Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = vascular autonomic signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2441 KB  
Review
Is TREM2 a Stretch: Implications of TREM2 Along Spinal Cord Circuits in Health, Aging, Injury, and Disease
by Tana S. Pottorf, Elizabeth L. Lane and Francisco J. Alvarez
Cells 2025, 14(19), 1520; https://doi.org/10.3390/cells14191520 - 29 Sep 2025
Viewed by 2073
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) is a receptor found in microglia within the central nervous system (CNS) as well as in several other cell types throughout the body. TREM2 has been highlighted as a “double-edged sword” due to its contribution [...] Read more.
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) is a receptor found in microglia within the central nervous system (CNS) as well as in several other cell types throughout the body. TREM2 has been highlighted as a “double-edged sword” due to its contribution to anti- or pro-inflammatory signaling responses in a spatial, temporal, and disease-specific fashion. Many of the functions of TREM2 in relation to neurological disease have been elucidated in a variety of CNS pathologies, including neurodegenerative, traumatic, and vascular injuries, as well as autoimmune diseases. Less is known about the function of TREM2 in motoneurons and sensory neurons, whose cell bodies and axons span both the CNS and peripheral nervous system (PNS) and are exposed to a variety of TREM2-expressing cells and mechanisms. In this review, we provide a brief overview of TREM2 and then highlight the literature detailing the involvement of TREM2 along the spinal cord, peripheral nerves and muscles, and sensory, motor, and autonomic functions in health, aging, disease, and injury. We further discuss the current feasibility of TREM2 as a potential therapeutic target to ameliorate damage in the sensorimotor circuits of the spinal cord. Full article
(This article belongs to the Special Issue Neuroinflammation in Brain Health and Diseases)
Show Figures

Figure 1

24 pages, 14557 KB  
Article
Pericyte Expression of VEGF-A Minimally Impacts Ocular Vascular Development and Neovascularization
by Yong-Seok Song, Shoujian Wang, Samay Inampudi, Hope Risa, Christine M. Sorenson and Nader Sheibani
Cells 2025, 14(18), 1473; https://doi.org/10.3390/cells14181473 - 21 Sep 2025
Viewed by 767
Abstract
Pericytes produce vascular endothelial growth factor-A (VEGF-A; hereafter referred to as VEGF). VEGF inhibits pericyte proliferation and migration through enhanced VEGFR2 and PDGFRβ heterodimerization. Heterodimerization of these receptors on perivascular supporting cells, mediated by VEGF in culture, mitigates signaling through these receptors and [...] Read more.
Pericytes produce vascular endothelial growth factor-A (VEGF-A; hereafter referred to as VEGF). VEGF inhibits pericyte proliferation and migration through enhanced VEGFR2 and PDGFRβ heterodimerization. Heterodimerization of these receptors on perivascular supporting cells, mediated by VEGF in culture, mitigates signaling through these receptors and promotes a quiescent phenotype. However, the detailed cellular mechanisms and the significance of these interactions in vivo require further investigation. The cell-autonomous activities of pericyte VEGF expression during vascular development and neovascularization remain unknown. Here we utilized mice conditionally lacking Vegfa in pericytes (VegfaPC) to examine its impact on retinal vascular development and pathological ocular neovascularization. Vascular integrity was also assessed in older mice using fundus imaging and fluorescein angiography. The lack of Vegfa pericyte expression delayed the initial spreading of the superficial layer of the retinal vasculature. Mice lacking Vegfa pericyte expression had similar numbers of retinal endothelial cells and arteries to their wild-type littermates. However, the number of pericytes was significantly reduced in younger VegfaPC mice but increased in more mature mice. In addition, pericyte Vegfa deficiency did not impact responses during oxygen-induced ischemic retinopathy and laser-induced choroidal neovascularization. Thus, pericyte VEGF expression plays a role during early stages of retinal vascular development with limited influence on mature retinal vascularization, its integrity, and neovascularization. Full article
Show Figures

Figure 1

9 pages, 477 KB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 876
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

14 pages, 2185 KB  
Article
Establishment and Use of Primary Cultured Astrocytes from Alexander Disease Model Mice
by Yuto Kubota, Eiji Shigetomi, Kozo Saito, Youichi Shinozaki, Kenji Kobayashi, Masayoshi Tanaka, Bijay Parajuli, Kenji F. Tanaka and Schuichi Koizumi
Int. J. Mol. Sci. 2024, 25(22), 12100; https://doi.org/10.3390/ijms252212100 - 11 Nov 2024
Viewed by 1803
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in glial fibrillary acidic protein (GFAP), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how GFAP mutations affect astrocytes and cause [...] Read more.
Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in glial fibrillary acidic protein (GFAP), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how GFAP mutations affect astrocytes and cause AxD pathology. Three features are characteristic of AxD astrocytes in vivo: (1) Rosenthal fibers (RFs), the hallmark of AxD; (2) aberrant Ca2+ signals (AxCa); and (3) upregulation of disease-associated genes (AxGen). We established a primary culture system for astrocytes from an AxD transgenic mouse model, and used it to analyze the above features of AxD pathogenesis in astrocytes in vitro. We observed the formation of RFs in AxD primary cultures. The abundance of RFs was greater in AxD-transgene-homozygous compared with -hemizygous astrocytes, indicating a gene dosage effect, and this abundance increased with time in culture, indicating a developmental process effect. However, cultured AxD astrocytes did not exhibit changes in either AxCa or AxGen. We therefore conclude that RFs in astrocytes form via a cell-autonomous mechanism, whereas AxCa and AxGen are likely to occur via a non-cell-autonomous mechanism through interactions with other cells, such as neurons, microglia, and vascular cells. Although primary cultured AxD astrocytes are suitable for elucidating the mechanisms of RFs formation and for intervention studies, it should be noted that they cannot reflect the pathophysiology of non-cell-autonomous events in astrocytes. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases 4.0)
Show Figures

Figure 1

32 pages, 2414 KB  
Review
Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies
by Jason Tsai, Shaista Malik and Stephanie C. Tjen-A-Looi
Life 2024, 14(10), 1265; https://doi.org/10.3390/life14101265 - 4 Oct 2024
Cited by 5 | Viewed by 5356
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general [...] Read more.
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor–vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease’s different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost. Full article
Show Figures

Figure 1

20 pages, 2522 KB  
Article
Pulmonary Vascular Responses to Chronic Intermittent Hypoxia in a Guinea Pig Model of Obstructive Sleep Apnea
by Elena Olea, Esther Valverde-Pérez, Inmaculada Docio, Jesus Prieto-Lloret, Philip I. Aaronson and Asunción Rocher
Int. J. Mol. Sci. 2024, 25(13), 7484; https://doi.org/10.3390/ijms25137484 - 8 Jul 2024
Cited by 5 | Viewed by 3026
Abstract
Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear [...] Read more.
Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.e., it is a natural CB knockout), in this study we used it as a model to investigate the CB dependence of the effects of CIH on pulmonary vascular responses, including those mediated by NO, by comparing them with those previously described in the rat. We have analyzed pulmonary artery pressure (PAP), the hypoxic pulmonary vasoconstriction (HPV) response, endothelial function both in vivo and in vitro, and vascular remodeling (intima–media thickness, collagen fiber content, and vessel lumen area). We demonstrate that 30 days of the exposure of guinea pigs to CIH (FiO2, 5% for 40 s, 30 cycles/h) induces pulmonary artery remodeling but does not alter endothelial function or the contractile response to phenylephrine (PE) in these arteries. In contrast, CIH exposure increased the systemic arterial pressure and enhanced the contractile response to PE while decreasing endothelium-dependent vasorelaxation to carbachol in the aorta without causing its remodeling. We conclude that since all of these effects are independent of CB sensitization, there must be other oxygen sensors, beyond the CB, with the capacity to alter the autonomic control of the heart and vascular function and structure in CIH. Full article
Show Figures

Figure 1

25 pages, 3805 KB  
Review
Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury
by Mohammad-Masoud Zavvarian, Akshat D. Modi, Sarah Sadat, James Hong and Michael G. Fehlings
Int. J. Mol. Sci. 2024, 25(11), 5708; https://doi.org/10.3390/ijms25115708 - 24 May 2024
Cited by 6 | Viewed by 6790
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial [...] Read more.
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI. Full article
(This article belongs to the Special Issue Drug Design and Development for Neurological Diseases)
Show Figures

Figure 1

24 pages, 2585 KB  
Review
Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions
by Kwang Bok Kim and Hyun Jae Baek
Electronics 2023, 12(13), 2923; https://doi.org/10.3390/electronics12132923 - 3 Jul 2023
Cited by 116 | Viewed by 50399
Abstract
Photoplethysmography (PPG) is an affordable and straightforward optical technique used to detect changes in blood volume within tissue microvascular beds. PPG technology has found widespread application in commercial medical devices, enabling measurements of oxygen saturation, blood pressure, and cardiac output; the assessment of [...] Read more.
Photoplethysmography (PPG) is an affordable and straightforward optical technique used to detect changes in blood volume within tissue microvascular beds. PPG technology has found widespread application in commercial medical devices, enabling measurements of oxygen saturation, blood pressure, and cardiac output; the assessment of autonomic nerve function; and the diagnosis of peripheral vascular disease. Recently, the growing demand for non-invasive, portable, cost-effective technology, along with advancements in small semiconductor components, has led to the integration of PPG into various wrist-worn wearable devices. Multiple sensor structures have been proposed and, through appropriate signal processing and algorithmic application, these wearable devices can measure a range of health indicators during daily life. This paper begins by addressing the market status of wrist-worn wearable devices, followed by an explanation of the fundamental principles underlying light operation and its interaction with living tissue for PPG measurements. Moving on to technological advancements, the paper addresses the analog front end for the measurement of the PPG signal, sensor configurations with multiple light emitters and receivers, the minimum sampling rate required for low-power systems, and the measurement of stress, sleep, blood pressure, blood glucose, and activity using PPG signals. Several challenges in the field are also identified, including selecting the appropriate wavelength for the PPG sensor’s light source, developing low-power interpolation methods to extract high-resolution inter-beat intervals at a low sampling rate, and exploring the measurement of physiological phenomena using multi-wavelength PPG signals simultaneously collected at the same location. Lastly, the paper presents future research directions, which encompass the development of new, reliable parameters specific to wearable PPG devices and conducting studies in real-world scenarios, such as 24-h long-term measurements. Full article
Show Figures

Figure 1

10 pages, 1792 KB  
Case Report
Reflex Auriculo-Cardiac (RAC) Induced by Auricular Laser and Needle Acupuncture: New Case Results Using a Smartphone
by Ying-Ling Chen, Kun-Chan Lan, Mark C. Hou, He-Hsi Tsai and Gerhard Litscher
Life 2023, 13(3), 853; https://doi.org/10.3390/life13030853 - 22 Mar 2023
Cited by 3 | Viewed by 3752
Abstract
The reflex auriculo-cardiac (RAC), dynamic pulse reaction (Nogier reflex), or vascular autonomic signal was proposed by Nogier. It refers to the pulse changes that can occur in the radial artery immediately after auricular acupuncture is performed. RAC is helpful for the clinical practice [...] Read more.
The reflex auriculo-cardiac (RAC), dynamic pulse reaction (Nogier reflex), or vascular autonomic signal was proposed by Nogier. It refers to the pulse changes that can occur in the radial artery immediately after auricular acupuncture is performed. RAC is helpful for the clinical practice of auricular acupuncture, but there is a lack of objective verification methods. Photoplethysmography (PPG) has been used to objectively calculate radial artery blood flow. This study used PPG via a smartphone to measure RAC induced by auricular acupuncture. Thirty subjects without major diseases were recruited to receive traditional needle and laser acupuncture. The Shen Men ear point and control points were stimulated for 20 s. PPG was continuously measured during the acupuncture. The PPG data were tested for differences with a paired t-test. The results showed that there were no statistical differences in the frequency and amplitude of PPG obtained before and after acupuncture, either with a traditional needle or laser acupuncture. However, interestingly, it was found that one patient with insomnia, one patient with viral respiratory symptoms, and two menstruating females exhibited changes in PPG within five seconds of needle placement. We hypothesized that RAC might be induced by auricular acupuncture and could be quantified by PPG, even among subjects suffering from mild diseases; however, auricular acupuncture might not induce a measurable RAC in totally healthy subjects. Full article
(This article belongs to the Special Issue Laser Acupuncture: Past, Present and Future)
Show Figures

Figure 1

7 pages, 1125 KB  
Opinion
Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI
by Xiaoqing Alice Zhou, Yuanyuan Jiang, Vitaly Napadow and Xin Yu
Brain Sci. 2022, 12(8), 1085; https://doi.org/10.3390/brainsci12081085 - 16 Aug 2022
Viewed by 3343
Abstract
The locus coeruleus (LC) is one of the most commonly studied brainstem nuclei when investigating brain–behavior associations. The LC serves as a major brainstem relay for both ascending bottom-up and descending top-down projections. Specifically, noradrenergic (NA) LC neurons not only connect globally to [...] Read more.
The locus coeruleus (LC) is one of the most commonly studied brainstem nuclei when investigating brain–behavior associations. The LC serves as a major brainstem relay for both ascending bottom-up and descending top-down projections. Specifically, noradrenergic (NA) LC neurons not only connect globally to higher-order subcortical nuclei and cortex to mediate arousal and attention but also directly project to other brainstem nuclei and to the spinal cord to control autonomic function. Despite the extensive investigation of LC function using electrophysiological recordings and cellular/molecular imaging for both cognitive research and the contribution of LC to different pathological states, the role of neuroimaging to investigate LC function has been restricted. For instance, it remains challenging to identify LC-specific activation with functional MRI (fMRI) in animal models, due to the small size of this nucleus. Here, we discuss the complexity of fMRI applications toward LC activity mapping in mouse brains by highlighting the technological challenges. Further, we introduce a single-vessel fMRI mapping approach to elucidate the vascular specificity of high-resolution fMRI signals coupled to LC activation in the mouse brainstem. Full article
Show Figures

Figure 1

21 pages, 1306 KB  
Review
Pathogenesis and Molecular Mechanisms of Anderson–Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies
by Antonino Tuttolomondo, Irene Simonetta, Renata Riolo, Federica Todaro, Tiziana Di Chiara, Salvatore Miceli and Antonio Pinto
Int. J. Mol. Sci. 2021, 22(18), 10088; https://doi.org/10.3390/ijms221810088 - 18 Sep 2021
Cited by 55 | Viewed by 11804
Abstract
Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises [...] Read more.
Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson–Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy–lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 1181 KB  
Review
Serotonin—Its Synthesis and Roles in the Healthy and the Critically Ill
by Marcela Kanova and Pavel Kohout
Int. J. Mol. Sci. 2021, 22(9), 4837; https://doi.org/10.3390/ijms22094837 - 3 May 2021
Cited by 111 | Viewed by 28330
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans—one central and the other peripheral—depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions [...] Read more.
Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans—one central and the other peripheral—depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 5482 KB  
Article
MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles
by Micol Marchetti, Marco Meloni, Maryam Anwar, Ayman Al-Haj-Zen, Graciela Sala-Newby, Sadie Slater, Kerrie Ford, Andrea Caporali and Costanza Emanueli
Int. J. Mol. Sci. 2020, 21(5), 1733; https://doi.org/10.3390/ijms21051733 - 3 Mar 2020
Cited by 25 | Viewed by 4794
Abstract
MicroRNAs (miRs) regulate complex processes, including angiogenesis, by targeting multiple mRNAs. miR-24-3p-3p directly represses eNOS, GATA2, and PAK4 in endothelial cells (ECs), thus inhibiting angiogenesis during development and in the infarcted heart. miR-24-3p is widely expressed in cardiovascular cells, suggesting that it could [...] Read more.
MicroRNAs (miRs) regulate complex processes, including angiogenesis, by targeting multiple mRNAs. miR-24-3p-3p directly represses eNOS, GATA2, and PAK4 in endothelial cells (ECs), thus inhibiting angiogenesis during development and in the infarcted heart. miR-24-3p is widely expressed in cardiovascular cells, suggesting that it could additionally regulate angiogenesis by acting on vascular mural cells. Here, we have investigated: (1) new miR-24-3p targets; (2) the expression and the function of miR-24-3p in human vascular ECs; (3) the impact of miR-24-3p inhibition in the angiogenesis reparative response to limb ischemia in mice. Using bioinformatics target prediction platforms and 3′-UTR luciferase assays, we newly identified Notch1 and its Delta-like ligand 1 (Dll1) to be directly targeted by miR-24-3p. miR-24-3p was expressed in human ECs and pericytes cultured under normal conditions. Exposure to hypoxia increased miR-24-3p in ECs but not in pericytes. Transfection with a miR-24-3p precursor (pre-miR-24-3p) increased miR-24-3p expression in ECs, reducing the cell survival, proliferation, and angiogenic capacity. Opposite effects were caused by miR-24-3p inhibition. The anti-angiogenic action of miR-24-3p overexpression could be prevented by simultaneous adenovirus (Ad)-mediated delivery of constitutively active Notch intracellular domain (NICD) into cultured ECs. We next demonstrated that reduced Notch signalling contributes to the anti-angiogenic effect of miR-24-3p in vitro. In a mouse unilateral limb ischemia model, local miR-24-3p inhibition (by adenovirus-mediated miR-24-3p decoy delivery) restored endothelial Notch signalling and increased capillary density. However, the new vessels appeared disorganised and twisted, worsening post-ischemic blood perfusion recovery. To better understand the underpinning mechanisms, we widened the search for miR-24-3p target genes, identifying several contributors to vascular morphogenesis, such as several members of the Wingless (Wnt) signalling pathway, β-catenin signalling components, and VE-cadherin, which synergise to regulate angiogenesis, pericytes recruitment to neoformed capillaries, maturation, and stabilization of newly formed vessels. Among those, we next focussed on β-catenin to demonstrate that miR-24-3p inhibition reduces β-catenin expression in hypoxic ECs, which is accompanied by reduced adhesion of pericytes to ECs. In summary, miR-24-3p differentially targets several angiogenesis modulators and contributes to autonomous and non-autonomous EC crosstalk. In ischemic limbs, miR-24-3p inhibition increases the production of dysfunctional microvessels, impairing perfusion. Caution should be observed in therapeutic targeting of miR-24-3p. Full article
(This article belongs to the Special Issue RNAs in Cardiovascular Diseases-CardioRNA EU COST Action)
Show Figures

Figure 1

20 pages, 14412 KB  
Article
WNK1 Kinase Stimulates Angiogenesis to Promote Tumor Growth and Metastasis
by Zong-Lin Sie, Ruei-Yang Li, Bonifasius Putera Sampurna, Po-Jui Hsu, Shu-Chen Liu, Horng-Dar Wang, Chou-Long Huang and Chiou-Hwa Yuh
Cancers 2020, 12(3), 575; https://doi.org/10.3390/cancers12030575 - 2 Mar 2020
Cited by 40 | Viewed by 5718
Abstract
With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is [...] Read more.
With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is ubiquitously expressed and essential for embryonic angiogenesis in mice. Increasing evidence indicates the role of WNK kinases in tumorigenesis at least partly by stimulating tumor cell proliferation. Here, we show that human hepatoma cells xenotransplanted into zebrafish produced high levels of vascular endothelial growth factor (VEGF) and WNK1, and induced expression of zebrafish wnk1. Knockdown of wnk1 in zebrafish decreased tumor-induced ectopic vessel formation and inhibited tumor proliferation. Inhibition of WNK1 or its downstream kinases OSR1 (oxidative stress responsive kinase 1)/SPAK (Ste20-related proline alanine rich kinase) using chemical inhibitors decreased ectopic vessel formation as well as proliferation of xenotransplanted hepatoma cells. The effect of WNK and OSR1 inhibitors is greater than that achieved by inhibitor of VEGF signaling cascade. These inhibitors also effectively inhibited tumorigenesis in two separate transgenic zebrafish models of intestinal and hepatocellular carcinomas. Endothelial-specific overexpression of wnk1 enhanced tumorigenesis in transgenic carcinogenic fish, supporting endothelial cell-autonomous effect of WNK1 in tumor promotion. Thus, WNK1 can promote tumorigenesis by multiple effects that include stimulating tumor angiogenesis. Inhibition of WNK1 may be a potent anti-cancer therapy. Full article
Show Figures

Figure 1

23 pages, 2207 KB  
Article
Altered Causal Coupling Pathways within the Central-Autonomic-Network in Patients Suffering from Schizophrenia
by Steffen Schulz, Jens Haueisen, Karl-Jürgen Bär and Andreas Voss
Entropy 2019, 21(8), 733; https://doi.org/10.3390/e21080733 - 26 Jul 2019
Cited by 24 | Viewed by 4857
Abstract
The multivariate analysis of coupling pathways within physiological (sub)systems focusing on identifying healthy and diseased conditions. In this study, we investigated a part of the central-autonomic-network (CAN) in 17 patients suffering from schizophrenia (SZO) compared to 17 age–gender matched healthy controls (CON) applying [...] Read more.
The multivariate analysis of coupling pathways within physiological (sub)systems focusing on identifying healthy and diseased conditions. In this study, we investigated a part of the central-autonomic-network (CAN) in 17 patients suffering from schizophrenia (SZO) compared to 17 age–gender matched healthy controls (CON) applying linear and nonlinear causal coupling approaches (normalized short time partial directed coherence, multivariate transfer entropy). Therefore, from all subjects continuous heart rate (successive beat-to-beat intervals, BBI), synchronized maximum successive systolic blood pressure amplitudes (SYS), synchronized calibrated respiratory inductive plethysmography signal (respiratory frequency, RESP), and the power PEEG of frontal EEG activity were investigated for 15 min under resting conditions. The CAN revealed a bidirectional coupling structure, with central driving towards blood pressure (SYS), and respiratory driving towards PEEG. The central-cardiac, central-vascular, and central-respiratory couplings are more dominated by linear regulatory mechanisms than nonlinear ones. The CAN showed significantly weaker nonlinear central-cardiovascular and central-cardiorespiratory coupling pathways, and significantly stronger linear central influence on the vascular system, and on the other hand significantly stronger linear respiratory and cardiac influences on central activity in SZO compared to CON, and thus, providing better understanding of the interrelationship of central and autonomic regulatory mechanisms in schizophrenia might be useful as a biomarker of this disease. Full article
(This article belongs to the Special Issue Information Dynamics in Brain and Physiological Networks)
Show Figures

Figure 1

Back to TopTop