Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = vapor phase aluminizing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4419 KB  
Article
Slurry Aluminizing Mechanisms of Nickel-Based Superalloy and Applicability for the Manufacturing of Platinum-Modified Aluminide Coatings
by Giulia Pedrizzetti, Virgilio Genova, Erica Scrinzi, Rita Bottacchiari, Marco Conti, Laura Paglia and Cecilia Bartuli
Coatings 2025, 15(7), 822; https://doi.org/10.3390/coatings15070822 - 14 Jul 2025
Viewed by 422
Abstract
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber [...] Read more.
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber and the initial slurry layer thickness on the microstructure, chemical composition, and phase composition of aluminide coatings. Coatings were manufactured on Ni-based superalloy substrates using CrAl powders as an aluminum source and chloride- and fluoride-based activator salts. The effect of the initial thickness of the slurry layer was studied by varying the amount of deposited slurry in terms of mgslurry/cm2sample (with constant mgslurry/cm3chamber). The microstructure and phase composition of the produced aluminide coatings were evaluated by SEM, EDS, and XRD analysis. Slurry thickness can affect concentration gradients during diffusion, and the best results were obtained with an initial slurry amount of 100 mgslurry/cm2sample. The effect of the Al vapor phase in the reaction chamber was then investigated by varying the mgslurry/cm3chamber ratio while keeping the slurry layer thickness constant at 100 mgslurry/cm2sample. This parameter influences the amount of Al at the substrate surface before the onset of solid-state diffusion, and the best results were obtained for a 6.50 mgslurry/cm3chamber ratio with the formation of 80 µm coatings (excluding the interdiffusion zone) with a β-NiAl phase throughout the thickness. To validate process flexibility, the same parameters were successfully applied to produce platinum-modified aluminides with a bi-phasic ζ-PtAl2 and β-(Ni,Pt)Al microstructure. Full article
Show Figures

Figure 1

18 pages, 6320 KB  
Article
Effect of Ni-Based Superalloy on the Composition and Lifetime of Aluminide Coatings
by Maryana Zagula-Yavorska
Materials 2025, 18(13), 3138; https://doi.org/10.3390/ma18133138 - 2 Jul 2025
Viewed by 432
Abstract
Aluminide coatings on nickel-based superalloys were synthesized via a high-temperature “clean” low-activity vapor-phase process. This process is environmentally friendly and meets manufacturers’ environmental protection requirements. Hence, it fulfils the Industry 4.0 requirements, where the reduction of environmental impact in the industrial sector is [...] Read more.
Aluminide coatings on nickel-based superalloys were synthesized via a high-temperature “clean” low-activity vapor-phase process. This process is environmentally friendly and meets manufacturers’ environmental protection requirements. Hence, it fulfils the Industry 4.0 requirements, where the reduction of environmental impact in the industrial sector is a key issue. Surface morphology, cross-section microstructure, and phase composition of the coatings were studied and compared by using an optical microscope and a scanning electron microscope (SEM) equipped with an energy dispersive spectroscope (EDS) and X-ray diffraction (XRD). Bare and coated superalloys’ lifetime was evaluated and compared via air exposure at 1100 °C. High-temperature low-activity aluminizing of the IN713, IN625, and CMSX4 superalloys enabled the obtainment of the desirable β-NiAl phase. The highest nickel content in the chemical composition of the IN713 superalloy among the investigated superalloys resulted in the highest aluminide coatings’ thickness. Moreover, the higher refractory elements concentration in the IN625 and CMSX4 superalloys than that in the IN713 superalloy may contribute to a thinner aluminide coatings’ thickness. Refractory elements diffused to the surface of the superalloy and formed carbides or intermetallic phases, which impeded outward nickel diffusion from the substrate to the surface and thereby inhibited coating growth. The obtained coatings fulfilled the requirements of ASTM B 875. Despite the fact that the coating formed on IN713 was thicker than that formed on IN625, the lifetime of both coated superalloys was comparable. Oxidation resistance of the aluminide coatings formed on the IN713 and IN625 superalloys makes them the favored choice for gas turbine applications. Full article
Show Figures

Figure 1

18 pages, 4232 KB  
Article
Heat-Resistant Protective Coatings Applied to Aircraft Turbine Blades by Supersonic Thermal Spraying and Diffusion-Aluminizing
by Leszek Ułanowicz and Andrzej Dudziński
Coatings 2024, 14(12), 1554; https://doi.org/10.3390/coatings14121554 - 11 Dec 2024
Cited by 2 | Viewed by 1787
Abstract
Aircraft engine turbine blades are covered with protective coatings. These coatings should have the best thermophysical convergence with the blade’s parent material. The aim is to create heat-resistant covering for aircraft engine turbine blades made of nickel superalloy. The results of tests on [...] Read more.
Aircraft engine turbine blades are covered with protective coatings. These coatings should have the best thermophysical convergence with the blade’s parent material. The aim is to create heat-resistant covering for aircraft engine turbine blades made of nickel superalloy. The results of tests on coatings are presented; the inner layer is an adhesive layer of the MeCrAlY type, applied to the blade by means of supersonic thermal spraying, and the outer layer is diffusion-aluminized in the first case using the Vapor Phase Aluminizing method, and in the second using the suspension method. The inner layer of the coating protects the blade material against high-temperature corrosion, and the outer layer against high-temperature fuel combustion product stream. The protective coatings applied to aircraft engine turbine blades were subjected to an engine test in test bench conditions and then to material tests. A protective coating with an internal layer of MeCrAlY type applied to the blade by supersonic spraying and an external layer aluminized by the Vapor Phase Aluminizing method protects the nickel superalloy against high-temperature diffusion changes, protects it against oxidation and provides it thermal insulation. Full article
Show Figures

Figure 1

18 pages, 14531 KB  
Article
Oxidation Behavior of Aluminide Coatings on Cobalt-Based Superalloys by a Vapor Phase Aluminizing Process
by Kuo Ma, Cheng Xie, Yidi Li, Biaobiao Yang, Yuanyuan Jin, Hui Wang, Ziming Zeng, Yunping Li and Xianjue Ye
Materials 2024, 17(23), 5897; https://doi.org/10.3390/ma17235897 - 2 Dec 2024
Cited by 1 | Viewed by 1052
Abstract
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and [...] Read more.
In this work, the oxidation behavior of an aluminide coating at 900, 1000, and 1100 °C was investigated. The aluminide coating was prepared on a cobalt-based superalloy using a vapor phase aluminizing process, which is composed of a β-(Co,Ni)Al phase outer layer and a Cr-rich phase diffusion layer. The experimental results showed that the oxidation of the coating at 900–1100 °C all obey the parabolic law. The oxidation rate constants of the coating were between 2.19 × 10−7 and 47.56 × 10−7 mg2·cm−4·s−1. The coating produced metastable θ-Al2O3 at 900 °C and stable α-Al2O3 at 1000 and 1100 °C. As the oxidation temperature increases, the formation of Al2O3 is promoted, consuming large amount of Al in the coating, resulting in the transformation from β-(Co,Ni)Al phase to α-(Co,Ni,Cr) phase. And the decrease in the β phase in the coating led to the dissolution of the diffusion layer. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

18 pages, 3218 KB  
Article
Synthesis and Characterization of Calcium Sulfoaluminate Hydrates—Ettringite (AFt) and Monosulfate (AFm)
by Wojciech Szudek, Jakub Szydłowski, Ilona Buchała and Ewa Kapeluszna
Materials 2024, 17(21), 5216; https://doi.org/10.3390/ma17215216 - 26 Oct 2024
Cited by 3 | Viewed by 1958
Abstract
The goal of the presented work was to find the most favorable conditions for the synthesis and stabilization of chemically pure ettringite and monosulfate. The reaction was carried out by mixing pure tricalcium aluminate (C3A) and gypsum (CS¯H [...] Read more.
The goal of the presented work was to find the most favorable conditions for the synthesis and stabilization of chemically pure ettringite and monosulfate. The reaction was carried out by mixing pure tricalcium aluminate (C3A) and gypsum (CS¯H2) in an excess amount of water. The impact of hydration time (2–7 days), C3A:CS¯ molar ratio (1:1–1:3) and water vapor pressure of the selected drying agents (anhydrite-III and supersaturated CaCl2 solution) on the phase composition of the products was evaluated. After 7 days of hydration, either ettringite or monosulfate was obtained as the main product, depending on the C3A:CS¯ molar ratio. The synthesis carried out at a C3A:CS¯ molar ratio of 1:3 produced pure ettringite. In the case of the sample characterized by the ratio of 1:1 (typical of monosulfate), a considerable portion of ettringite (27.9%) was present in the final products along the AFm phase. Therefore, a different synthesis method has to be selected in order to obtain pure monosulfate. The results showed that thermal analysis, X-ray diffractometry and FTIR spectroscopy can be used to distinguish the characteristic features of ettringite and monosulfate. Full article
Show Figures

Figure 1

15 pages, 3598 KB  
Article
Crystal Structure, Electrical Conductivity and Hydration of the Novel Oxygen-Deficient Perovskite La2ScZnO5.5, Doped with MgO and CaO
by Ksenia Belova, Anastasia Egorova, Svetlana Pachina and Irina Animitsa
Appl. Sci. 2022, 12(3), 1181; https://doi.org/10.3390/app12031181 - 24 Jan 2022
Cited by 10 | Viewed by 4045
Abstract
This paper demonstrates the possibility of creating oxygen deficiency in perovskites A+3B+3O3 by introducing two types of cations with different charges into the B-sublattice. For this, it is proposed to introduce a two-charged cation, for example, Zn2+ [...] Read more.
This paper demonstrates the possibility of creating oxygen deficiency in perovskites A+3B+3O3 by introducing two types of cations with different charges into the B-sublattice. For this, it is proposed to introduce a two-charged cation, for example, Zn2+, as an alternative to alkaline earth metals. Previously, this possibility was demonstrated for aluminate LaAlO3 and indate LaInO3. In this article, we have focused on the modification of the scandium-containing perovskite LaScO3. The novel oxygen-deficient perovskite La2ScZnO5.5 and doped phases La1.9Ca0.1ScZnO5.45, La2Sc0.9Ca0.1ZnO5.45, and La2Sc0.9Mg0.1ZnO5.45 were obtained via a solid-state reaction process. Their phase composition and hydration were investigated by XRD and TGA + MS techniques. The conductivities of these materials were measured by the electrochemical impedance technique under atmospheres of various water vapor partial pressures. All phases crystallized in orthorhombic symmetry with the Pnma space group. The phases were capable of reversible water uptake; the proton concentration increased in the order of La2ScZnO5.5 < La2Sc0.9Mg0.1ZnO5.45 < La2Sc0.9Ca0.1ZnO5.45 ≈ La1.9Ca0.1ScZnO5.45 and reached ~90% hydration limit for Ca2+-doped phases. The total conductivities increased with the increase in the free lattice volume in the sequence of σLa2ScZnO5.5 < σLa2Sc0.9Mg0.1ZnO5.45 < σLa1.9Ca0.1ScZnO5.45 < σLa2Sc0.9Ca0.1ZnO5.45, the activation energy decreased in the same sequence. The sample La2Sc0.9Ca0.1ZnO5.45 showed the highest conductivity of about 10−3 S∙cm−1 at 650 °C (dry air pH2O = 3.5·10−5 atm). Water incorporation was accompanied by an increase in conductivity in wet air (pH2O = 2·10−2 atm) due to the appearance of proton conductivity. The sample La2Sc0.9Ca0.1ZnO5.45 showed a conductivity of about 10−5 S∙cm−1 at 350 °C (pH2O = 2·10−2 atm). A comparison of conductivities of obtained phase La2ScZnO5.5 with the conductivities of La2AlZnO5.5 and La2InZnO5.5 was made; the nature of the B-cation did not significantly affect the total conductivity. Full article
Show Figures

Figure 1

21 pages, 4597 KB  
Review
Diamond Deposition on Iron and Steel Substrates: A Review
by Xiaoju Li, Lianlong He, Yuanshi Li and Qiaoqin Yang
Micromachines 2020, 11(8), 719; https://doi.org/10.3390/mi11080719 - 24 Jul 2020
Cited by 22 | Viewed by 4457
Abstract
This article presents an overview of the research in chemical vapor deposition (CVD) diamond films on steel substrates. Since the steels are the most commonly used and cost-effective structural materials in modern industry, CVD coating diamond films on steel substrates are extremely important, [...] Read more.
This article presents an overview of the research in chemical vapor deposition (CVD) diamond films on steel substrates. Since the steels are the most commonly used and cost-effective structural materials in modern industry, CVD coating diamond films on steel substrates are extremely important, combining the unique surface properties of diamond with the superior toughness and strength of the core steel substrates, and will open up many new applications in the industry. However, CVD diamond deposition on steel substrates continues to be a persistent problem. We go through the most relevant results of the last two and a half decades, including recent advances in our group. This review discusses the essential reason of the thick catalytic graphite interlayer formed on steel substrates before diamond deposition. The high carbon diffusion in iron would induce severe internal carburization, and then voluminous graphite precipitated from the substrate. In order to hinder the catalytic graphite formation, various methods have been applied for the adherent diamond film deposition, such as pre-imposed various interlayers or multi-interlayers, special controls of the deposition process, the approaches of substrate alloying and so on. We found that adherent diamond films can be directly deposited on Al alloying steel substrates, and then the role of Al alloying element was examined. That is a thin dense amorphous alumina sublayer in situ formed on the alloying substrate, which played a critical role in preventing the formation of graphite phase and consequently enhancing diamond growth and adhesion. The mechanism of Al alloying suggests that the way used to improve hot corrosion resistance is also applicable. Then, some of the hot corrosion resistance methods, such as aluminizing, siliconizing, and so on, which have been used by some researchers examining CVD diamond films on steel substrates, are reviewed. Another way is to prepare diamond-like carbon (DLC) films on steel substrates at low temperature, and then the precipitated graphite from the internal carburization can be effectively avoided. In addition, based on some new findings, the understanding of the diamond nucleation and metastable growth is discussed. Full article
(This article belongs to the Special Issue Diamond-Based Microsystems)
Show Figures

Figure 1

19 pages, 6231 KB  
Article
Imaging Aluminum Particles in Solid-Propellant Flames Using 5 kHz LIF of Al Atoms
by Gautier Vilmart, Nelly Dorval, Robin Devillers, Yves Fabignon, Brigitte Attal-Trétout and Alexandre Bresson
Materials 2019, 12(15), 2421; https://doi.org/10.3390/ma12152421 - 29 Jul 2019
Cited by 14 | Viewed by 3436
Abstract
Laser-induced fluorescence imaging of aluminum atoms (Al-PLIF) is used to analyze the spatio-temporal behavior of aluminized solid propellant combustion. Using alternating LIF and chemiluminescence emission images of the particles in the gaseous and liquid phase evolving close to and far above the dynamically [...] Read more.
Laser-induced fluorescence imaging of aluminum atoms (Al-PLIF) is used to analyze the spatio-temporal behavior of aluminized solid propellant combustion. Using alternating LIF and chemiluminescence emission images of the particles in the gaseous and liquid phase evolving close to and far above the dynamically varying propellant surface, sequences of images were recorded and analyzed. The good sensitivity achieved enabled us to track the dynamics of the flame in the vicinity of particles detected all along the flame extension and up to 1.5 MPa. Analysis of wide-field images enabled droplet velocity measurements due to the high LIF sampling rate (5 kHz). The observed typical plume structures were in good agreement with alumina-formation prediction and previous shadowgraphy visualization. High-resolution sequences of images showed gaseous distribution behavior around the molten particles. The Al vapor phase was thus found to extend between 3 and 6.5 radii around the particles. Particle detachment dynamics were captured just above the propellant surface. Full article
(This article belongs to the Special Issue Metal Combustion)
Show Figures

Figure 1

10 pages, 9012 KB  
Article
Hydration Resistance of CaO Material Prepared by Ca(OH)2 Calcination with Chelating Compound
by Jinhu Wang, Yaowu Wei, Nan Li and Junfeng Chen
Materials 2019, 12(14), 2325; https://doi.org/10.3390/ma12142325 - 22 Jul 2019
Cited by 20 | Viewed by 4145
Abstract
The hydration resistance of CaO materials prepared by Ca(OH)2 calcination with chelating compounds are investigated in this paper. The crystalline phases and microstructure characteristics of sintered specimens were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and energy [...] Read more.
The hydration resistance of CaO materials prepared by Ca(OH)2 calcination with chelating compounds are investigated in this paper. The crystalline phases and microstructure characteristics of sintered specimens were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and energy dispersive spectrometer (SEM, EDS). The bulk density, apparent porosity, and hydration resistance of samples were also tested. The results showed that chelating compounds improved the hydration resistance of the treated CaO specimens significantly. The surface-pretreated specimens showed an increase in bulk density and a decrease in apparent porosity after heating. The surface pretreatment of the Ti chelating compound promoted the solid phase sintering and grain growth of CaO specimens, which increased the density of the heated CaO sample. The Al chelating compound promoted the liquid-phase sintering of CaO specimens, which led to the grain growth and increased density of the sample. CaO grains were bonded by the formed tricalcium aluminate (C3A) and the apparent porosity of the sample was reduced, reducing the contact area of CaO with water vapor. The Al chelating compound was more effective in improving the hydration resistance of the CaO material in the situation of this study. Full article
Show Figures

Figure 1

Back to TopTop