Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = vanadium redox flow batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 10941 KiB  
Review
Recent Advances in Numerical Modeling of Aqueous Redox Flow Batteries
by Yongfu Liu and Yi He
Energies 2025, 18(15), 4170; https://doi.org/10.3390/en18154170 - 6 Aug 2025
Abstract
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity [...] Read more.
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity decay, structural optimization, and the design and application of key materials as well as their performance within battery systems. Addressing these issues requires systematic theoretical foundations and scientific guidance. Numerical modeling has emerged as a powerful tool for investigating the complex physical and electrochemical processes within flow batteries across multiple spatial and temporal scales. It also enables predictive performance analysis and cost-effective optimization at both the component and system levels, thus accelerating research and development. This review provides a comprehensive overview of recent progress in the modeling of ARFBs. Taking the all-vanadium redox flow battery as a representative example, we summarize the key multiphysics phenomena involved and introduce corresponding multi-scale modeling strategies. Furthermore, specific modeling considerations are discussed for phase-change ARFBs, such as zinc-based ones involving solid–liquid phase transition, and hydrogen–bromine systems characterized by gas–liquid two-phase flow, highlighting their distinctive features compared to vanadium systems. Finally, this paper explores the major challenges and potential opportunities in the modeling of representative ARFB systems, aiming to provide theoretical guidance and technical support for the continued development and practical application of ARFB technology. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

22 pages, 5322 KiB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Viewed by 89
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 280
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

26 pages, 2553 KiB  
Article
Algorithms for Simulation of Shunt Currents in a Vanadium Redox Flow Battery
by Decebal Aitor Ispas-Gil, Ekaitz Zulueta, Javier Olarte and Jose Manuel Lopez-Guede
Algorithms 2025, 18(7), 397; https://doi.org/10.3390/a18070397 - 28 Jun 2025
Viewed by 197
Abstract
This paper presents an algorithm for the implementation of a model that calculates shunt currents in redox flow batteries. The formation patterns of the equivalent electrical circuit that models shunt currents in redox flow batteries are analyzed in such a way that the [...] Read more.
This paper presents an algorithm for the implementation of a model that calculates shunt currents in redox flow batteries. The formation patterns of the equivalent electrical circuit that models shunt currents in redox flow batteries are analyzed in such a way that the proposed algorithm is applicable for batteries with any number of cell stacks and any number of cells per stack. Linear algebra is applied to solve the equation system related to the equivalent electric circuit. The solution of such a system of equations is obtained by performing the inverse of a matrix and premultiplying that matrix on both sides of the equation system. This being rather trivial, the real problem lies in automating the generation of the matrices relative to the system of equations. For this reason, it is analyzed how to generate the matrixes in order to facilitate the implementation of their generation. Finally, the most important parts of the implementation of the resolution algorithm are shown. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

21 pages, 2276 KiB  
Article
Empirical Study on Cost–Benefit Evaluation of New Energy Storage in Typical Grid-Side Business Models: A Case Study of Hebei Province
by Guang Tian, Penghui Liu, Yang Yang, Bin Che, Yuanying Chi and Junqi Wang
Energies 2025, 18(8), 2082; https://doi.org/10.3390/en18082082 - 17 Apr 2025
Viewed by 572
Abstract
Energy storage technology is a critical component in supporting the construction of new power systems and promoting the low-carbon transformation of the energy system. Currently, new energy storage in China is in a pivotal transition phase from research and demonstration to the initial [...] Read more.
Energy storage technology is a critical component in supporting the construction of new power systems and promoting the low-carbon transformation of the energy system. Currently, new energy storage in China is in a pivotal transition phase from research and demonstration to the initial stage of commercialization. However, it still faces numerous challenges, including incomplete business models, inadequate institutional policies, and unclear cost and revenue recovery mechanisms, particularly on the generation and grid sides. Therefore, this paper focuses on grid-side new energy storage technologies, selecting typical operational scenarios to analyze and compare their business models. Based on the lifecycle assessment method and techno-economic theories, the costs and benefits of various new energy storage technologies are compared and analyzed. This study aims to provide rational suggestions and incentive policies to enhance the technological maturity and economic feasibility of grid-side energy storage, improve cost recovery mechanisms, and promote the sustainable development of power grids. The results indicate that grid-side energy storage business models are becoming increasingly diversified, with typical models including shared leasing, spot market arbitrage, capacity price compensation, unilateral dispatch, and bilateral trading. From the perspectives of economic efficiency and technological maturity, lithium-ion batteries exhibit significant advantages in enhancing renewable energy consumption due to their low initial investment, high returns, and fast response. Compressed air and vanadium redox flow batteries excel in long-duration storage and cycle life. While molten salt and hydrogen storage face higher financial risks, they show prominent potential in cross-seasonal storage and low-carbon transformation. The sensitivity analysis indicates that the peak–valley electricity price differential and the unit investment cost of installed capacity are the key variables influencing the economic viability of grid-side energy storage. The charge–discharge efficiency and storage lifespan affect long-term returns, while technological advancements and market optimization are expected to further enhance the economic performance of energy storage systems, promoting their commercial application in electricity markets. Full article
(This article belongs to the Special Issue Energy Planning from the Perspective of Sustainability)
Show Figures

Figure 1

14 pages, 1980 KiB  
Article
Regulating the Structures of Carbon Cloth and Carbon Nanotubes to Boost the Positive Electrode Reaction of Vanadium Redox Flow Batteries
by Xinyu Huang, Chuanyu Sun, Shuqi Liu, Bangsen Zhao, Mingming Ge and Huan Zhang
Catalysts 2025, 15(4), 345; https://doi.org/10.3390/catal15040345 - 1 Apr 2025
Cited by 1 | Viewed by 564
Abstract
Considering the various morphologies of carbon nanotubes (CNTs), it is expected to solve the contradiction between concentration polarization and electrochemical polarization in vanadium redox flow batteries (VRFBs). This paper investigates the structural evolution of CNTs grown on the surface of thermally oxidized carbon [...] Read more.
Considering the various morphologies of carbon nanotubes (CNTs), it is expected to solve the contradiction between concentration polarization and electrochemical polarization in vanadium redox flow batteries (VRFBs). This paper investigates the structural evolution of CNTs grown on the surface of thermally oxidized carbon cloth (TCC) and their impact on the performance of VRFBs. The morphological results indicate that thermal oxidation treatment forms pores on the surface of the TCC, providing nucleation sites for CNT growth. Spiral-shaped CNTs (TCC@s-CNTs) were formed in a short growth time (1 h), and their high defect density originated from the non-steady-state supply of carbon sources and the dynamic behavior of the catalyst. While 3 h of growth forms a network structure (TCC@n-CNT), the van der Waals force drives the self-assembly of its three-dimensional network. Although the TCC@s-CNT exhibits high catalytic activity due to its high defect density and edge active sites, the performance of VRFBs is more dependent on the three-dimensional conductive network of the TCC@n-CNT. At 240 mA/cm2, the energy efficiency (EE) of a VRFB assembled with the TCC@n-CNT reaches 71%, and the capacity retention rate is 15% higher than that of the TCC@s-CNT. This work reveals the synergistic mechanism of CNT morphology regulation on electrode performance and provides theoretical guidance for the design of VRFB electrodes. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

18 pages, 6581 KiB  
Article
Graphite Felt Decorated with Metal–Organic Framework-Derived Nanocomposite as Cathode for Vanadium Redox Flow Battery
by Priya Lakshmanan, Chia-Hung Huang, Suba Devi Rengapillai, Yong-Song Chen, Wei-Ren Liu, Cheng-Liang Hsu and Sivakumar Marimuthu
Nanomaterials 2025, 15(7), 535; https://doi.org/10.3390/nano15070535 - 1 Apr 2025
Viewed by 678
Abstract
Fabricating electrodes with high electrocatalytic efficiency is crucial for the commercial feasibility of vanadium redox flow batteries (VRFBs). In this study, metal–organic framework-derived ZnO and Fe2O3 with a high specific surface area were successfully synthesized via high-energy ball milling. The [...] Read more.
Fabricating electrodes with high electrocatalytic efficiency is crucial for the commercial feasibility of vanadium redox flow batteries (VRFBs). In this study, metal–organic framework-derived ZnO and Fe2O3 with a high specific surface area were successfully synthesized via high-energy ball milling. The nanocomposite material (ZnO-Fe2O3) was prepared through ultrasonication and coated on the graphite felt using dip coating, serving as the positive electrode for the VRFB. These modified electrodes control polarization losses, leading to high voltage efficiency (VE) and energy efficiency (EE), even at high current densities. Consequently, the nanocomposite-modified electrode shows VE of 87% and EE of 84% at 50 mA/cm2, surpassing the performance of individual materials. The nanocomposite material retains its EE without degradation over 250 cycles at a current density of 150 mA/cm2. This enhanced performance is due to improved kinetics and reduced losses in the VO2+/VO2+ redox couple, enabled by the nanocomposite material. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

29 pages, 4384 KiB  
Article
Life Cycle Assessment of Green Methanol Production Based on Multi-Seasonal Modeling of Hybrid Renewable Energy and Storage Systems
by Hüseyin Güleroğlu and Zehra Yumurtacı
Sustainability 2025, 17(2), 624; https://doi.org/10.3390/su17020624 - 15 Jan 2025
Cited by 1 | Viewed by 3496
Abstract
This study evaluates the environmental implications of green methanol production under seasonal energy variability through a dual-comparative analytical framework. The research employs ReCiPe 2016 Endpoint (H) methodology to assess four seasonal renewable energy configurations (with varying solar–wind ratios across seasons) against conventional grid-based [...] Read more.
This study evaluates the environmental implications of green methanol production under seasonal energy variability through a dual-comparative analytical framework. The research employs ReCiPe 2016 Endpoint (H) methodology to assess four seasonal renewable energy configurations (with varying solar–wind ratios across seasons) against conventional grid-based production, utilizing a hybrid battery storage system combining lithium-ion and vanadium redox flow technologies. The findings reveal significant environmental benefits, with seasonal renewable configurations achieving 24.38% to 28.26% reductions in global warming potential compared to conventional methods. Monte Carlo simulation (n = 20,000) confirms these improvements across all impact categories. Our process analysis identifies hydrogen production as the primary environmental impact contributor (74–94%), followed by carbon capture (5–13%) and methanol synthesis (0.5–4.5%). Water consumption impacts show seasonal variation, ranging from 16.55% in summer to 11.62% in winter. There is a strong positive correlation between hydrogen production efficiency and solar energy availability, suggesting that higher solar energy input contributes to improved production outcomes. This research provides a framework for optimizing sustainable methanol production through seasonal renewable energy integration, offering practical insights for industrial implementation while maintaining production stability through effective energy storage solutions. Full article
Show Figures

Figure 1

15 pages, 4022 KiB  
Article
Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications
by Mohamed Adel Allam, Mohammad Ali Abdelkareem, Hussain Alawadhi, Abdul Ghani Olabi and Abdulmonem Fetyan
Sustainability 2024, 16(24), 11289; https://doi.org/10.3390/su162411289 - 23 Dec 2024
Cited by 2 | Viewed by 1263
Abstract
In our investigation, we unveil a novel, eco-friendly, and cost-effective method for crafting a bio-derived electrode using discarded cotton fabric via a carbonization procedure, marking its inaugural application in a vanadium redox flow battery (VRFB). Our findings showcase the superior reaction surface area, [...] Read more.
In our investigation, we unveil a novel, eco-friendly, and cost-effective method for crafting a bio-derived electrode using discarded cotton fabric via a carbonization procedure, marking its inaugural application in a vanadium redox flow battery (VRFB). Our findings showcase the superior reaction surface area, heightened carbon content, and enhanced catalytic prowess for vanadium reactions exhibited by this carbonized waste cloth (CWC) electrode compared to commercially treated graphite felt (TT-GF). Therefore, the VRFB system equipped with these custom electrodes surpasses its treated graphite felt counterpart (61% at an equivalent current) and achieves an impressive voltage efficiency of 70% at a current density of 100 mA cm−2. Notably, energy efficiency sees a notable uptick from 58% to 67% under the same current density conditions. These compelling outcomes underscore the immense potential of the carbonized waste cotton cloth electrode for widespread integration in VRFB installations at scale. Full article
Show Figures

Figure 1

11 pages, 5362 KiB  
Article
Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries
by Huishan Chen, Sen Li, Yongxin Zhao, Xinyue Li, Hui Zhao, Longzhen Cheng, Renting Li and Pengcheng Dai
Nanomaterials 2024, 14(24), 2055; https://doi.org/10.3390/nano14242055 - 23 Dec 2024
Cited by 1 | Viewed by 1184
Abstract
The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) [...] Read more.
The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity. Herein, we developed a bismuth nanoparticle uniformly modified graphite felt (Bi-GF) electrode using a bismuth oxide-mediated hydrothermal pyrolysis method. The Bi-GF electrode demonstrated significantly improved electrochemical performance, with higher peak current densities and lower charge transfer resistance than those of the pristine GF. VRFBs utilizing Bi-GF electrodes achieved a charge-discharge capacity exceeding 700 mAh at 200 mA/cm2, with a voltage efficiency above 84%, an energy efficiency of 83.05%, and an electrolyte utilization rate exceeding 70%. This work provides new insights into the design and development of efficient electrodes, which is of great significance for improving the efficiency and reducing the cost of VRFBs. Full article
Show Figures

Figure 1

13 pages, 6810 KiB  
Article
Open-Source Equipment Design for Cost-Effective Redox Flow Battery Research
by Trinh V. Dung, Nguyen T. T. Huyen, Nguyen L. T. Huynh, Nguyen T. Binh, Nguyen T. Dat, Nguyen T. T. Nga, Nguyen T. Lan, Hoang V. Tran, Nguyen T. T. Mai and Chinh D. Huynh
ChemEngineering 2024, 8(6), 120; https://doi.org/10.3390/chemengineering8060120 - 28 Nov 2024
Viewed by 1504
Abstract
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test [...] Read more.
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test cells. Addressing this bottleneck, we present herein an open-source device tailored for RFB laboratory research. Our proposed device significantly lowers the financial barriers to research and enhances the accessibility of vital equipment for RFB studies. Employing innovative fabrication methods such as laser cutting, 3D printing, and CNC machining, a versatile and efficient flow cell has been designed and fabricated. Furthermore, our open laboratory research equipment comprises the Opensens potentiostat, charge/discharge testing devices, peristaltic pumps, and inexpensive rotating electrodes. Every individual element contributes significantly to the establishment of an all-encompassing experimental configuration that is both economical and efficient, thereby facilitating expedited progress in RFB research and development. Full article
Show Figures

Figure 1

19 pages, 7289 KiB  
Article
Study on Electrical Characteristics Analysis and Electrical Circuit Model Design of Vanadium Redox Flow Battery Systems Based on Current and Flow Rate Conditions
by Seongjun Lee, Hyeonhong Jung and Yoon-Gyung Sung
Energies 2024, 17(23), 5841; https://doi.org/10.3390/en17235841 - 21 Nov 2024
Viewed by 1317
Abstract
Recent research has focused on vanadium redox flow batteries (VRFBs) to address the short lifetimes and fire risks associated with lithium battery systems. While VRFBs offer advantages in safety, they suffer from low energy density and efficiency compared with lithium batteries. To improve [...] Read more.
Recent research has focused on vanadium redox flow batteries (VRFBs) to address the short lifetimes and fire risks associated with lithium battery systems. While VRFBs offer advantages in safety, they suffer from low energy density and efficiency compared with lithium batteries. To improve VRFB performance, studies are exploring improvements in materials such as anodes, cathodes, and separators and optimizing operations by controlling electrolyte flow rates. However, the impact of current magnitude on VRFB efficiency has been less studied, with few analyses addressing both current and flow rate effects. This research proposes an experimental procedure to evaluate charge/discharge efficiency, energy efficiency, and system efficiency across varying current magnitudes and electrolyte flow rates, using a 40 W VRFB stack composed of four 10 W cells in series. In addition, we introduce a design method for an electrical equivalent circuit model that simulates the VRFB stack, reflecting experimental findings. The model’s accuracy was validated by comparing it with data from 11 full charge/full discharge cycle tests, which varied current and electrolyte amounts. Full article
Show Figures

Figure 1

32 pages, 5933 KiB  
Article
Synergistic Effects of Energy Storage Systems and Demand-Side Management in Optimizing Zero-Carbon Smart Grid Systems
by Zeyad A. Almutairi and Ali M. Eltamaly
Energies 2024, 17(22), 5637; https://doi.org/10.3390/en17225637 - 11 Nov 2024
Cited by 6 | Viewed by 1437
Abstract
The urgent need to mitigate climate change and reduce reliance on fossil fuels has driven the global shift towards renewable energy sources (RESs). However, the intermittent nature of RESs poses significant challenges to the widespread adoption of Zero-Carbon Smart Grids (ZCSGs). This study [...] Read more.
The urgent need to mitigate climate change and reduce reliance on fossil fuels has driven the global shift towards renewable energy sources (RESs). However, the intermittent nature of RESs poses significant challenges to the widespread adoption of Zero-Carbon Smart Grids (ZCSGs). This study proposes a synergistic framework to address this hurdle. It utilizes energy storage systems (ESSs) by comparing Vanadium redox flow batteries (VRFBs) and Lithium ion batteries (LIBs) to identify the most suitable option for ZCSGs, with precise models enabling robust performance evaluation. Moreover, an accurate demand-side management (DSM) strategy considering power elasticity to manage discrepancies between electricity load, RES generation, and ESS availability is introduced for estimating fair, dynamic tariffs. An advanced load and weather-forecasting strategy is introduced for improving grid planning and management. An advanced optimization algorithm enhances grid stability and efficiency. Simulations demonstrate significant reductions in carbon footprint, peak power demand, and reliance on fossil fuels. The study finds that VRFBs outperform LIBs in cost and security, and dynamic tariffs based on accurate DSM significantly reduce energy costs. This work explores the challenges and opportunities of this integrated approach, offering policy recommendations and future research directions for truly optimized ZCSG implementation. Full article
Show Figures

Figure 1

12 pages, 3335 KiB  
Article
Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery
by Ung-Il Kang
Electrochem 2024, 5(4), 470-481; https://doi.org/10.3390/electrochem5040031 - 8 Nov 2024
Viewed by 1955
Abstract
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V [...] Read more.
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V2O5, was mixed with various concentrations (0.8 M, 1.2 M, 1.6 M, 2.0 M) of citric acid (CA) as the reducing agent and stirred for 60 min at 90 °C using a hot plate to ensure complete dispersion in the solution. The resulting solution was subsequently subjected to a hydrothermal reduction reaction (HRR) furnace at 150 °C for 24 h to generate vanadium (3.5+). The mixed states of the produced vanadium (3+) and vanadium (4+) were confirmed using UV-vis spectroscopy. The electrochemical properties of the electrolyte were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealing that the optimal concentration of the CA was 1.6 M. The current efficiency, energy efficiency, and voltage efficiency of the electrolyte produced via the HRR process was compared with that prepared using VOSO4 in charge and discharge experiments. The results demonstrate that the HRR process yields an enhanced electrolyte across all efficiency metrics produced through the given improved performance in all efficiencies. These findings indicate that the HRR process using citric acid can facilitate the straightforward preparation of vanadium (3.5+) electrolyte, making it suitable for large-scale production. Full article
Show Figures

Figure 1

16 pages, 9355 KiB  
Article
Enhancing Vanadium Redox Flow Battery Performance with ZIF-67-Derived Cobalt-Based Electrode Materials
by Christine Young, Zhen-Qi Liao, Dong-Rong Li, Pei-Ling Li, Chen-Yang Wang, Shu-Mei Ho and Chi-Chang Chen
Molecules 2024, 29(21), 5061; https://doi.org/10.3390/molecules29215061 - 26 Oct 2024
Cited by 2 | Viewed by 2111
Abstract
Vanadium redox flow batteries (VRFBs) have emerged as a promising energy storage solution for stabilizing power grids integrated with renewable energy sources. In this study, we synthesized and evaluated a series of zeolitic imidazolate framework-67 (ZIF-67) derivatives as electrode materials for VRFBs, aiming [...] Read more.
Vanadium redox flow batteries (VRFBs) have emerged as a promising energy storage solution for stabilizing power grids integrated with renewable energy sources. In this study, we synthesized and evaluated a series of zeolitic imidazolate framework-67 (ZIF-67) derivatives as electrode materials for VRFBs, aiming to enhance electrochemical performance. Four materials—Co/NC-700, Co/NC-800, Co3O4-350, and Co3O4-450—were prepared through thermal decomposition under different conditions and coated onto graphite felt (GF) electrodes. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses confirmed the structural integrity and distribution of the active materials. Electrochemical evaluations revealed that electrodes with ZIF-67-derived coatings exhibited significantly lower charge transfer resistance (Rct) and higher energy efficiency (EE) compared to uncoated GF electrodes. Co/NC-800//GF delivered the highest energy efficiency and discharge capacity among the tested configurations, maintaining stable performance over 100 charge–discharge cycles. These results indicate that Co/NC-800 holds great potential for use in VRFBs due to its superior electrochemical activity, stability, and scalability. Full article
Show Figures

Figure 1

Back to TopTop