Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = vacuole rupture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2707 KiB  
Article
The Flash Vacuum Expansion Process Increases the Bioaccessibility and Stability of Antioxidant Compounds in Papaya Puree During Digestion
by Teresita de Jesús Castillo-Romero, Leticia Xochitl López-Martínez, Marco Antonio Salgado-Cervantes, Eber Addí Quintana-Obregón, Gustavo Adolfo González-Aguilar and Manuel Vargas-Ortiz
Resources 2024, 13(12), 175; https://doi.org/10.3390/resources13120175 - 20 Dec 2024
Viewed by 1341
Abstract
Among all fruits, the papaya ranks among the most significant, occupying fourth place in terms of marketing volumes. The papaya encounters various deterioration issues throughout the marketing chain, which results in the loss of bioactive phytochemicals in the fruit’s pulp. Making puree is [...] Read more.
Among all fruits, the papaya ranks among the most significant, occupying fourth place in terms of marketing volumes. The papaya encounters various deterioration issues throughout the marketing chain, which results in the loss of bioactive phytochemicals in the fruit’s pulp. Making puree is the best way to make papaya pulp last longer, but processing can break down antioxidants like phenolic compounds (which are mostly stored in cell vacuoles) and carotenoids (which are stored in chromoplasts). The flash vacuum expansion process (FVE) promotes an expansion of the water present in the vacuoles, which generates cell rupture and consequently, the release of intracellular components. Because cell rupture is promoted from within the cell, the expulsion of bioactive compounds is more efficient and can therefore increase their bioaccessibility. Our results show that the FVE process increased the antioxidant capacity of the purees (measured by TEAC, FRAP, and DPPH assays) before and during digestion. Our results show that the FVE process significantly enhances the bioaccessibility and stability of antioxidant compounds, providing a clear advantage over the conventional method. Fruit purees generated by FVE can be an ingredient that increases the functionality of foods (juices, nectars, purees, ice creams, and yogurt) aimed at people with digestive problems, baby food, or the use of fruits with low commercial value. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

13 pages, 2145 KiB  
Article
Effect of Metformin on Meibomian Gland Epithelial Cells: Implications in Aging and Diabetic Dry Eye Disease
by Leon Rescher, Swati Singh, Ingrid Zahn, Friedrich Paulsen and Martin Schicht
Life 2024, 14(12), 1682; https://doi.org/10.3390/life14121682 - 18 Dec 2024
Cited by 3 | Viewed by 1491
Abstract
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, [...] Read more.
Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h. The assessed outcomes were cell proliferation assays, lipid production, ultrastructural changes, levels of IGF-1, Nrf2, HO-1, apoptosis-inducing factor 1 (AIF1) at the protein level, and the expression of oxidative stress factors (matrix metallopeptidase 9, activating transcription factor 3, CYBB, or NADPH oxidase 2, xanthine dehydrogenase). Results: Morphological studies showed increased lipid production, the differentiation of hMGECs after stimulation with metformin, and the differentiation effects of undifferentiated hMGECs. Proliferation tests showed a reduction in cell proliferation with increasing concentrations over time. AIF1 apoptosis levels were not significantly regulated, but morphologically, the dying cells at a higher concentration of 5-10 mM showed a rupture and permeabilization of the plasma membrane, a swelling of the cytoplasm, and vacuolization after more than 48 h. The IGF-1 ELISA showed an irregular expression, which mostly decreased over time. Only at 72 h and 10 mM did we have a significant increase. Mitochondrial metabolic markers such as Nrf2 significantly increased over time, while HO-1 decreased partially. The RT-PCR showed a significant increase in MMP9, CYBB, XDH, and ATF with increasing time and metformin concentrations, indicating cell stress. Conclusions: Our results using a cell line suggest that metformin affects the cellular physiology of meibomian gland epithelial cells and induces cell stress in a dose- and duration-dependent manner, causing changes in their morphology and ultrastructure. Full article
(This article belongs to the Special Issue Eye Diseases: Diagnosis and Treatment, 3rd Edition)
Show Figures

Figure 1

12 pages, 3062 KiB  
Article
The Complexity of the Influence of Growth Substances, Heavy Metals, and Their Combination on the Volume Dynamics of Vacuoles Isolated from Red Beet (Beta vulgaris L.) Taproot Cells
by Waldemar Karcz and Zbigniew Burdach
Int. J. Mol. Sci. 2024, 25(19), 10842; https://doi.org/10.3390/ijms251910842 - 9 Oct 2024
Viewed by 880
Abstract
The plant vacuole is a very dynamic organelle that can occupy more than 90% of the cell volume and is essential to plant cell growth and development, the processes in which auxin (indole-3-acetic acid, IAA) is a central player. It was found that [...] Read more.
The plant vacuole is a very dynamic organelle that can occupy more than 90% of the cell volume and is essential to plant cell growth and development, the processes in which auxin (indole-3-acetic acid, IAA) is a central player. It was found that when IAA or FC (fusicoccin) was present in the control medium of vacuoles isolated from red beet taproots at a final concentration of 1 µM, it increased their volume to a level that was 26% or 36% higher than that observed in the control medium without growth regulators, respectively. In the presence of IAA and FC, the time after which most vacuoles ruptured was about 10 min longer for IAA than for FC. However, when cadmium (Cd) or lead (Pb) was present in the control medium at a final concentration of 100 µM, it increased the volume of the vacuoles by about 26% or 80% compared to the control, respectively. The time after which the vacuoles ruptured was similar for both metals. The combined effect of IAA and Pb on the volume of the vacuoles was comparable with that observed in the presence of Pb only, while for FC combined with Pb, it was additive. The use of IAA or FC together with Cd caused in both cases a decrease in the vacuole volumes by about 50%. The data presented in this study are discussed, taking into account the structure and function of the vacuolar membrane (tonoplast) and their changes in the presence of growth substances, heavy metals, and their combination. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 5431 KiB  
Article
Development and Holocrine Secretion of Resin Ducts in Kielmeyera appariciana (Calophyllaceae)
by Ellenhise Ribeiro Costa and Diego Demarco
Plants 2024, 13(13), 1757; https://doi.org/10.3390/plants13131757 - 25 Jun 2024
Cited by 1 | Viewed by 1776
Abstract
The modes of formation and release of secretion are complex processes that occur in secretory ducts and their description has great divergence in some species. The use of modern techniques to detect hydrolytic enzymes, cytoskeleton arrangement and indicators of programmed cell death may [...] Read more.
The modes of formation and release of secretion are complex processes that occur in secretory ducts and their description has great divergence in some species. The use of modern techniques to detect hydrolytic enzymes, cytoskeleton arrangement and indicators of programmed cell death may help clarify the processes involved during the ontogeny of that gland. The goal of our study was to analyze subcellular changes during schizogenous formation and secretion production and release into the lumen in resin ducts of Kielmeyera appariciana. Our results demonstrate the participation of pectinase through the loosening of the central cells of the rosette, which subsequently split from each other through polarized growth mediated by a rearrangement of the microtubules. The resin is mainly synthesized in plastids and endoplasmic reticulum and is observed inside vesicles and small vacuoles. The secretion release is holocrine and occurs through programmed cell death related to the release of reactive oxygen species, causing cytoplasm darkening, chromatin condensation, vacuole rupture and plastid and mitochondria degeneration. Cellulase activity was identified prior to the rupture of the cell wall, causing the release of secretion into the lumen of the duct. The participation of the cytoskeleton was observed for the first time during schizogeny of ducts as well as programmed cell death as part of the process of the release of holocrine secretion. This type of secretion release may be a key innovation in Kielmeyera since it has not been observed in ducts of any other plant thus far. Full article
Show Figures

Figure 1

13 pages, 7452 KiB  
Article
Exploring Cellular Dynamics in the Goldfish Bulbus Arteriosus: A Multifaceted Perspective
by Doaa M. Mokhtar, Enas A. Abd-Elhafez, Marco Albano, Giacomo Zaccone and Manal T. Hussein
Fishes 2024, 9(6), 203; https://doi.org/10.3390/fishes9060203 - 29 May 2024
Cited by 2 | Viewed by 1458
Abstract
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium [...] Read more.
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium and encased in an amorphous extracellular matrix. The inner surface of the bulbus arteriosus also contains rodlet cells at different developmental stages, often clustered beneath the endothelium lining the bulbar lumen. Ruptured rodlet cells release their contents via a holocrine secretion process. The high abundance of rodlet cells in the bulbus arteriosus suggests that this is the site of origin for these cells. Within the middle layer of the bulbus arteriosus, smooth muscle cells, branched telocytes (TCs), and collagen bundles coexist. TCs and their telopodes form complex connections within a dense collagen matrix, extending to rodlet cells and macrophages. Moreover, the endothelium makes direct contact with telopodes. The endocardial cells within the bulbus arteriosus display irregular, stellate shapes and numerous cell processes that establish direct contact with TCs. TEM reveals that they contain moderately dense bodies and membrane-bound vacuoles, suggesting a secretory activity. TCs exhibit robust secretory activity, evident from their telopodes containing numerous secretory vesicles. Furthermore, TCs release excretory vesicles containing bioactive molecules into the extracellular matrix, which strengthens evidence for telocytes as promising candidates for cellular therapies and regeneration in various heart pathologies. Full article
Show Figures

Figure 1

14 pages, 3904 KiB  
Article
Isolation, Characterization, and Pathogenicity of an Aeromonas veronii Strain Causing Disease in Rhinogobio ventralis
by Xingbing Wu, Baolin Cheng, Mingyang Xue, Nan Jiang, Xuemei Li, Xiaona Hu, Xiaoli Li, Tingbing Zhu, Yongjiu Zhu and Yong Zhou
Fishes 2024, 9(5), 188; https://doi.org/10.3390/fishes9050188 - 18 May 2024
Viewed by 2076
Abstract
Rhinogobio ventralis is a rare fish found in the Yangtze River in China and has significant ecological and economic value. In this study, a bacterial strain (RV-JZ01) was isolated from the livers of diseased R. ventralis. This isolate was identified as Aeromonas [...] Read more.
Rhinogobio ventralis is a rare fish found in the Yangtze River in China and has significant ecological and economic value. In this study, a bacterial strain (RV-JZ01) was isolated from the livers of diseased R. ventralis. This isolate was identified as Aeromonas veronii based on its morphology, biochemical features and 16S rDNA phylogenetic analysis. The artificial infection of healthy R. ventralis (16 ± 2 cm) with RV-JZ01 resulted in the manifestation of clinical symptoms, in accordance with those of naturally infected fish. The 50% lethal dose (LD50) of RV-JZ01 for R. ventralis was 6.3 × 106 CFU/mL. Histopathological examination revealed various pathological changes in the diseased fish, including intestinal villus swelling and rupture, hepatocyte vacuolization, renal tubular cell nuclear enlargement and pyknosis, and myocardial fiber fracture and atrophy. RV-JZ01 infection significantly reduced the gut flora diversity of R. ventralis, with the relative abundances of Firmicutes and Fusobacteria increasing, and those of the Proteobacteria and Bacteroidetes decreasing. The abundance of Lactobacillus and Streptococcus dramatically increased, and the abundance of Clostridium and Escherichia reduced in the intestinal microbiota of R. ventralis infected with RV-JZ01. Antibiotic sensitivity testing revealed that RV-JZ01 was highly susceptible to 12 antimicrobials, including erythromycin, cefalexin, norfloxacin, furazolidone, sulfonamides, enrofloxacin, doxycycline, piperacillin, florfenicol, gentamicin, and lincomycin. These results contribute to the understanding of pathological alterations in R. ventralis following A. veronii infection, offering valuable data to support the implementation of disease treatment. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Figure 1

18 pages, 5243 KiB  
Article
Metabolomics Analysis of Sodium Salicylate Improving the Preservation Quality of Ram Sperm
by Haiyu Bai, Zhiyu Zhang, Wenzheng Shen, Yu Fu, Zhikun Cao, Zibo Liu, Chao Yang, Shixin Sun, Lei Wang, Yinghui Ling, Zijun Zhang and Hongguo Cao
Molecules 2024, 29(1), 188; https://doi.org/10.3390/molecules29010188 - 28 Dec 2023
Cited by 1 | Viewed by 1625
Abstract
The aim of this study was to investigate the effects of sodium salicylate (SS) on the preservation and metabolic regulation of sheep sperm. Under 4 °C low-temperature conditions, SS (at 10 µM, 20 µM, 30 µM, and 50 µM) was added to the [...] Read more.
The aim of this study was to investigate the effects of sodium salicylate (SS) on the preservation and metabolic regulation of sheep sperm. Under 4 °C low-temperature conditions, SS (at 10 µM, 20 µM, 30 µM, and 50 µM) was added to the semen diluent to detect sperm motility, plasma membrane, and acrosome integrity. Based on the selected optimal concentration of SS (20 µM), the effects of 20 µM of SS on sperms’ antioxidant capacity and mitochondrial membrane potential (MMP) were evaluated, and metabolomics analysis was conducted. The results showed that on the 20th day of low-temperature storage, the sperm motility of the 20 µM SS group was 62.80%, and the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly higher than those of the control group (p < 0.01). The content of Ca2+, reactive oxygen species (ROS), and malondialdehyde (MDA) were significantly lower than those of the control group (p < 0.01), and the total antioxidant capacity (T-AOC) was significantly higher than that of the control group (p < 0.05); mitochondrial activity and the total cholesterol (TC) content were significantly higher than those in the control group (p < 0.01). An ultrastructural examination showed that in the SS group, the sperm plasma membrane and acrosome were intact, the fibrous sheath and axoneme morphology of the outer dense fibers were normal, and the mitochondria were arranged neatly. In the control group, there was significant swelling of the sperm plasma membrane, rupture of the acrosome, and vacuolization of mitochondria. Using metabolomics analysis, 20 of the most significant differential metabolic markers were screened, mainly involving 6 metabolic pathways, with the amino acid biosynthesis pathway being the most abundant. In summary, 20 µM of SS significantly improved the preservation quality of sheep sperm under low-temperature conditions of 4 °C. Full article
Show Figures

Figure 1

21 pages, 5682 KiB  
Article
Involvement of Vacuolar Processing Enzyme CgVPE1 in Vacuole Rupture in the Programmed Cell Death during the Development of the Secretory Cavity in Citrus grandis ‘Tomentosa’ Fruits
by Bin Huai, Minjian Liang, Junjun Lin, Panpan Tong, Mei Bai, Hanjun He, Xiangxiu Liang, Jiezhong Chen and Hong Wu
Int. J. Mol. Sci. 2023, 24(14), 11681; https://doi.org/10.3390/ijms241411681 - 20 Jul 2023
Cited by 4 | Viewed by 1822
Abstract
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity [...] Read more.
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity formation in Citrus plants remains unclear. This research identified a CgVPE1 gene that encoded the VPE and utilized cytology and molecular biology techniques to explore its temporal and spatial expression characteristics during the PCD process of secretory cavity cells in the Citrus grandis ‘Tomentosa’ fruit. The results showed that CgVPE1 is an enzyme with VPE and caspase-1-like activity that can self-cleave into a mature enzyme in an acidic environment. CgVPE1 is specifically expressed in the epithelial cells of secretory cavities. In addition, it mainly accumulates in vacuoles before it is ruptured in the secretory cavity cells. The spatial and temporal immunolocalization of CgVPE1 showed a strong relationship with the change in vacuole structure during PCD in secretory cavity cells. In addition, the change in the two types of VPE proteins from proenzymes to mature enzymes was closely related to the change in CgVPE1 localization. Our results indicate that CgVPE1 plays a vital role in PCD, causing vacuole rupture in cells during the development of the secretory cavity in C. grandis ‘Tomentosa’ fruits. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 10197 KiB  
Article
Dietary Nanocurcumin Impacts Blood Biochemical Parameters and Works Synergistically with Florfenicol in African Catfish Challenged with Aeromonas veronii
by Salwa Mansour, Karima A. Bakry, Eman A. Alwaleed, Hassan Ahmed, Zeinab Al-Amgad, Haitham H. Mohammed and Walaa F. A. Emeish
Fishes 2023, 8(6), 298; https://doi.org/10.3390/fishes8060298 - 2 Jun 2023
Cited by 3 | Viewed by 2614
Abstract
The present study investigated the effects of dietary supplementation of nanocurcumin (NCur = 150 ppm) in African catfish feed for 15 days along with two doses of florfenicol—a therapeutic dose (FFC1 = 10 mg/kg.BW) and a high dose (FFC2 = 30 mg/kg.BW). Serum [...] Read more.
The present study investigated the effects of dietary supplementation of nanocurcumin (NCur = 150 ppm) in African catfish feed for 15 days along with two doses of florfenicol—a therapeutic dose (FFC1 = 10 mg/kg.BW) and a high dose (FFC2 = 30 mg/kg.BW). Serum biochemical parameters and histopathological changes in liver and kidney tissues were determined post-feeding. Additionally, fish were experimentally challenged with a virulent strain of Aeromonas veronii to explore the fish’s capacity to resist infections. Results indicated that the serum level of total protein was significantly elevated in the FFC2 + Ncur group compared with control, Ncur, and FFC2 groups. Total protein level was also higher in FFC1 + Ncur compared with that of the FFC1 group. Moreover, feeding NCur, FFC1 + Ncur, and FFC2 + Ncur resulted in a significant increase in globulin levels compared to control, FFC1, and FFC2-Fed groups. However, the albumin level was unaffected. Serum levels of AST, ALT, ALP, and urea significantly increased in FFC2-fed fish compared to controls indicating liver damage. The higher dosage of FFC2 induced histological alterations in the liver and kidney architecture, represented by a rupture of the central vein, cytoplasmic vacuolation, hepatocytes necrosis, and severe inflammation. Surprisingly, NCur inclusion improved most of the altered biochemical parameters and mitigated FFC-induced histological damage in the hepatic and renal tissues. Similarly, fish that were fed a combination of both FFC and Ncur showed a higher resistance when exposed to A. veronii infection, as the mortality rates were significantly lower than those of the control group. Our findings indicated that incorporating NCur into the diet can have multiple benefits for the sustainable aquaculture of African catfish. These advantages encompass mitigating drug-induced damage to the liver and kidney tissues, augmenting the therapeutic efficacy of FFC in a synergistic manner and providing protection against A. veronii infections. Full article
Show Figures

Graphical abstract

19 pages, 10388 KiB  
Article
Optimization of the Production and Characterization of an Antifungal Protein by Bacillus velezensis Strain NT35 and Its Antifungal Activity against Ilyonectria robusta Causing Ginseng Rusty Root Rot
by Mengtao Li, Hao Tang, Zongyan Li, Yu Song, Lin Chen, Chao Ran, Yun Jiang and Changqing Chen
Fermentation 2023, 9(4), 358; https://doi.org/10.3390/fermentation9040358 - 5 Apr 2023
Cited by 3 | Viewed by 3043
Abstract
A biocontrol Bacillus velezensis strain, NT35, was isolated from the rhizosphere soil of ginseng, and its sterile filtrate was obtained through a 0.22 μm filter which had a significant inhibitory effect against Ilyonectria robusta, which causes rusty root rot in Panax ginseng [...] Read more.
A biocontrol Bacillus velezensis strain, NT35, was isolated from the rhizosphere soil of ginseng, and its sterile filtrate was obtained through a 0.22 μm filter which had a significant inhibitory effect against Ilyonectria robusta, which causes rusty root rot in Panax ginseng. In order to obtain the best sterile filtrate, the medium fermentation conditions of the strain NT35 were optimized using response surface methodology (RSM), and the best composition was obtained. Therefore, the fermentation medium was composed of yeast extract powder 2.5%, cornmeal 1.5%, K2HPO4 1.5%, and (NH4)2SO4 2.5%. The optimal inoculum amount was 6%, at an initial pH value of 7.0 and culturing at 34 °C at 180 rpm. The antifungal protein 1-4-2F was obtained through precipitation via 30% (NH4)2SO4 precipitation, desalting by Sephadex G-25, ion-exchange chromatography, and gel filtration chromatography. Tricine-SDS-PAGE showed that the purified protein had a relative molecular weight of approximately 6.5 kDa. The protein 1-4-2F was relatively stable and had better antifungal activity at pH 4–10 and 20–100 °C under ultraviolet irradiation of 30 W. The amino acid sequence of protein 1-4-2F was obtained using mass spectrometry, and had 100% similarity to a hypothetical protein from B. velezensis YAU B9601-Y2 (Accession No: AFJ62117). Its molecular weight was 10.176 kDa, the isoelectric point was 9.08, and its sequence coverage reached 49%. The EC50 value of the protein 1-4-2F against I. robusta was 1.519 μg·mL−1. The mycelia morphology of I. robusta changed significantly after treatment with antifungal protein under microscopic observation; the branches of the mycelia increased, distorted, partially swelled into a spherical or elliptical shape, and even ruptured; and the cells became vacuoles. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 3049 KiB  
Article
Mechanism of cis-Nerolidol-Induced Bladder Carcinoma Cell Death
by Mateo Glumac, Vedrana Čikeš Čulić, Ivana Marinović-Terzić and Mila Radan
Cancers 2023, 15(3), 981; https://doi.org/10.3390/cancers15030981 - 3 Feb 2023
Cited by 11 | Viewed by 2893
Abstract
Nerolidol is a naturally occurring sesquiterpene alcohol with multiple properties, including antioxidant, antibacterial, and antiparasitic activities. A few studies investigating the antitumor properties of nerolidol have shown positive results in both cell culture and mouse models. In this study, we investigated the antitumor [...] Read more.
Nerolidol is a naturally occurring sesquiterpene alcohol with multiple properties, including antioxidant, antibacterial, and antiparasitic activities. A few studies investigating the antitumor properties of nerolidol have shown positive results in both cell culture and mouse models. In this study, we investigated the antitumor mechanism of cis-nerolidol in bladder carcinoma cell lines. The results of our experiments on two bladder carcinoma cell lines revealed that nerolidol inhibited cell proliferation and induced two distinct cell death pathways. We confirmed that cis-nerolidol induces DNA damage and ER stress. A mechanistic study identified a common cAMP, Ca2+, and MAPK axis involved in signal propagation and amplification, leading to ER stress. Inhibition of any part of this signaling cascade prevented both cell death pathways. The two cell death mechanisms can be distinguished by the involvement of caspases. The early occurring cell death pathway is characterized by membrane blebbing and cell swelling followed by membrane rupture, which can be prevented by the inhibition of caspase activation. In the late cell death pathway, which was found to be caspase-independent, cytoplasmic vacuolization and changes in cell shape were observed. cis-Nerolidol shows promising antitumor activity through an unorthodox mechanism of action that could help target resistant forms of malignancies, such as bladder cancer. Full article
Show Figures

Figure 1

14 pages, 4677 KiB  
Article
In Vivo Evaluation of the Anti-Schistosomal Potential of Ginger-Loaded Chitosan Nanoparticles on Schistosoma mansoni: Histopathological, Ultrastructural, and Immunological Changes
by Mona M. El-Derbawy, Hala S. Salem, Mona Raboo, Ibrahim R. Baiuomy, Sana A. Fadil, Haifa A. Fadil, Sabrin R. M. Ibrahim and Walaa A. El Kholy
Life 2022, 12(11), 1834; https://doi.org/10.3390/life12111834 - 9 Nov 2022
Cited by 9 | Viewed by 2417
Abstract
Chemotherapy is the most widely advocated method of Schistosome control. However, repeated chemotherapy leads to the emergence of drug-resistant Schistosoma strains. Therefore, efforts to find alternative drugs, especially those of natural origin, have risen globally. Nanoparticles (NPs) have received special interest as efficient [...] Read more.
Chemotherapy is the most widely advocated method of Schistosome control. However, repeated chemotherapy leads to the emergence of drug-resistant Schistosoma strains. Therefore, efforts to find alternative drugs, especially those of natural origin, have risen globally. Nanoparticles (NPs) have received special interest as efficient drug delivery systems. This work aimed to investigate the anti-schistosomal potential of Zingiber officinale (ginger, Zingiberaceae)-loaded chitosan nanoparticles (GCsNPs) on Schistosoma mansoni experimentally infected mice that were exposed to 80 ± 10 cercariae/mouse. The study groups are: (G1) negative control; (G2) positive control; (G3) praziquantel in a dose of 500 mg/kg/day for two consecutive days; (G4) ginger in a dose of 500 mg/kg treated; (G5) chitosan nanoparticles in a dose 3 mg/kg (G6) GCsNPs in a dose 250 mg/kg; and (G7) GCsNPs in a dose 500 mg/kg. The anti-schistosome potential was assessed using histopathological scanning electron microscopically and immunological parameters. The results showed that there was a significant decrease in cellular granuloma count (p < 0.05) and granuloma diameter (p < 0.001) in all infected treated mice groups, in comparison to the infected non-treated group with the highest reduction in both G3 and G7. SEM of S. mansoni adult worm recovered from G3 showed mild edema of oral and ventral suckers with some peeling and blebs around them, while that recovered from G7 showed abnormal oedematous oral and retracted ventral sucker, edema of the tegument, rupture of many tubercles with vacuolation and complete loss of spines. All infected treated mice groups, in comparison to positive control G2, showed a significant reduction in IL-4, IL-10, and TNF-α levels (p-value < 0.001), especially groups G6 and G7 (p-value < 0.05); both G6 and G7 values were nearer to the normal that indicated recovery of the liver tissue. Full article
(This article belongs to the Special Issue Early Career Stars in Physiology and Pathology)
Show Figures

Figure 1

17 pages, 1797 KiB  
Article
Potential Biochemical Pesticide—Synthesis of Neofuranocoumarin and Inhibition the Proliferation of Spodoptera frugiperda Cells through Activating the Mitochondrial Pathway
by Xuehua Shao, Zhuhong Zhang, Xuhong Qian, Lanying Wang, Yunfei Zhang and Yanping Luo
Toxins 2022, 14(10), 677; https://doi.org/10.3390/toxins14100677 - 29 Sep 2022
Cited by 6 | Viewed by 2440
Abstract
Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, [...] Read more.
Furanocoumarins, the secondary metabolites of plants, are considered to be natural insecticides and fungicides because they prevent the invasion of plant pathogenic microorganisms and the predation of herbivorous insects. In this study, novel 2-arylfuranocoumarin derivatives were designed to synthesize by condensation, esterification, bromination, and Wittig reaction. The results showed an excellent photosensitive activity of 2-thiophenylfuranocoumarin (I34). Cell Counting Kit-8 detected that I34 could inhibit the proliferation of Spodoptera frugiperda (Sf9) cells in a time- and concentration-dependent manner under ultraviolet A (UV-A) light for 3 min. The inverted microscope revealed that cells treated with I34 swelled, the membrane was ruptured, and apoptotic bodies appeared. The flow cytometry detected that I34 could induce apoptosis of Sf9 cells, increase the level of intracellular reactive oxygen species (ROS), decrease the mitochondrial membrane potential, and block cell cycle arrest in the G2/M phase. Transmission electron microscopy detected cell mitochondrial cristae damage, matrix degradation, and mitochondrial vacuolation. Further enzyme activity detection revealed that the enzyme activities of apoptosis-related proteins caspase-3 and caspase-9 increased significantly (p < 0.05). Finally, Western blotting analysis detected that the phosphorylation level of Akt and Bad and the expression of the apoptosis inhibitor protein Bcl-XL were inhibited, cleaved-PARP and P53 were increased, and cytochrome C was released from the mitochondria into the cytoplasm. Moreover, under UV-A irradiation, I34 promoted the increase in ROS in Sf9 cells, activated the mitochondrial apoptotic signal transduction pathway, and finally, inhibited cell proliferation. Thus, novel furanocoumarins exhibit a potential application prospect as a biochemical pesticide. Full article
Show Figures

Figure 1

13 pages, 3480 KiB  
Article
Effects of Alkalinity on the Antioxidant Capacity, Nonspecific Immune Response and Tissue Structure of Chinese Mitten Crab Eriocheir sinensis
by Mingshuai Li, Shihui Wang, Zhigang Zhao, Liang Luo, Rui Zhang, Kun Guo, Lanlan Zhang and Yuhong Yang
Fishes 2022, 7(4), 206; https://doi.org/10.3390/fishes7040206 - 18 Aug 2022
Cited by 25 | Viewed by 3218
Abstract
The effects of various levels of alkalinity stress (0, 18.25, 35.41, 52.53 and 69.74 mmol/L) in Chinese mitten crab (Eriocheir sinensis) were investigated by means of measuring hepatopancreas antioxidant system and serum nonspecific immune system-related indices at 0, 12, 24, 48 [...] Read more.
The effects of various levels of alkalinity stress (0, 18.25, 35.41, 52.53 and 69.74 mmol/L) in Chinese mitten crab (Eriocheir sinensis) were investigated by means of measuring hepatopancreas antioxidant system and serum nonspecific immune system-related indices at 0, 12, 24, 48 and 96 h, hepatopancreas tissue structure at 96 h. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and aspartate aminotransferase (AST) in each concentration group generally showed a trend of a first increasing and then decreasing during the 96-h stress process (p < 0.05), while no significant changes were observed in the blank group during this period (p > 0.05). The activities of CAT, GSH and AST in all treatment reached peak values at 24–48 h. At 96 h of alkalinity stress, the activities of GSH, alanine aminotransferase (ALT), acid phosphatise (ACP) and alkaline phosphatise (AKP) in the 18.25 mmol/L group were not significantly different with the control group (p > 0.05). The activities of SOD and CAT in the 52.53 and 69.74 mmol/L treatment were significantly lower than those in the control group (p < 0.05), and the level of total antioxidant capacity(T-AOC), ALT, ACP and AKP in the 69.74 mmol/L group were significantly higher than those in the other groups (p < 0.05). Hepatopancreatic histological observation showed that the hepatopancreas of E. sinensis in the control group was normal. With increasing alkalinity, the basal membrane of the hepatopancreas fell off or even ruptured. Additionally, the number of hepatopancreas vacuoles increased, the volume of B cells and their internal transport vesicles increased, epithelial cells disintegrated, and the nucleus gradually shrank. E. sinensis can activate antioxidant and nonspecific immune systems to adapt to alkalinity stress. However, oxidative stress, immune system damage and hepatopancreas structure damage were caused when the stress exceeded the adaptive capacity of the body. Full article
(This article belongs to the Special Issue Recent Advances in Crab Aquaculture)
Show Figures

Figure 1

22 pages, 5792 KiB  
Article
Seasonal Differences in Water Pollution and Liver Histopathology of Iberian Barbel (Luciobarbus bocagei) and Douro Nase (Pseudochondrostoma duriense) in an Agricultural Watershed
by Regina Maria Bessa Santos, Sandra Mariza Veiga Monteiro, Rui Manuel Vitor Cortes, Fernando António Leal Pacheco and Luís Filipe Sanches Fernandes
Water 2022, 14(3), 444; https://doi.org/10.3390/w14030444 - 1 Feb 2022
Cited by 16 | Viewed by 3999
Abstract
Histopathology has been used as a very useful tool to provide information on the severity of tissue damage, injuries, and organ functionality. Thus, this work aimed to assess whether seasonal variations (summer and winter) in water quality had consequences on the liver histology [...] Read more.
Histopathology has been used as a very useful tool to provide information on the severity of tissue damage, injuries, and organ functionality. Thus, this work aimed to assess whether seasonal variations (summer and winter) in water quality had consequences on the liver histology of Iberian barbel (Luciobarbus bocagei) and Douro nase (Pseudochondrostoma duriense). The research was carried out in the Vilariça River, a tributary of the Sabor River in Portugal, which is used as spawning grounds by these endemic cyprinids. The liver histopathological changes, assessed through a semi-quantitative system, allowed the identification of 13 histopathological changes located in the hepatic parenchyma, bile duct, and blood vessels. The histopathological changes with a higher prevalence in both species were vacuolization of hepatocytes, endothelial rupture, necrosis, fibrosis, and degenerative vacuolization. The results showed that the severity degree of liver histological alterations ranged between moderate and severe, and the major severity degree was observed in L. bocagei, in the summer season, and at the sampling points located in the downstream and middle stream. The canonical analysis indicated that the exposure of fish to metals may increase the potential risk of liver damage. Thus, in the summer, the high concentrations of Fe, Cu, Zn, As, and Mn justified the prevalence of the biliary duct epithelial detachment, in both species, and the hyperplasia of biliary epithelium, in L. bocagei. In the winter, the high TSS and Cd, Ni, and Cr concentrations justified the prevalence of congestion of blood vessels and degenerative vacuolization in both species. The higher hepatosomatic index of fish caught in the winter was due to the high presence of degenerative vacuolization and hepatocyte vacuolization. The severity of liver histopathological changes reflected differences in the type of contaminants in different seasons and sampling periods, and was thus proven as a valuable indicator of water quality. Full article
Show Figures

Figure 1

Back to TopTop