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Abstract: The effects of various levels of alkalinity stress (0, 18.25, 35.41, 52.53 and 69.74 mmol/L) in
Chinese mitten crab (Eriocheir sinensis) were investigated by means of measuring hepatopancreas
antioxidant system and serum nonspecific immune system-related indices at 0, 12, 24, 48 and 96 h,
hepatopancreas tissue structure at 96 h. The activities of superoxide dismutase (SOD), catalase (CAT),
glutathione (GSH) and aspartate aminotransferase (AST) in each concentration group generally
showed a trend of a first increasing and then decreasing during the 96-h stress process (p < 0.05), while
no significant changes were observed in the blank group during this period (p > 0.05). The activities
of CAT, GSH and AST in all treatment reached peak values at 24–48 h. At 96 h of alkalinity stress, the
activities of GSH, alanine aminotransferase (ALT), acid phosphatise (ACP) and alkaline phosphatise
(AKP) in the 18.25 mmol/L group were not significantly different with the control group (p > 0.05).
The activities of SOD and CAT in the 52.53 and 69.74 mmol/L treatment were significantly lower
than those in the control group (p < 0.05), and the level of total antioxidant capacity(T-AOC), ALT,
ACP and AKP in the 69.74 mmol/L group were significantly higher than those in the other groups
(p < 0.05). Hepatopancreatic histological observation showed that the hepatopancreas of E. sinensis in
the control group was normal. With increasing alkalinity, the basal membrane of the hepatopancreas
fell off or even ruptured. Additionally, the number of hepatopancreas vacuoles increased, the volume
of B cells and their internal transport vesicles increased, epithelial cells disintegrated, and the nucleus
gradually shrank. E. sinensis can activate antioxidant and nonspecific immune systems to adapt to
alkalinity stress. However, oxidative stress, immune system damage and hepatopancreas structure
damage were caused when the stress exceeded the adaptive capacity of the body.

Keywords: alkalinity; aquaculture; LC50; physiology; histology

1. Introduction

Approximately 33.3% of the total land area worldwide consists of saline-alkaline
land [1,2]. It has been estimated that saline-alkaline water covers approximately 45.87 mil-
lion hectares in China alone, saline-alkali water resources are abundant and widely dis-
tributed [3]. Saline-alkali water has the characteristics of high pH, high ion coefficient and
main ion imbalance, resulting in an extremely low utilization rate [4]. In the carbonate
saline-alkali water environment, with increasing carbonate alkalinity, the pH and HCO3

−

content in the water body increased accordingly. These ions directly act on the surface
epithelial cells of the gills of aquatic animals, causing the gill epithelium to be separated or
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ruptured and chloride cells to proliferate or experience hypertrophy, thereby affecting the
ion exchange system on the cell surface [5]. In addition, HCO3

− affected the balance system
of carbon dioxide in the blood to harm aquatic animals [6]. The discharge of domestic and
industrial sewage and the unreasonable utilization of water resources lead to the decreasing
aquaculture spaces [7]. The research showed that as a result of global climate changes, the
process of water environment salinization and alkalinization might continue to deepen,
and the available spaces for freshwater aquaculture might steadily shrink [8]. Therefore,
the development and utilization of saline-alkali water resources through fishery methods is
of great significance for expanding aquaculture space and ensuring aquatic products. At
present, there are few studies on the effect of alkalinity on aquatic animals. Carbonate alka-
linity suppresses growth, survival and reproduction in aquaculture [2,9–12], substantiated
with inflammation and abnormality in immunoregulation, aerobic and ammonia excretion
rates in some species [13,14].

Chinese mitten crab, Eriocheir sinensis, (Phylum Arthropoda, Class Crustacea, Order
Decapoda, Family Grapsidae), commonly known as river crabs. The life cycle of E. sinensis
is completed by amphidromous migration [15]. As an important aquaculture economic crab
in China, with the rapid expansion of their culture area, they have become one of the most
important economic crabs in China. Crab farming is developing in deep inland area with
arid climate conditions, because crab farming doesn’t require much water resources [16,17].
E. sinensis has a strong adaptability to stress conditions such as ammonia nitrogen, pH and
heavy metal ions, and it has been used as a target crab for culture in saline and alkaline
waters in deep inland areas in China under arid climate conditions [18,19]. In the present
study, the effects of alkalinity on the antioxidant and nonspecific immune systems as well
as hepatopancreas tissue structure of E. sinensis were studied under different alkalinity
stresses of carbonate to provide a practical basis for the development of E. sinensis culture
technology in saline and alkaline waters in the arid areas.

2. Materials and Methods
2.1. Crabs and Rearing Conditions

The E. sinensis used in the experiment originated from a crab culture farm in Jiangsu
Province, China. Healthy, neat and complete juvenile crabs with an average body weight of
12.6 ± 1.5 g were selected for the experiment. Before experimentation, healthy juvenile E.
sinensis were acclimated for 15 days in cycling filtered glass tanks (64 cm × 38 cm × 43 cm)
containing 30 L aerated tap water. The temperature was maintained at a range of 22.0 to
23.0 ◦C, with dissolved oxygen concentration of >6.0 mg/L, and a pH of 7.0 to 8.0. During
acclimation, the crabs were daily fed with a commercial formulated diet (Nanjing Aohua
Biotechnology Co., Ltd., Nanjing, China) accounting for 5% of body weight. Residuals
and faces were removed, and one-third of the water was renewed per day. Feeding was
stopped for 24 h before experimentation.

Based on the 96 h median lethal dose (LC50, 69.74 mmol/L) and safe concentration (SC,
18.25 mmol/L) of alkalinity in E. sinensis [20], four concentration gradient groups (18.25,
35.41, 52.53 and 69.74 mmol/L) were set up using equal logarithmic distance method [21].
Aerated freshwater and analytical pure sodium bicarbonate (NaHCO3) were used to adjust
the target alkalinity, a control group without NaHCO3 (alkalinity, 0.49 mmol/L) were
carried out in this experiment. Three parallel groups were set for each concentration
gradient in each group and 30 crabs were placed in each parallel group. The healthy
acclimated individuals were randomly put into each experimental tank for 96 h. During the
experiment, no feed was given, the temperature was maintained at 22.0–23.0 ◦C. Methyl
orange hydrochloride calibration method was used to measure and adjust the alkalinity for
ensuring the concentration stable in each group.

2.2. Sample Preparations

Chinese mitten crabs (three crabs were taken randomly per glass tank) in each treat-
ment were sampled at 0, 12, 24, 48, and 96 h. Haemolymph was extracted from the
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soft membrane of the joint at its root of the third paraeiopod with a sterilized 1 mL sy-
ringe and was treated without anticoagulant. All the haemolymphs were centrifuged
with 8000 r/min for 10 min after been kept 24 h at 4 ◦C, and then the supernatant was
transferred to a centrifuge tube and cryopreserved at −80 ◦C for further examination
for immunoenzyme activity analysis. At the same time, the hepatopancreas of each crab
was dissected and stored in a −80 ◦C refrigerator after freezing with liquid nitrogen for
antioxidant enzyme activity analysis. Each hepatopancreas sample was homogenized
after adding 0.86% normal saline at a weight/volume ratio of 1:9. The hepatopancreas
homogenate was centrifuged with 3500 r/min for 15 min at 4 ◦C, and the upper lipid
layer was discarded. The supernatant was carefully collected and immediately used for
measuring enzymatic activity.

2.3. Biochemical Analysis

The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH),
the level of total antioxidant capacity (T-AOC) in hepatopancreas were determined using
commercially available assay kits according to the manufacturer’s protocols (Jiancheng
Ltd., Nanjing, China). Protein concentration was determined by a Coomassie Brilliant Blue
protein assay kit (Jiancheng Ltd., Nanjing, China). The results were read using a microplate
reader (Synergy HTX, BioTek, Winooski, VT, USA) and a spectrophotometer (YoKe, Shang-
hai, China). The activities of acid phosphatise (ACP), alkaline phosphatise (AKP), aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) in serum were determined
using a fully automatic bioanalysis machine (Mindray BS-240Vet, Shenzhen, China).

2.4. Hepatopancreas Histological Analysis

Three crabs were randomly obtained from the four treatments and the control group
at 96 h of stress, and the hepatopancreas was quickly removed. The hepatopancreas was
maintained in 10% formalin fixative, and the tissues were embedded, sliced, and stained
with haematoxylin-eosin (HE). The sections were observed under a microscope.

2.5. Statistical Analysis

All data in the figures are expressed as the mean ± standard deviation (S.D.). The
experimental data was conducted with SPSS 19.0 software. A homogeneity test of variances
was performed, followed by one-way analysis of variance, and a multiple comparison of the
Duncan test was used to determine significant differences among all groups. Differences
were considered significant at p < 0.05. GraphPad Prism 5.0 software was used for mapping.

3. Results
3.1. Antioxidant Enzymes

During the whole experiment, the hepatopancreas SOD activities in the control did
not change significantly (p > 0.05), while the SOD and CAT activities of the experimental
group showed a trend of first increasing and then decreasing except in the 35.41 mmol/L
concentration group (p < 0.05; Figures 1 and 2). The activities of SOD and CAT in the
experimental group reached a peak at 24–48 h. In the 35.41 mmol/L concentration group,
the hepatopancreas SOD activity significantly increased (p < 0.05), and hepatopancreas
CAT activity increased significantly and reached a peak at 24 h (p < 0.05), then decreased
significantly from 24 h to 96 h. The CAT peak level in 18.25 mmol/L group at 12 h was
significantly lower than that in 35.41 mmol/L group (p < 0.05). After 96 h of stress, the
CAT activity in 18.25 mmol/L group returned to the initial level (p > 0.05), while the SOD
and CAT activities in 35.41 mmol/L group were significantly higher than those in control
(p < 0.05), the SOD and CAT activities in 52.53 and 69.74 mmol/L groups were significantly
lower than those in control group (p < 0.05).
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Within 96 h, the level of T-AOC in 18.25 and 35.41 mmol/L groups showed a trend of
first increasing and then decreasing (p < 0.05; Figure 3), and reached a peak at 24 h and 12 h,
respectively. The level of T-AOC in 52.53 and 69.74 mmol/L groups showed the trend of
volatility within the range of alkalinity stress for 96 h (Figure 3), and the level of T-AOC in
both groups were significantly lower than that in control group at 12 h (p < 0.05). At 96 h,
the level of T-AOC of the 18.25 and 35.41 mmol/L groups were significantly lower than
that in the control group (p < 0.05), while the level of T-AOC in the 69.74 mmol/L group
was significantly higher than control (p < 0.05).
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The activity of GSH in 35.41 mmol/L groups showed the trend of volatility in the
range of alkalinity stress for 96 h, and the activity was induced to the peak level at 24 h
(Figure 4). The GSH activities in the 18.25, 52.53 and 69.74 mmol/L groups showed a
trend of first increasing and then decreasing (p < 0.05), and reached a peak at 48, 48 and
24 h, respectively. At 96 h of stress, GSH activity of 18.25 mmol/L group was close to that
of control group (p > 0.05), while it was significantly higher than that in other groups in
35.41 mmol/L group (p < 0.05).
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3.2. Immune Enzymes

During the whole stress process, the AST activity of serum in treatment first increased
and then decreased, and all of them reached the peak level at 12 h (p < 0.05; Figure 5). The
AST peak level in the 69.74 mmol/L group was significantly higher than that in the other
groups (p < 0.05). At 96 h of alkalinity stress, the AST activity in 18.25 mmol/L group
was significantly lower than control (p < 0.05), while it recovered to the initial level in
35.41 mmol/L group (p > 0.05). The AST activities of 52.53 and 69.74 mmol/L groups were
significantly higher than control (p < 0.05).
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The ALT activities in 18.25 and 52.53 mmol/L groups first increased and then de-
creased during 96 h of stress (p < 0.05), and reached the peak levels at 12 and 48 h, re-
spectively (Figure 6). The peak level of ALT activity at 48 h in the 52.53 mmol/L group
was significantly higher than that in the other groups (p < 0.05). The ALT activity in the
69.74 mmol/L group increased continuously during the whole experiment (p < 0.05). At
96 h, the ALT activity in 18.25 mmol/L group returned to the initial level (p > 0.05), while
the ALT activities in the other three groups still significantly higher than that in the control
group (p < 0.05). The serum ALT activity increased significantly with increasing alkalinity
at 96 h (p < 0.05).

During 96 h of alkalinity stress, the activities of ACP and AKP in 18.25 and 35.41 mmol/L
groups first increased and then decreased (p < 0.05; Figures 7 and 8) and peaked at 12 h
in both groups. ACP and AKP activities significantly induced in 52.53 mmol/L group
(p < 0.05). The activity of ACP in the 69.74 mmol/L group showed a continuous increasing
trend during the whole stress process (p < 0.05). At 96 h of stress, the activities of ACP
and AKP in the 18.25 mmol/L group recovered to the initial level (p > 0.05), and the levels
of AKP was not significant difference between the 35.41 mmol/L group and the control
group (p > 0.05). The ACP and AKP activities of the 52.53 and 69.74 mmol/L concentration
groups were significantly higher than control at 96 h of stress (p < 0.05).
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3.3. Hepatopancreatic Histological Observation

The hepatic tubule structure in the control group was shown in Figure 9A. In the
18.25 mmol/L group, the hepatic tubule structure was relatively normal, and part of the
basal membrane was separated from the epithelial cells (Figure 9B). In the 35.41 mmol/L
group, the cells showed vacuoles, part of the basal membrane was detached, the lumen and
transport vesicles were enlarged, and the nuclei of some epithelial cells were disintegrated
and contracted (Figure 9C). In the 52.53 mmol/L group, the lumen of hepatic tubules
became larger, the number of vacuoles increased, some epithelial cells disintegrated, nuclear
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pyknosis, and part of basement membrane of hepatic tubules ruptured (Figure 9D). In the
69.74 mmol/L group, the number of vacuoles increased. Some hepatopancreas cells in the
hepatopancreas duct were necrotic and disintegrated, and some of the basal membrane
and epithelial cells fell off to form cavities or even ruptured, and the epithelial cells also fell
off, and nuclear contraction occurred (Figure 9E).
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Fishes 2022, 7, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 9. Effect of alkalinity stress on the hepatopancreas tissue structure of Eriocheir sinensis. (A) 
Control; (B) 18. 25 mmol/L treatment group; (C) 35.41 mmol/L treatment group; (D) 52.53 mmol/L 
treatment group; (E) 69.74 mmol/L treatment group. The arrows point to lumen (Lu), the basement 
membrane (Bm), vacuole (Va) and Epithelial Cell (EI). 

4. Discussion 
4.1. Antioxidant Capacity and Non-Specific Immune Functions of E. sinensis under Alkalinity 
Stress 

In crustaceans, reactive oxygen species (ROS) play an important role in cellular de-
fense. However, excessive ROS can cause oxidative damage to cells and tissues, such as 
DNA, cell membranes, proteins and enzymes. The body’s antioxidant defense system is 
activated to prevent excessive ROS from causing oxidative damage to the body [22,23]. 
Antioxidant enzymes such as SOD, CAT, T-AOC can remove reactive oxygen species, en-
hance the body’s defense ability and remove toxins in antioxidant defense [24,25]. Free 
radicals in a normal crab are in a dynamic balance, and when the body is exposed to ex-
ternal stimuli, it will trigger a normal stress response, and its activity rises within a certain 
range [26]. However, the crustaceans’ antioxidant system has a baseline level of protection 
against oxidative stress and decreases after a certain intensity, which is a protective mech-
anism developed by the body [27–29]. The antioxidant enzyme system of white shrimp 
could be activated to adapt to the external environment under acute carbonate alkalinity 
stress [10]. A previous studies showed that the activity of antioxidant enzymes in E. sinen-
sis after deltamethrin treatment increased to remove ROS, and reduced environmental 
stress [30]. In the present study, the activities of SOD, CAT in the hepatopancreas of E. 
sinensis were significantly increased within 24 h of alkalinity stress compared with the 
control, and the activities of CAT returned to the initial level after 96 h of low-concentra-
tion treatment, indicating that the body’s antioxidant enzyme system played a protective 
role in resisting environmental damage to the body when the body was subjected to alka-
linity stress. In addition, the body gradually adapted to the water environment with alka-
linities of 18.25 mmol/L and 35.41 mmol/L, which was the result of E. sinensis adjusting 
their physiological state to adapt to the external environment, as similar to the research 
from Zhang et al. [29]. 

Figure 9. Effect of alkalinity stress on the hepatopancreas tissue structure of Eriocheir sinensis. (A) Con-
trol; (B) 18. 25 mmol/L treatment group; (C) 35.41 mmol/L treatment group; (D) 52.53 mmol/L
treatment group; (E) 69.74 mmol/L treatment group. The arrows point to lumen (Lu), the basement
membrane (Bm), vacuole (Va) and Epithelial Cell (EI).
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4. Discussion
4.1. Antioxidant Capacity and Non-Specific Immune Functions of E. sinensis under
Alkalinity Stress

In crustaceans, reactive oxygen species (ROS) play an important role in cellular defense.
However, excessive ROS can cause oxidative damage to cells and tissues, such as DNA,
cell membranes, proteins and enzymes. The body’s antioxidant defense system is activated
to prevent excessive ROS from causing oxidative damage to the body [22,23]. Antioxidant
enzymes such as SOD, CAT, T-AOC can remove reactive oxygen species, enhance the body’s
defense ability and remove toxins in antioxidant defense [24,25]. Free radicals in a normal
crab are in a dynamic balance, and when the body is exposed to external stimuli, it will
trigger a normal stress response, and its activity rises within a certain range [26]. However,
the crustaceans’ antioxidant system has a baseline level of protection against oxidative
stress and decreases after a certain intensity, which is a protective mechanism developed
by the body [27–29]. The antioxidant enzyme system of white shrimp could be activated to
adapt to the external environment under acute carbonate alkalinity stress [10]. A previous
studies showed that the activity of antioxidant enzymes in E. sinensis after deltamethrin
treatment increased to remove ROS, and reduced environmental stress [30]. In the present
study, the activities of SOD, CAT in the hepatopancreas of E. sinensis were significantly
increased within 24 h of alkalinity stress compared with the control, and the activities of
CAT returned to the initial level after 96 h of low-concentration treatment, indicating that
the body’s antioxidant enzyme system played a protective role in resisting environmental
damage to the body when the body was subjected to alkalinity stress. In addition, the
body gradually adapted to the water environment with alkalinities of 18.25 mmol/L and
35.41 mmol/L, which was the result of E. sinensis adjusting their physiological state to
adapt to the external environment, as similar to the research from Zhang et al. [29].

In the present study, after 96 h of alkalinity treatment, the activities of SOD and CAT
in high alkalinity stress group were significantly lower than those in the control, while
the level of T-AOC was significantly higher than that in the control, which was similar to
the results that the regulation of melatonin on hepatopancreas antioxidant enzymes in E.
sinensis [31]. When an organism suffered mild stress, the organism responded accordingly
to adapt to environmental changes, and the enzyme activity tended to increase [32]. The
activity of antioxidant enzymes in the high alkalinity stress was significantly inhibited,
indicating the crab might decompose and remove the reactive oxygen species generated
in the metabolic process of the body to resist the pressure of the external environment.
However, due to the fact that long-term high alkalinity exposure resulted in excessive
accumulation of ROS or H2O2 in the crab, the endogenous antioxidant defense system
could not completely counteract them. Eventually, SOD was further inactivated. In addition
to CAT, GSH can also prevent ROS production by neutralizing H2O2 [33]. Enhanced GSH
activity would help clear accumulated H2O2 during the response to stress [34]. In this
study, the activity of GSH in the alkalinity exposure group was significantly higher than
that in the control group. Therefore, the change of CAT level in this study may be related
to the compensatory change of GSH activity.

Some nonspecific immune enzymes in E. sinensis could reflect its adaptability to
different alkalinity stresses. AST and ALT are important amino acid transaminases that
widely exist in animal cytoplasm and mitochondria. They play an important role in the
protein metabolism of crustaceans and are sensitive indicators of immune function [35].
Impaired AST and ALT activity is directly related to the extent of damage caused by toxic
compounds [36]. In this study, AST and ALT in the serum of the 18.25 mmol/L treatment
group increased first and then gradually decreased and returned to the initial level during
the stress process. This is consistent with consistent with previous studies [25,31]. In the
low concentration group, the activity of AST and ALT increased briefly under stress so
that the body could adapt to changes in the external environment. AST and ALT in the
serum of crustaceans mainly come from the hepatopancreas and are sensitive inducers of
hepatocyte injury induced by oxidative stress of exogenous compounds [37]. The present
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study showed that the AST and ALT activities was significantly higher under high alkalinity
stress all the time, indicating that the hepatopancreas of crab might be damaged, which
was consistent with the results of tissue sections.

Phosphatase has a variety of physiological functions, such as immunomodulation
and antioxidation, involved in protein and lipid metabolism [38]. Phosphatases (ACP and
AKP) are involved in the protein and lipid metabolism, immune regulation and antioxidant
functions [39], and cell damage is usually accompanied by an increase in phosphatase
activity [40]. The results of this study showed that the activities of ACP and AKP first
increased and then recovered to their initial levels under low alkalinity stress. ACP and
AKP activities increased significantly during the experiment with high alkalinity and were
significantly higher than those of the control group at 96 h. These results suggested that high
alkalinity stress might disrupt the permeability and integrity of the hepatopancreatic cell
membrane of the crab, then leading to impair immune function. It may cause disturbance
of cell metabolism and immune function. These results also indicated that ACP and AKP
were involved in the immune response to alkalinity exposure of E. sinensis. Similar results
were obtained in a previous study dealing with agro-chemical stresses [31].

4.2. Effects of Alkalinity on the Hepatopancreas Structure of E. sinensis

The hepatopancreas is an important digestive and immune organ of E. sinensis, as
well as other crustaceans. The histological changes of the hepatopancreas often reflect the
degree of toxicity. In this study, the hepatopancreas structure of E. sinensis were distinctly
damaged under four different alkalinity stresses, and the higher the alkalinity was, the
more serious the hepatopancreas structure was damaged. The main pathological changes
were the enlargement of cell vacuoles, the abscission and rupture of the basal membrane,
the disintegration of epithelial cells and the enlargement of transport vacuoles. This is
similar to the symptoms of E. sinensis under agro-chemical stresses [41,42]. It is specu-
lated that hepatopancreas epithelial cell vacuoles may expel HCO3

− and H+ from the
body to achieve detoxification. The proportion of hepatopancreatic cells in crustaceans
will undergo adaptive changes under external environmental stress [43]. The results of
this study were consistent with the phenomenon that E. sinensis also showed increased
vacuoles in B cells after ammonia nitrogen stress [27]. Studies have shown the presence
of p-glycoprotein in the differentiation of F cells into B cells, which neutralize the toxicity
of certain compounds [44]. B cells not only secrete but also digest and absorb nutrients.
Under environmental stress, crustaceans reduce their activity level and use more stored
nutrients to maintain basic physiological metabolism [29]. In this study, alkalinity stress
caused E. sinensis to require more nutrients to maintain basic physiological metabolism, and
the increase in the number and volume of transport vesicles inside B cells may contribute
to the metabolism and absorption of nutrients in liver tubules and promote detoxification.
However, when the alkalinity of carbonate exceeds the detoxification ability of hepatopan-
creas B cells, the structure of hepatopancreas cells will be abnormal, and even the whole
structure of hepatopancreas cells will be destroyed.

5. Conclusions

The effects of acute alkalinity stress on the antioxidant and nonspecific immune
systems, and hepatopancreas structure of E. sinensis were studied. The results showed that
under low alkalinity (18.25 mmol/L) stress, E. sinensis could activate the antioxidant system
and nonspecific immune system to resist the environment, and then the physiological
indices returned to normal levels to realize adaptation to the environment. However,
high alkalinity (69.74 mmol/L) stress can induce oxidative stress in the hepatopancreas of
E. sinensis, thereby disrupting antioxidant capacity and immune-related responses. The
results of this study are expected to provide a practical basis for the development of
culture technology for E. sinensis extending to saline and alkaline waters under arid climate
conditions in deep inland areas in China.
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