellers, although there are various research methods, the research on using surrogate models for relevant analysis is still not perfect. In particular, there are few studies specifically focused on dust extraction impellers. This study established a three-dimensional finite element parametric model of one such fan to simulate the impeller blade stress output for 500 parameter sets. The feedback neural network, backpropagation neural network, and quadratic polynomial response surface were subsequently used as surrogate models to learn the relationship between the parameters and output responses in these data. Comparisons of the results indicated that the feedback neural network exhibited the highest accuracy when predicting the stress responses of the dust extraction fan impeller to changes in parameter values. Through a comparative analysis of multiple surrogate models, this study determined the advantages of the feedback neural network in predicting the impeller stress response. It provides a more efficient and accurate method for reliability analysis in this field and helps to promote the development of reliability research on vehicle filtration systems. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

32 pages, 11290 KiB  
Article
Material Characterization and Stress-State-Dependent Failure Criteria of AASHTO M180 Guardrail Steel: Experimental and Numerical Investigation
by Qusai A. Alomari, Tewodros Y. Yosef, Robert W. Bielenberg, Ronald K. Faller, Mehrdad Negahban, Zesheng Zhang, Wenlong Li and Brandt M. Humphrey
Materials 2025, 18(11), 2523; https://doi.org/10.3390/ma18112523 - 27 May 2025
Viewed by 534
Abstract
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed [...] Read more.
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed and assessed, as localized rupturing, especially near splice or impact locations, can lead to catastrophic failures, compromising vehicle containment, violating crash safety standards, and ultimately jeopardizing the safety of occupants and other road users. Before conducting full-scale crash testing, finite element analysis (FEA) tools are widely employed to evaluate the design efficiency, optimize system configurations, and preemptively identify potential failure modes prior to expensive physical crash testing. To accurately assess system behavior, calibrated material models and precise failure criteria must be utilized in these simulations. Despite the existence of numerous failure criteria and material models, the material characteristics of AASHTO M-180 guardrail steel have not been fully investigated. This paper significantly advances the FE modeling of ductile fracture in guardrail steel, addressing a critical need within the roadside safety community. This study formulates stress-state-dependent failure criteria and proposes advanced material modeling techniques. Extensive experimental testing was conducted on steel specimens having various triaxiality and Lode parameter values to reproduce a wide spectrum of complex, three-dimensional stress-state loading conditions. The test results were then used to identify material properties and construct a failure surface. Subsequent FEA, which incorporated the Generalized Incremental Stress-State-Dependent Damage Model (GISSMO) in conjunction with two LS-DYNA material models, illustrates the capability of the developed surface and material input parameters to predict material behavior under various stress states accurately. A parametric study was completed to further validate the proposed models, highlighting their robustness and reliability. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

25 pages, 9099 KiB  
Article
Dynamic Sliding Mode Formation Control of Unmanned Surface Vehicles Under Actuator Failure
by Sihang Zhang, Qiang Zhang, Ligangao Xu, Sheng Xu, Yan Zhang and Yancai Hu
J. Mar. Sci. Eng. 2025, 13(4), 657; https://doi.org/10.3390/jmse13040657 - 25 Mar 2025
Cited by 3 | Viewed by 568
Abstract
Unmanned surface vehicles (USVs) are increasingly critical in modern maritime operations, where reliable cooperative formation control under actuator failure is essential for safe navigation and efficient mission execution. Thus, this study presents an innovative fault-tolerant control strategy for USV formations, specifically addressing the [...] Read more.
Unmanned surface vehicles (USVs) are increasingly critical in modern maritime operations, where reliable cooperative formation control under actuator failure is essential for safe navigation and efficient mission execution. Thus, this study presents an innovative fault-tolerant control strategy for USV formations, specifically addressing the challenges posed by actuator degradation, compound uncertainties, and input saturation. Concretely, the main contribution of this study is as follows. First, a detailed analysis of the USV kinematics and dynamics is conducted, and a novel position constraint model is developed through a formation transformation approach. To mitigate internal and external disturbances, a new non-singular terminal sliding mode surface is designed in conjunction with a dynamically regulated convergence law, ensuring finite-time convergence while reducing chattering. An adaptive terminal sliding mode controller is then formulated, integrating an event-triggered mechanism and an RBF neural network to compensate for model uncertainties and input saturation effects. Simulation results demonstrate that the proposed method not only achieves robust cooperative formation control under partial actuator failure but also significantly enhances the tracking accuracy and reduces the communication load compared to conventional sliding mode approaches. Full article
Show Figures

Figure 1

24 pages, 2822 KiB  
Article
Failure Modes Analysis Related to User Experience in Interactive System Design Through a Fuzzy Failure Mode and Effect Analysis-Based Hybrid Approach
by Yongfeng Li and Liping Zhu
Appl. Sci. 2025, 15(6), 2954; https://doi.org/10.3390/app15062954 - 9 Mar 2025
Cited by 3 | Viewed by 1245
Abstract
User experience (UX) is crucial for interactive system design. To improve UX, one method is to identify failure modes related to UX and then take action on the high-priority failure modes to decrease their negative impacts. For the UX of interactive system design, [...] Read more.
User experience (UX) is crucial for interactive system design. To improve UX, one method is to identify failure modes related to UX and then take action on the high-priority failure modes to decrease their negative impacts. For the UX of interactive system design, the failure modes under consideration are human errors or difficulties, and thus the risk factors concerning failure modes are subjective and even subconscious. Existing methods are not sufficient to deal with these issues. In this paper, a fuzzy failure mode and effect analysis (FMEA)-based hybrid approach is proposed to improve the UX of interactive system design. First, hierarchical task analysis (HTA) and systematic human error reduction and prediction approach (SHERPA) are combined to identify potential failure modes concerning UX. Subsequently, fuzzy linguistic variables are employed to assess the risk parameters of the failure modes, and the similarity aggregation method (SAM) is adopted to aggregate the fuzzy opinions. Then, on the basis of the aggregation results, fuzzy logic is adopted to compute the fuzzy risk priority numbers that can prioritize the failure modes. Finally, the failure modes with high priorities are considered for corrective actions. An in-vehicle information system was employed as a case study to illustrate the proposed approach. The findings indicate that, compared with other methods, our approach can provide more accurate results for prioritizing failure modes related to UX, and can successfully deal with the subjective and even subconscious nature of the risk factors associated with failure modes. This approach can be universally utilized to enhance the UX of interactive system design. Full article
Show Figures

Figure 1

30 pages, 4650 KiB  
Article
Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances
by Nigar Ahmed and Nashmi Alrasheedi
Drones 2025, 9(3), 181; https://doi.org/10.3390/drones9030181 - 28 Feb 2025
Viewed by 926
Abstract
Unmanned aerial vehicles must achieve precise flight maneuvers despite disturbances, parametric uncertainties, modeling inaccuracies, and limitations in onboard sensor information. This paper presents a robust adaptive control for trajectory tracking under nonlinear disturbances. Firstly, parametric and modeling uncertainties are addressed using model reference [...] Read more.
Unmanned aerial vehicles must achieve precise flight maneuvers despite disturbances, parametric uncertainties, modeling inaccuracies, and limitations in onboard sensor information. This paper presents a robust adaptive control for trajectory tracking under nonlinear disturbances. Firstly, parametric and modeling uncertainties are addressed using model reference adaptive control principles to ensure that the dynamics of the aerial vehicle closely follow a reference model. To address the effects of disturbances, a modified nonlinear disturbance observer is designed based on estimated state variables. This observer effectively attenuates constant, nonlinear disturbances with variable frequency and magnitude, and noises. In the next step, a two-stage sliding mode control strategy is introduced, incorporating adaptive laws and a commanded-filter to compute numerical derivatives of the state variables required for control design. An error compensator is integrated into the framework to reduce numerical and computational delays. To address sensor inaccuracies and potential failures, a high-gain observer-based state estimation technique is employed, utilizing the separation principle to incorporate estimated state variables into the control design. Finally, Lyapunov-based stability analysis demonstrates that the system is uniformly ultimately bounded. Numerical simulations on a DJI F450 quadrotor validate the approach’s effectiveness in achieving robust trajectory tracking under disturbances. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

12 pages, 4207 KiB  
Article
Influence of Bottom Chloride-Induced Corrosion on Truck Collision Response and Damage of Coastal Reinforced Concrete Bridge Piers
by Yu Liu and Yun Zhou
Corros. Mater. Degrad. 2025, 6(1), 11; https://doi.org/10.3390/cmd6010011 - 26 Feb 2025
Viewed by 836
Abstract
Coastal reinforced concrete (RC) bridge piers are often subjected to seawater splash and tidal action, leading to bottom corrosion of the steel reinforcement and thereby producing the corrosion–induced cracks of concrete. The increased risk of vehicle collisions to piers poses significant threats to [...] Read more.
Coastal reinforced concrete (RC) bridge piers are often subjected to seawater splash and tidal action, leading to bottom corrosion of the steel reinforcement and thereby producing the corrosion–induced cracks of concrete. The increased risk of vehicle collisions to piers poses significant threats to bridge and traffic disruption, potentially causing severe pier damage or even bridge collapse. Many studies have investigated the dynamic responses of bridge piers to vehicle collisions, but no study of the effect of the corrosion degradation of piers on vehicle collision response and damage has been reported yet. This study numerically investigates the influence of bottom chloride-induced corrosion on the truck collision response and damage of coastal RC bridge piers by using LS-DYNA. The results reveal that localized damage occurs in the impact zone for both intact and corroded piers. For the corroded pier, punching shear failure becomes the dominant failure mode and the pier is more vulnerable to collapse at lower truck velocities. Corrosion degradation influences the dynamic response, increasing the lateral displacement of the pier while reducing the impact force, particularly during the engine and cargo impact stages of truck collisions. The impulses in 500 ms collision time show reductions of 1.1% and 4.3% for piers with 45-year and 90-year corrosion, respectively. Notably, the lateral displacement at the bottom corrosion zone shows no oscillations due to the punching shear failure. Full article
Show Figures

Figure 1

28 pages, 11251 KiB  
Article
In-Motion Initial Alignment Method Based on Multi-Source Information Fusion for Special Vehicles
by Zhenjun Chang, Zhili Zhang, Zhaofa Zhou, Xinyu Li, Shiwen Hao and Huadong Sun
Entropy 2025, 27(3), 237; https://doi.org/10.3390/e27030237 - 25 Feb 2025
Viewed by 683
Abstract
To address the urgent demand for autonomous rapid initial alignment of vehicular inertial navigation systems in complex battlefield environments, this study overcomes the technical limitations of traditional stationary base alignment methods by proposing a robust moving-base autonomous alignment approach based on multi-source information [...] Read more.
To address the urgent demand for autonomous rapid initial alignment of vehicular inertial navigation systems in complex battlefield environments, this study overcomes the technical limitations of traditional stationary base alignment methods by proposing a robust moving-base autonomous alignment approach based on multi-source information fusion. First, a federal Kalman filter-based multi-sensor fusion architecture is established to effectively integrate odometer, laser Doppler velocimeter, and SINS data, resolving the challenge of autonomous navigation parameter calculation under GNSS-denied conditions. Second, a dual-mode fault diagnosis and isolation mechanism is developed to enable rapid identification of sensor failures and system reconfiguration. Finally, an environmentally adaptive dynamic alignment strategy is proposed, which intelligently selects optimal alignment modes by real-time evaluation of motion characteristics and environmental disturbances, significantly enhancing system adaptability in complex operational scenarios. The experimental results show that the method proposed in this paper can effectively improve the accuracy of vehicle-mounted alignment in motion, achieve accurate identification, effective isolation, and reconstruction of random incidental faults, and improve the adaptability and robustness of the system. This research provides an innovative solution for the rapid deployment of special-purpose vehicles in GNSS-denied environments, while its fault-tolerant mechanisms and adaptive strategies offer critical insights for engineering applications of next-generation intelligent navigation systems. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

25 pages, 4799 KiB  
Article
Optimized Structural Design of a Reciprocating Wing for the Reciprocating Airfoil (RA)-Driven Vertical Take-Off and Landing (VTOL) Aircraft
by Johnson Imumbhon Okoduwa, Osezua Obehi Ibhadode and Yiding Cao
Actuators 2025, 14(3), 104; https://doi.org/10.3390/act14030104 - 20 Feb 2025
Viewed by 1105
Abstract
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, [...] Read more.
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, including susceptibility to aerodynamic inefficiencies and mechanical issues. Additionally, achieving a seamless transition from VTOL to fixed-wing flight mode remains a significant challenge for hybrid UAVs. A novel approach is the reciprocating airfoil (RA) or reciprocating wing (RW) VTOL aircraft, which employs a fixed-wing configuration driven by a reciprocating mechanism to generate lift. The RA wing is uniquely designed to mimic a fixed-wing while leveraging its reciprocating motion for efficient lift production and a smooth transition between VTOL and forward flight. Despite its advantages, the RA wing endures substantial stress due to the high inertial forces involved in its operation. This study presents an optimized structural design of the RA wing through wing topology optimization and finite element analysis (FEA) to enhance its load-bearing capacity and stress performance. A comparative analysis with existing RA wing configurations at maximum operating velocities highlights significant improvements in the safety margin, failure criteria, and overall stress distribution. The key results of this study show an 80.4% reduction in deformation, a 43.8% reduction in stress, and a 78% improvement in safety margin. The results underscore the RA wing’s potential as an effective and structurally stable lift mechanism for RA-driven VTOL aircraft, demonstrating its capability to enhance the performance and reliability of next-generation UAVs. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation—Second Edition)
Show Figures

Figure 1

19 pages, 5670 KiB  
Article
Investigation of the Thermal Vibration Behavior of an Orthogonal Woven Composite Nozzle Based on RVE Analysis
by Lin Wang, Xiaoniu Li, Congze Fan, Wenzhe Song, Yiwei Chen, Yufeng Jin, Xiaobo Han and Jinghua Zheng
Aerospace 2025, 12(2), 157; https://doi.org/10.3390/aerospace12020157 - 18 Feb 2025
Viewed by 663
Abstract
Carbon fiber-reinforced epoxy composites, known for their high specific stiffness, specific strength, and toughness are one of the primary materials used for composite nozzles in aerospace industries. The high temperature vibration behaviors of the composite nozzles, especially those that withstand internal pressures, are [...] Read more.
Carbon fiber-reinforced epoxy composites, known for their high specific stiffness, specific strength, and toughness are one of the primary materials used for composite nozzles in aerospace industries. The high temperature vibration behaviors of the composite nozzles, especially those that withstand internal pressures, are key to affecting their dynamic response and even failure during the service. This study investigates the changes in frequencies and the vibrational modes of the carbon fiber reinforced epoxy nozzles, focusing on a three-dimensional (3D) orthogonal woven composite, with high internal temperatures from 25 °C to 300 °C and non-uniform internal pressures, up to 5.4 MPa. By considering the temperature-sensitive parameters, including Young’s modulus, thermal conductivity, and thermal expansion coefficients, which are derived from a self-built representative volume element (RVE), the intrinsic frequencies and vibrational modes in composite nozzles were examined. Findings reveal that 2 nodal diameter (ND) and 3ND modes are influenced by Exx and Eyy while bending and torsion modes are predominantly affected by shear modulus. Temperature and internal pressure exhibit opposite effects on the modal frequencies. When the inner wall temperature rises from 25 °C to 300 °C, 2ND and 3ND frequencies decrease by an average of 30.39%, while bending and torsion frequencies decline by an average of 54.80%, primarily attributed to the decline modulus. Modal shifts were observed at ~150 °C, where the bending mode shifts to the 1st-order mode. More importantly, introducing non-uniform internal pressures induces the increase in nozzle stiffening in the xy-plane, leading to an apparent increase in the average 2ND and 3ND frequencies by 17.89% and 7.96%, while negligible changes in the bending and torsional frequencies. The temperature where the modal shifts were reduced to ~50 °C. The research performed in this work offers crucial insights for assessing the vibration life and safety design of hypersonic flight vehicles exposed to high-temperature thermal vibrations. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 34209 KiB  
Article
Autonomous Non-Communicative Navigation Assistance to the Ground Vehicle by an Aerial Vehicle
by Ashok Kumar Sivarathri and Amit Shukla
Machines 2025, 13(2), 152; https://doi.org/10.3390/machines13020152 - 17 Feb 2025
Cited by 1 | Viewed by 716
Abstract
Vision-based UAV-AGV (Unmanned Aerial Vehicle–Autonomous Ground Vehicle) systems are prominent for executing tasks in GPS (Global Positioning System)-inaccessible areas. One of the roles of the UAV is guiding the navigation of the AGV. Reactive/mapless navigation assistance to an AGV from a UAV is [...] Read more.
Vision-based UAV-AGV (Unmanned Aerial Vehicle–Autonomous Ground Vehicle) systems are prominent for executing tasks in GPS (Global Positioning System)-inaccessible areas. One of the roles of the UAV is guiding the navigation of the AGV. Reactive/mapless navigation assistance to an AGV from a UAV is well known and suitable for computationally less powerful systems. This method requires communication between both agents during navigation as per state of the art. However, communication delays and failures will cause failures in tasks, especially during outdoor missions. In the present work, we propose a mapless technique for the navigation of AGVs assisted by UAVs without communication of obstacles to AGVs. The considered scenario is that the AGV is undergoing sensor and communication module failure and is completely dependent on the UAV for its safe navigation. The goal of the UAV is to take AGV to the destination while guiding it to avoid obstacles. We exploit the autonomous tracking task between the UAV and AGV for obstacle avoidance. In particular, AGV tracking the motion of the UAV is exploited for the navigation of the AGV. YOLO (You Only Look Once) v8 has been implemented to detect the drone by AGV camera. The sliding mode control method is implemented for the tracking motion of the AGV and obstacle avoidance control. The job of the UAV is to localize obstacles in the image plane and guide the AGV without communicating with it. Experimental results are presented to validate the proposed method. This proves to be a significant technique for the safe navigation of the AGV when it is non-communicating and experiencing sudden sensor failure. Full article
(This article belongs to the Special Issue Guidance, Navigation and Control of Mobile Robots)
Show Figures

Figure 1

14 pages, 6162 KiB  
Article
Modal Analysis and Optimization of Tractor Exhaust System
by Ayla Tekin and Halil Şamlı
Appl. Sci. 2025, 15(4), 2070; https://doi.org/10.3390/app15042070 - 16 Feb 2025
Viewed by 657
Abstract
Excessive vibrations in exhaust systems can significantly reduce a vehicle’s lifespan and compromise performance. These vibrations, caused by factors such as engine operation and road conditions, lead to wear and tear. To address this issue, a finite element analysis (FEA) was conducted on [...] Read more.
Excessive vibrations in exhaust systems can significantly reduce a vehicle’s lifespan and compromise performance. These vibrations, caused by factors such as engine operation and road conditions, lead to wear and tear. To address this issue, a finite element analysis (FEA) was conducted on a 90-horsepower tractor’s exhaust system. Using ANSYS WB®, a 3D model was created and modal analysis was performed to determine the system’s natural frequencies and mode shapes. Based on the results, geometric modifications were made to the exhaust system, increasing its stiffness and shifting vibration frequencies to higher values. Consequently, vibration levels, noise, and the risk of component failure were significantly reduced. The redesigned exhaust system was successfully implemented in production. This study demonstrates the effectiveness of FEA in analyzing exhaust system vibrations and facilitating design improvements. By extending vehicle lifespan and providing a quieter, more comfortable driving experience, this research offers valuable insights for automotive and mechanical engineers. Full article
(This article belongs to the Special Issue Design and Optimization of Manufacturing Systems, 2nd Edition)
Show Figures

Figure 1

Back to TopTop