IXPE Observations of Magnetar Sources
Abstract
:1. Introduction
2. AXP 0142+61
3. AXP 1RXS J170849.0−4009100
4. SGR 1806−20
5. AXP 1E 2259+586
6. Discussion and Conclusions
- The emission from magnetar targets has been found to be strongly polarized, as expected for radiation propagating in ultra-magnetized environments. In particular, the observed PD turned out to range between ≈15– at 2– to more than at 6– across the four sources that have been investigated.
- In spite of spectral similarities, the differences observed among the polarization patterns of the single sources strongly suggest a different origin for the thermal emission. Photons may come directly from the condensed surface of the neutron star or undergo reprocessing in magnetized atmospheric layers covering the emitting spots. The different scenarios can be well distinguished using X-ray polarimetry, which removes the degeneracy of the spectral analysis alone.
- The PA swing detected by IXPE in the case of AXP 4U 0142+61 points towards the presence of photons polarized in the O and X normal modes, which are expected for magnetic fields in excess of . This can be considered as an indirect proof, independent of the P- estimate, that magnetars are indeed neutron stars endowed with ultra-strong magnetic fields. Furthermore, the level of polarization measured at 6– (≈30–) agrees with the predictions of the commonly accepted RCS model. An alternative explanation for the peculiar polarimetric properties of 4U 0142+61 was put forward by Lai [47], who criticized the idea that two phases (gaseous and solid/liquid) can coexist on the surface. He argued, instead, that the polarization angle swing at 4– could arise at the vacuum resonance, due to partial mode conversion in a magnetized atmosphere, although this scenario too is not without problems [48].
- Although a larger polarization degree integrated over both energy and rotational phase would have been required to demonstrate that vacuum birefringence is at work (≳, see [14]), the behavior of the polarization angle as a function of phase observed in three sources is indeed that expected when considering vacuum birefringence effects.
- As the case of the AXP 1E 2259+586 has shown, phase-resolved polarimetry may provide further support to models that rely on the existence of localized magnetic structures, filled with charged particles, from which phase-dependent spectral features originate. Identifying these features with the proton-cyclotron resonance yields an estimate of the magnetic field near the surface of G, confirming the magnetar nature of this source.
Funding
Data Availability Statement
Conflicts of Interest
References
- Mereghetti, S. The strongest cosmic magnets: Soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 2008, 15, 225. [Google Scholar] [CrossRef]
- Turolla, R.; Zane, S.; Watts, A.L. Magnetars: The physics behind the observations. A review. Rep. Prog. Phys. 2015, 78, 116091. [Google Scholar] [CrossRef] [PubMed]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261. [Google Scholar] [CrossRef]
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 2014, 212, 6. [Google Scholar] [CrossRef]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. Lett. 1992, 392, L9. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 1995, 275, 255. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. The Giant Flare of 1998 August 27 from SGR 1900+14. II. Radiative Mechanism and Physical Constraints on the Source. Astrophys. J. 2001, 561, 980. [Google Scholar] [CrossRef]
- Braithwaite, J. Axisymmetric magnetic fields in stars: Relative strengths of poloidal and toroidal components. Mon. Not. R. Astron. Soc. 2009, 397, 763. [Google Scholar] [CrossRef]
- Perna, R.; Pons, J.A. A Unified Model of the Magnetar and Radio Pulsar Bursting Phenomenology. Astrophys. J. Lett. 2011, 727, L51. [Google Scholar] [CrossRef]
- Thompson, C.; Lyutikov, M.; Kulkarni, S.R. Electrodynamics of Magnetars: Implication for the Persistent X-ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-ray Pulsars. Astrophys. J. 2002, 574, 332. [Google Scholar] [CrossRef]
- Nobili, L.; Turolla, S.; Zane, S. X-ray spectra from magnetar candidates—I. Monte Carlo simulations in the non-relativistic regime. Mon. Not. R. Astron. Soc. 2008, 386, 1527. [Google Scholar] [CrossRef]
- Fernández, R.; Davis, S.W. The X-ray Polarization Signature of Quiescent Magnetars: Effect of Magnetospheric Scattering and Vacuum Polarization. Astrophys. J. 2011, 730, 131. [Google Scholar] [CrossRef]
- Taverna, R.; Muleri, F.; Turolla, R.; Soffitta, P.; Fabiani, S.; Nobili, L. Probing magnetar magnetosphere through X-ray polarization measurements. Mon. Not. R. Astron. Soc. 2014, 438, 1686. [Google Scholar] [CrossRef]
- Taverna, R.; Turolla, R.; Suleimanov, V.; Potekhin, A.Y.; Zane, S. X-ray spectra and polarization from magnetar candidates. Mon. Not. R. Astron. Soc. 2020, 492, 5057. [Google Scholar] [CrossRef]
- Gnedin, Y.N.; Pavlov, G.G. The trasfer equations for normal waves and radiation polarization in an anisotropic medium. Sov. J. Exp. Theor. Phys. 1974, 38, 903. [Google Scholar]
- Herold, H. Compton and Thomson scattering in strong magnetic fields. Phys. Rev. D 1979, 19, 2868. [Google Scholar] [CrossRef]
- Ventura, J. Scattering of light in a strongly magnetized plasma. Phys. Rev. D 1979, 19, 1684. [Google Scholar] [CrossRef]
- Mészáros, P. High-Energy Radiation from Magnetized Neutron Stars; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714. [Google Scholar] [CrossRef]
- Heyl, J.S.; Shaviv, N.J. Polarization evolution in strong magnetic fields. Mon. Not. R. Astron. Soc. 2000, 311, 555. [Google Scholar] [CrossRef]
- Heyl, J.S.; Shaviv, N.J. QED and high polarization of the thermal radiation from neutron stars. Phys. Rev. D 2002, 66, 023002. [Google Scholar] [CrossRef]
- Heyl, J.S.; Shaviv, N.J.; Lloyd, D. The high-energy polarization-limiting radius of neutron star magnetospheres—I. Slowly rotating neutron stars. Mon. Not. R. Astron. Soc. 2003, 342, 134. [Google Scholar] [CrossRef]
- Taverna, R.; Turolla, R.; González-Caniulef, D.; Zane, S.; Muleri, F.; Soffitta, P. Polarization of neutron star surface emission: A systematic analysis. Mon. Not. R. Astron. Soc. 2015, 454, 3254. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Cohen, G.G.; Kestenbaum, H.L.; Long, K.S.; Novick, R.; Wolff, R.S. Measurement of the X-ray polarization of the Crab nebula. Astrophys. J. 1978, 208, L125. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Silver, E.H.; Kestenbaum, H.L.; Long, K.S.; Novick, R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. 1978, 220, L117. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Soffitta, P.; Baldini, L.; Ramsey, B.D.; O’Dell, S.L.; Romani, R.W.; Matt, G.; Dininger, W.D.; Baumgartner, W.H.; Bellazzini, R.; et al. The Imaging X-ray Polarimetry Explorer (IXPE): Pre-Launch. J. Astron. Telesc. Instrum. Syst. 2022, 8, 026002. [Google Scholar] [CrossRef]
- Taverna, R.; Turolla, R.; Muleri, F.; Heyl, J.; Zane, S.; Baldini, L.; González-Caniulef, D.; Bachetti, M.; Rankin, J.; Caiazzo, I.; et al. Polarized X-rays from a magnetar. Science 2022, 378, 646. [Google Scholar] [CrossRef]
- Dib, R.; Kaspi, V.M. 16 yr of RXTE Monitoring of Fiva Anomalous X-ray Pulsars. Astrophys. J. 2014, 784, 37. [Google Scholar] [CrossRef]
- Rea, N.; Nichelli, E.; Israel, G.L.; Perna, R.; Oosterbroek, T.; Parmar, A.N.; Turolla, R.; Campana, S.; Stella, L.; Zane, S.; et al. Very deep X-ray observations of the anomalous X-ray pulsar 4U0142+614. Mon. Not. R. Astron. Soc. 2007, 381, 293. [Google Scholar] [CrossRef]
- den Hartog, P.R.; Kuiper, L.; Hermsen, W.; Kaspi, V.M.; Dib, R.; Knödlseder, J.; Gavriil, F.P. Detailed high-energy characteristics of AXP 4U 0142+61. Multi-year observations with INTEGRAL, RXTE, XMM-Newton, and ASCA. Astron. Astrophys. 2008, 489, 245. [Google Scholar] [CrossRef]
- Zane, S.; Taverna, R.; González–Caniulef, D.; Muleri, F.; Turolla, R.; Heyl, J.; Uchiyama, K.; Ng, M.; Tamagawa, T.; Caiazzo, I.; et al. A Strong X-ray Polarization Signal from the Magnetar 1RXS J170849.0–400910. Astrophys. J. Lett. 2023, 944, L27. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Cooke, D.J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. J. Lett. 1969, 3, 225. [Google Scholar]
- Poutanen, J. Relativistic rotating vector model for X-ray millisecond pulsars. Astron. Astrophys. 2020, 641, A166. [Google Scholar] [CrossRef]
- Israel, G.L.; Covino, S.; Stella, L.; Campana, S.; Haberl, F.; Mereghetti, S. Further Evidence that 1RXS J170849.0–400910 Is an Anomalous X-ray Pulsar. Astrophys. J. 1999, 518, L107. [Google Scholar] [CrossRef]
- Rea, N.; Israel, G.L.; Oosterbroek, T.; Campana, S.; Zane, S.; Turolla, R.; Testa, V.; Méndez, M.; Stella, L. X-ray intensity-hardness correlation and deep IR observations of the anomalous X-ray pulsar 1RXS J170849–400910. Astrophys. Space Sci. 2007, 308, 505. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-ray Telescope. Space Sci. Rev. 2005, 120, 165. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Gendreau, K.C.; Baker, C.L.; Cazeau, T.; Hestnes, P.; Kellogg, J.W.; Kenyon, S.J.; Kozon, R.P.; Liu, K.-C.; Manthripragada, S.S.; et al. The neutron star interior composition explorer (NICER): Mission definition. Proc. SPIE 2014, 9144, 914420. [Google Scholar]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron Stars–Cooling and Transport. Space Sci. Rev. 2015, 191, 239. [Google Scholar] [CrossRef]
- Bibby, J.L.; Crowther, P.A.; Furness, J.P.; Clark, J.S. A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini Near-Infrared Spectroscopy. Mon. Not. R. Astron. Soc. 2008, 386, L23. [Google Scholar] [CrossRef]
- Palmer, D.M.; Barthelmy, S.; Gehrels, N.; Kippen, R.M.; Cayton, T.; Kouveliotou, C.; Eichler, D.; Wijers, R.A.; Woods, P.M.; Granot, J.; et al. A giant γ-ray flare from the magnetar SGR 1806–20. Nature 2005, 434, 1107. [Google Scholar] [CrossRef]
- Turolla, R.; Taverna, R.; Israel, G.L.; Muleri, F.; Zane, S.; Bachetti, M.; Heyl, J.; Di Marco, A.; Gau, E.; Krawczynski, H.; et al. IXPE and XMM-Newton Observations of the Soft Gamma Repeater SGR 1806–20. Astrophys. J. 2023, 954, 88. [Google Scholar] [CrossRef]
- Younes, G.; Baring, M.G.; Kouveliotou, C.; Harding, A.; Donovan, S.; Göǧüş, E.; Kaspi, V.M.; Granot, J. The Sleeping Monster: NuSTAR Observations of SGR 1806–20, 11 Years after the Giant Flare. Astrophys. J. 2017, 851, 17. [Google Scholar] [CrossRef]
- Pizzocaro, D.; Tiengo, A.; Mereghetti, S.; Turolla, R.; Esposito, P.; Stella, L.; Zane, S.; Rea, N.; Zelati, F.C.; Israel, G. Detailed X-ray spectroscopy of the magnetar 1E 2259+586. Astron. Astrophys. 2019, 626, A39. [Google Scholar] [CrossRef]
- Heyl, J.S.; Taverna, R.; Turolla, R.; Israel, G.L.; Ng, M.; Kırmızıbayrak, D.; González-Caniulef, D.; Caiazzo, I.; Zane, S.; Ehlert, S.R.; et al. The detection of polarized X-ray emission from the magnetar 1E 2259+586. Mon. Not. R. Astron. Soc. 2024, 527, 12219. [Google Scholar] [CrossRef]
- Kothes, R.; Foster, T. A Thorough Investigation of the Distance to the Supernova Remnant CTB109 and Its Pulsar AXP J2301+5852. Astrophys. J. Lett. 2012, 746, L4. [Google Scholar] [CrossRef]
- Tiengo, A.; Esposito, P.; Mereghetti, S.; Turolla, R.; Nobili, L.; Gastaldello, F.; Götz, D.; Israel, G.L.; Rea, N.; Stella, L.; et al. A variable absoprtion feature in the X-ray spectrum of a magnetar. Nature 2013, 500, 312. [Google Scholar] [CrossRef]
- Lai, D. IXPE detection of polarized X-rays from magnetars and photon mode conversion at QED vacuum resonance. Proc. Natl. Acad. Sci. USA 2023, 120, 17. [Google Scholar] [CrossRef]
- Kelly, R.M.E.; Zane, S.; Turolla, R.; Taverna, R. X-ray Polarisation in Magnetar Atmospheres—Effects of Mode Conversion. Mon. Not. R. Astron. Soc. 2024, 528, 3927. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turolla, R.; Taverna, R.; Zane, S.; Heyl, J. IXPE Observations of Magnetar Sources. Galaxies 2024, 12, 53. https://doi.org/10.3390/galaxies12050053
Turolla R, Taverna R, Zane S, Heyl J. IXPE Observations of Magnetar Sources. Galaxies. 2024; 12(5):53. https://doi.org/10.3390/galaxies12050053
Chicago/Turabian StyleTurolla, Roberto, Roberto Taverna, Silvia Zane, and Jeremy Heyl. 2024. "IXPE Observations of Magnetar Sources" Galaxies 12, no. 5: 53. https://doi.org/10.3390/galaxies12050053
APA StyleTurolla, R., Taverna, R., Zane, S., & Heyl, J. (2024). IXPE Observations of Magnetar Sources. Galaxies, 12(5), 53. https://doi.org/10.3390/galaxies12050053