Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = vacuum magnetic birefringence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 534 KiB  
Review
IXPE Observations of Magnetar Sources
by Roberto Turolla, Roberto Taverna, Silvia Zane and Jeremy Heyl
Galaxies 2024, 12(5), 53; https://doi.org/10.3390/galaxies12050053 - 18 Sep 2024
Cited by 2 | Viewed by 1572
Abstract
Among the more than 60 sources observed in the first two years of operations, IXPE addressed four magnetars, neutron stars believed to host ultra-strong magnetic fields. We report here the main implication coming from IXPE measurements for the physics of magnetars. Polarimetric observations [...] Read more.
Among the more than 60 sources observed in the first two years of operations, IXPE addressed four magnetars, neutron stars believed to host ultra-strong magnetic fields. We report here the main implication coming from IXPE measurements for the physics of magnetars. Polarimetric observations confirmed the expectations of high polarization degrees, up to ≈80%, values which have not been detected in any other source so far, providing further proof (independent from the P-P˙ estimate) that magnetars host indeed ultra-magnetized neutron stars. Polarization measurements also indicate that softer X-rays likely come from surface regions where the overlying atmosphere underwent magnetic condensation. The agreement of the phase-dependent polarization angle with a simple rotating vector model strongly supports the presence of vacuum birefringence around the star. Full article
Show Figures

Figure 1

14 pages, 1795 KiB  
Review
X-ray Polarimetry of X-ray Pulsars
by Juri Poutanen, Sergey S. Tsygankov and Sofia V. Forsblom
Galaxies 2024, 12(4), 46; https://doi.org/10.3390/galaxies12040046 - 7 Aug 2024
Cited by 6 | Viewed by 1681
Abstract
Radiation from X-ray pulsars (XRPs) was expected to be strongly linearly polarized owing to a large difference in their ordinary and extraordinary mode opacities. The launch of IXPE allowed us to check this prediction. IXPE observed a dozen X-ray pulsars, discovering pulse-phase dependent [...] Read more.
Radiation from X-ray pulsars (XRPs) was expected to be strongly linearly polarized owing to a large difference in their ordinary and extraordinary mode opacities. The launch of IXPE allowed us to check this prediction. IXPE observed a dozen X-ray pulsars, discovering pulse-phase dependent variation of the polarization degree (PD) and polarization angle (PA). Although the PD showed rather erratic profiles resembling flux pulse dependence, the PA in most cases showed smooth variations consistent with the rotating vector model (RVM), which can be interpreted as a combined effect of vacuum birefringence and dipole magnetic field structure at a polarization-limiting (adiabatic) radius. Application of the RVM allowed us to determine XRP geometry and to confirm the free precession of the NS in Her X-1. Deviations from RVM in two bright transients led to the discovery of an unpulsed polarized emission likely produced by scattering off the accretion disk wind. Full article
Show Figures

Figure 1

27 pages, 2182 KiB  
Review
X-ray Polarization from Magnetar Sources
by Roberto Taverna  and Roberto Turolla 
Galaxies 2024, 12(1), 6; https://doi.org/10.3390/galaxies12010006 - 10 Feb 2024
Cited by 13 | Viewed by 3129
Abstract
The launch of the IXPE telescope in late 2021 finally made polarization measurements in the 2–8keV band a reality, more than 40 years after the pioneering observations of the OSO-8 satellite. In the first two years of operations, IXPE targeted more [...] Read more.
The launch of the IXPE telescope in late 2021 finally made polarization measurements in the 2–8keV band a reality, more than 40 years after the pioneering observations of the OSO-8 satellite. In the first two years of operations, IXPE targeted more than 60 sources, including four magnetars, neutron stars with magnetic fields in the petaGauss range. In this paper we summarize the IXPE main findings and discuss their implications for the physics of ultra-magnetized neutron stars. Polarimetric observations confirmed theoretical predictions, according to which X-ray radiation from magnetar sources is highly polarized, up to ≈80%, the highest value detected so far. This provides an independent confirmation that magnetars are indeed endowed with a super-strong magnetic field and that the twisted magnetosphere scenario is the most likely explanation for their soft X-ray emission. Polarization measurements allowed us to probe the physical conditions of the star’s outermost layers, showing that the cooler surface regions are in a condensed state, with no atmosphere on top. Although no smoking-gun of vacuum QED effects was found, the phase-dependent behavior of the polarization angle strongly hints that vacuum birefringence is indeed at work in magnetar magnetospheres. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

31 pages, 4153 KiB  
Review
Optical Polarimetry for Fundamental Physics
by Guido Zavattini and Federico Della Valle
Universe 2021, 7(7), 252; https://doi.org/10.3390/universe7070252 - 20 Jul 2021
Cited by 4 | Viewed by 3454
Abstract
Sensitive magneto-optical polarimetry was proposed by E. Iacopini and E. Zavattini in 1979 to detect vacuum electrodynamic non-linearity, in particular Vacuum Magnetic Birefringence (VMB). This process is predicted in QED via the fluctuation of electron–positron virtual pairs but can also be due to [...] Read more.
Sensitive magneto-optical polarimetry was proposed by E. Iacopini and E. Zavattini in 1979 to detect vacuum electrodynamic non-linearity, in particular Vacuum Magnetic Birefringence (VMB). This process is predicted in QED via the fluctuation of electron–positron virtual pairs but can also be due to hypothetical Axion-Like Particles (ALPs) and/or MilliCharged Particles (MCP). Today ALPs are considered a strong candidate for Dark Matter. Starting in 1992 the PVLAS collaboration, financed by INFN, Italy, attempted to measure VMB conceptually following the original 1979 scheme based on an optical cavity permeated by a time-dependent magnetic field and heterodyne detection. Two setups followed differing basically in the magnet: the first using a rotating superconducting 5.5 T dipole magnet at the Laboratori Nazionali di Legnaro, Legnaro, Italy and the second using two rotating permanent 2.5 T dipole magnets at the INFN section of Ferrara. At present PVLAS is the experiment which has set the best limit in VMB reaching a noise floor within a factor 7 of the predicted QED signal: Δn(QED)=2.5×1023 @ 2.5 T. It was also shown that the noise floor was due to the optical cavity and a larger magnet is the only solution to increase the signal to noise ratio. The PVLAS experiment ended at the end of 2018. A new effort, VMB@CERN, which plans to use a spare LHC dipole magnet at CERN with a new modified optical scheme, is now being proposed. In this review, a detailed description of the PVLAS effort and the comprehension of its limits leading to a new proposal will be given. Full article
(This article belongs to the Special Issue Italian Research Facilities for Fundamental Physics)
Show Figures

Figure 1

16 pages, 572 KiB  
Article
Strongly Magnetized Sources: QED and X-ray Polarization
by Jeremy Heyl and Ilaria Caiazzo
Galaxies 2018, 6(3), 76; https://doi.org/10.3390/galaxies6030076 - 21 Jul 2018
Cited by 26 | Viewed by 3785
Abstract
Radiative corrections of quantum electrodynamics cause a vacuum threaded by a magnetic field to be birefringent. This means that radiation of different polarizations travels at different speeds. Even in the strong magnetic fields of astrophysical sources, the difference in speed is small. However, [...] Read more.
Radiative corrections of quantum electrodynamics cause a vacuum threaded by a magnetic field to be birefringent. This means that radiation of different polarizations travels at different speeds. Even in the strong magnetic fields of astrophysical sources, the difference in speed is small. However, it has profound consequences for the extent of polarization expected from strongly magnetized sources. We demonstrate how the birefringence arises from first principles, show how birefringence affects the polarization state of radiation and present recent calculations for the expected polarization from magnetars and X-ray pulsars. Full article
(This article belongs to the Special Issue The Bright Future of Astronomical X-ray Polarimetry)
Show Figures

Figure 1

10 pages, 493 KiB  
Article
Probing Black Hole Magnetic Fields with QED
by Ilaria Caiazzo and Jeremy Heyl
Galaxies 2018, 6(2), 57; https://doi.org/10.3390/galaxies6020057 - 24 May 2018
Cited by 1 | Viewed by 3511
Abstract
The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED): the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly [...] Read more.
The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED): the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general. Full article
(This article belongs to the Special Issue The Bright Future of Astronomical X-ray Polarimetry)
Show Figures

Figure 1

1 pages, 120 KiB  
Abstract
Generalized Heisenberg-Euler Formula and Its Application to Vacuum Magnetic Birefringence Experiment
by Akio Sugamoto, Xing Fan, Shusei Kamioka, Kimiko Yamashita and Shoji Asai
Proceedings 2018, 2(1), 32; https://doi.org/10.3390/proceedings2010032 - 5 Jan 2018
Viewed by 1336
Abstract
The Heisenberg-Euler formula, describing the non-linear effective action of a photon, is generalized to include parity violating effects. Using the formula, how to probe the dark sector via the magnetic birefringence experiments is studied, in which a new scheme has emerged. [...] Full article
(This article belongs to the Proceedings of The First International Conference on Symmetry)
12 pages, 1912 KiB  
Review
Probing Physics in Vacuum Using an X-ray Free-Electron Laser, a High-Power Laser, and a High-Field Magnet
by Toshiaki Inada, Takayuki Yamazaki, Tomohiro Yamaji, Yudai Seino, Xing Fan, Shusei Kamioka, Toshio Namba and Shoji Asai
Appl. Sci. 2017, 7(7), 671; https://doi.org/10.3390/app7070671 - 29 Jun 2017
Cited by 38 | Viewed by 6097
Abstract
A nonlinear interaction between photons is observed in a process that involves charge sources. To observe this process in a vacuum, there are a growing number of theoretical and experimental studies. This process may contain exotic contribution from new physics beyond the Standard [...] Read more.
A nonlinear interaction between photons is observed in a process that involves charge sources. To observe this process in a vacuum, there are a growing number of theoretical and experimental studies. This process may contain exotic contribution from new physics beyond the Standard Model of particle physics, and is probed by experiments using a high-power laser or a high-field magnet, and more recently using an X-ray free-electron laser (XFEL). Here, we review the present status of our experiments testing various vacuum processes. We describe four experiments with a focus on those using an XFEL: (i) photon–photon scattering in the X-ray region, (ii) laser-induced birefringence and diffraction of X rays, (iii) vacuum birefringence induced by a high-field magnet, and (iv) a dedicated search for axion-like particles using the magnet and X rays. Full article
(This article belongs to the Special Issue X-Ray Free-Electron Laser)
Show Figures

Figure 1

Back to TopTop