Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (41,806)

Search Parameters:
Keywords = users

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1798 KiB  
Article
An Approach to Enable Human–3D Object Interaction Through Voice Commands in an Immersive Virtual Environment
by Alessio Catalfamo, Antonio Celesti, Maria Fazio, A. F. M. Saifuddin Saif, Yu-Sheng Lin, Edelberto Franco Silva and Massimo Villari
Big Data Cogn. Comput. 2025, 9(7), 188; https://doi.org/10.3390/bdcc9070188 (registering DOI) - 17 Jul 2025
Abstract
Nowadays, the Metaverse is facing many challenges. In this context, Virtual Reality (VR) applications allowing voice-based human–3D object interactions are limited due to the current hardware/software limitations. In fact, adopting Automated Speech Recognition (ASR) systems to interact with 3D objects in VR applications [...] Read more.
Nowadays, the Metaverse is facing many challenges. In this context, Virtual Reality (VR) applications allowing voice-based human–3D object interactions are limited due to the current hardware/software limitations. In fact, adopting Automated Speech Recognition (ASR) systems to interact with 3D objects in VR applications through users’ voice commands presents significant challenges due to the hardware and software limitations of headset devices. This paper aims to bridge this gap by proposing a methodology to address these issues. In particular, starting from a Mel-Frequency Cepstral Coefficient (MFCC) extraction algorithm able to capture the unique characteristics of the user’s voice, we pass it as input to a Convolutional Neural Network (CNN) model. After that, in order to integrate the CNN model with a VR application running on a standalone headset, such as Oculus Quest, we converted it into an Open Neural Network Exchange (ONNX) format, i.e., a Machine Learning (ML) interoperability open standard format. The proposed system demonstrates good performance and represents a foundation for the development of user-centric, effective computing systems, enhancing accessibility to VR environments through voice-based commands. Experiments demonstrate that a native CNN model developed through TensorFlow presents comparable performances with respect to the corresponding CNN model converted into the ONNX format, paving the way towards the development of VR applications running in headsets controlled through the user’s voice. Full article
Show Figures

Figure 1

36 pages, 3258 KiB  
Article
Pixel 5 Versus Pixel 9 Pro XL—Are Android Devices Evolving Towards Better GNSS Performance?
by Julián Tomaštík, Jorge Hernández Olcina, Šimon Saloň and Daniel Tunák
Sensors 2025, 25(14), 4452; https://doi.org/10.3390/s25144452 (registering DOI) - 17 Jul 2025
Abstract
Smartphone GNSS technology has advanced significantly, but its performance varies considerably among Android devices due to differences in hardware and software. This study compares the GNSS capabilities of the Google Pixel 5 and Pixel 9 Pro XL (Google LLC, Mountain View, CA, USA) [...] Read more.
Smartphone GNSS technology has advanced significantly, but its performance varies considerably among Android devices due to differences in hardware and software. This study compares the GNSS capabilities of the Google Pixel 5 and Pixel 9 Pro XL (Google LLC, Mountain View, CA, USA) using five-hour static measurements under three environmental conditions: open area, canopy, and indoor. Complete raw GNSS data and the tools used for positioning are freely available. The analysis focuses on signal quality and positioning accuracy, derived using raw GNSS measurements. Results show that the Pixel 9 Pro XL provides better signal completeness, a higher carrier-to-noise density (C/N0), and improved L5 frequency reception. However, this enhanced signal quality does not always translate to superior positioning accuracy. In single-point positioning (SPP), the Pixel 5 outperformed the Pixel 9 Pro XL in open conditions when considering mean positional errors, while the Pixel 9 Pro XL performed better under canopy conditions. The precise point positioning results are modest compared to the current state of the art, only achieving accuracies of a few meters. The static method achieved sub-decimeter accuracy for both devices in optimal conditions, with Pixel 9 Pro XL demonstrating a higher fix rate. Findings highlight ongoing challenges in smartphone GNSS, particularly related to the limited quality of signals received by smartphone GNSS receivers. While newer devices show improved signal reception, precise positioning remains limited. Future research should explore software enhancements and the use of various external correction sources to optimize GNSS accuracy for mobile users. Generally, a shift from research to user-ready applications is needed. Full article
26 pages, 2989 KiB  
Article
Studying Homoclinic Chaos in a Class of Piecewise Smooth Oscillators: Melnikov’s Approach, Symmetry Results, Simulations and Applications to Generating Antenna Factors Using Approximation and Optimization Techniques
by Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev and Asen Rahnev
Symmetry 2025, 17(7), 1144; https://doi.org/10.3390/sym17071144 (registering DOI) - 17 Jul 2025
Abstract
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. [...] Read more.
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. The higher energy levels known in the literature can be governed by appropriately added correction factors. Furthermore, the different applications of the considered model can be achieved only after a proper parameter calibration. All these necessitate the use of diverse optimization and approximation techniques. The proposed extended model is especially useful in the important field of decision making, namely the antenna array theory. This is due to the possibility of generating high-order Melnikov polynomials. The work is a natural continuation of the authors’ previous research on the topic of chaos generation via the term x|x|a1. Some specialized modules for investigating the dynamics of the proposed oscillators are provided. Last but not least, the so-defined dynamical model can be of interest for scientists and practitioners in the area of antenna array theory, which is an important part of the decision-making field. The stochastic control of oscillations is also the subject of our consideration. The underlying distributions we use may be symmetric, asymmetric or strongly asymmetric. The same is true for the mass in the tails, too. As a result, the stochastic control of the oscillations we purpose may exhibit a variety of possible behaviors. In the final section, we raise some important issues related to the methodology of teaching Master’s and PhD students. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 542 KiB  
Article
Adolescent Perceptions and Use of E-Cigarettes as Smoking Cessation Tools and for Pleasure: Data Analysis from National Youth Tobacco Survey (NYTS), 2011, 2015, 2019, and 2023
by Olusoji Ibukun, Chesmi Kumbalatara and Wasantha Jayawardene
Societies 2025, 15(7), 201; https://doi.org/10.3390/soc15070201 (registering DOI) - 17 Jul 2025
Abstract
Once marketed as smoking cessation tools, e-cigarettes are used by adolescents mainly for entertainment, driven by aggressive marketing, appealing flavors, and safer alternatives to smoking. This study analyzes data from the National Youth Tobacco Survey (NYTS) to explore trends in adolescent perceptions and [...] Read more.
Once marketed as smoking cessation tools, e-cigarettes are used by adolescents mainly for entertainment, driven by aggressive marketing, appealing flavors, and safer alternatives to smoking. This study analyzes data from the National Youth Tobacco Survey (NYTS) to explore trends in adolescent perceptions and usage patterns of e-cigarettes from 2011 to 2023, focusing on their dual roles as cessation aids and recreational products. Cross-sectional data from the NYTS over four years (2011: N = 18,866; 2015: N = 17,711; 2019: N = 19,018; 2023: N = 22,069) formed the foundation of this study. This study investigated demographic trends, usage frequency, initial and future use patterns, and quitting behavior. Descriptive statistics and latent class analysis (LCA) were employed to examine adolescent e-cigarette use patterns, with statistical significance determined at p < 0.05. The reasons for using e-cigarettes have changed significantly over the years because of family or friends. In all years (2015–2023), use for smoking cessation dropped significantly (2.33% in 2023 vs. 6.95% in 2015). In 2023, 38% wanted to quit using e-cigarettes within 30 days, and 25% attempted to quit at least 10 times. Flavored e-cigarette users were more than twice as likely to consider quitting compared to those not interested in flavors (OR = 2.64). Our findings highlight a significant decrease in the use of e-cigarettes for cessation, with a corresponding increase in recreational use over time. These trends emphasize the urgency of implementing interventions to mitigate nicotine addiction and its associated health risks among adolescents. Adolescent e-cigarette use has transitioned from being primarily driven by cessation efforts to recreational purposes, largely influenced by appealing flavors and social factors such as peer influence, showing the need for stricter marketing regulations and targeted educational campaigns. Full article
Show Figures

Figure A1

16 pages, 2108 KiB  
Article
Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Cancers 2025, 17(14), 2376; https://doi.org/10.3390/cancers17142376 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC [...] Read more.
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC (EOCRC) and across diverse treatment and demographic contexts. We present AI-HOPE-JAK-STAT, a novel conversational artificial intelligence platform built to enable the real-time, natural language-driven exploration of JAK/STAT pathway alterations in CRC. The platform integrates clinical, genomic, and treatment data to support dynamic, hypothesis-generating analyses for precision oncology. Methods: AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal. Users define analytical queries in plain English, which are translated into executable code for cohort selection, survival analysis, odds ratio testing, and mutation profiling. To validate the platform, we replicated known associations involving JAK1, JAK3, and STAT3 mutations. Additional exploratory analyses examined age, treatment exposure, tumor stage, and anatomical site. Results: The platform recapitulated established trends, including improved survival among EOCRC patients with JAK/STAT pathway alterations. In FOLFOX-treated CRC cohorts, JAK/STAT-altered tumors were associated with significantly enhanced overall survival (p < 0.0001). Stratification by age revealed survival advantages in younger (age < 50) patients with JAK/STAT mutations (p = 0.0379). STAT5B mutations were enriched in colon adenocarcinoma and correlated with significantly more favorable trends (p = 0.0000). Conversely, JAK1 mutations in microsatellite-stable tumors did not affect survival, emphasizing the value of molecular context. Finally, JAK3-mutated tumors diagnosed at Stage I–III showed superior survival compared to Stage IV cases (p = 0.00001), reinforcing stage as a dominant clinical determinant. Conclusions: AI-HOPE-JAK-STAT establishes a new standard for pathway-level interrogation in CRC by empowering users to generate and test clinically meaningful hypotheses without coding expertise. This system enhances access to precision oncology analyses and supports the scalable, real-time discovery of survival trends, mutational associations, and treatment-response patterns across stratified patient cohorts. Full article
(This article belongs to the Special Issue AI-Based Applications in Cancers)
Show Figures

Figure 1

14 pages, 2601 KiB  
Article
Simulation in Obstetric and Gynecologic Ultrasound Training: Design and Implementation Considerations
by Sheldon Bailey, Christoph F. Dietrich, Jacqueline Matthew, Michael Bachmann Nielsen and Malene Roland Vils Pedersen
J. Clin. Med. 2025, 14(14), 5064; https://doi.org/10.3390/jcm14145064 (registering DOI) - 17 Jul 2025
Abstract
Background/Objectives: The use of simulation has become more popular in healthcare settings, and simulation is also very popular in ultrasound training, allowing the learners to virtually practice and improve clinical skills. Obstetric pathology and gynecologic lesions can have a large range of [...] Read more.
Background/Objectives: The use of simulation has become more popular in healthcare settings, and simulation is also very popular in ultrasound training, allowing the learners to virtually practice and improve clinical skills. Obstetric pathology and gynecologic lesions can have a large range of sonographic features, and the detection rates for these can be increased by using ultrasound simulation systems to train users. In the following paper, we provide insight into the application of simulation tools in obstetric and gynecologic ultrasound training. Methods: We present different ultrasound models for GYN/OB ultrasound training. Results: Ultrasound simulation is a key component of obstetrics and gynecology (OB/Gyn) ultrasound education. Conclusions: By examining the best practices, we highlight the diverse simulation options available to help learners technical and non-technical skills in a controlled learning environment. Full article
(This article belongs to the Special Issue Ultrasound Diagnosis of Obstetrics and Gynecologic Diseases)
Show Figures

Figure 1

21 pages, 1689 KiB  
Article
Exploring LLM Embedding Potential for Dementia Detection Using Audio Transcripts
by Brandon Alejandro Llaca-Sánchez, Luis Roberto García-Noguez, Marco Antonio Aceves-Fernández, Andras Takacs and Saúl Tovar-Arriaga
Eng 2025, 6(7), 163; https://doi.org/10.3390/eng6070163 (registering DOI) - 17 Jul 2025
Abstract
Dementia is a neurodegenerative disorder characterized by progressive cognitive impairment that significantly affects daily living. Early detection of Alzheimer’s disease—the most common form of dementia—remains essential for prompt intervention and treatment, yet clinical diagnosis often requires extensive and resource-intensive procedures. This article explores [...] Read more.
Dementia is a neurodegenerative disorder characterized by progressive cognitive impairment that significantly affects daily living. Early detection of Alzheimer’s disease—the most common form of dementia—remains essential for prompt intervention and treatment, yet clinical diagnosis often requires extensive and resource-intensive procedures. This article explores the effectiveness of automated Natural Language Processing (NLP) methods for identifying Alzheimer’s indicators from audio transcriptions of the Cookie Theft picture description task in the PittCorpus dementia database. Five NLP approaches were compared: a classical Tf–Idf statistical representation and embeddings derived from large language models (GloVe, BERT, Gemma-2B, and Linq-Embed-Mistral), each integrated with a logistic regression classifier. Transcriptions were carefully preprocessed to preserve linguistically relevant features such as repetitions, self-corrections, and pauses. To compare the performance of the five approaches, a stratified 5-fold cross-validation was conducted; the best results were obtained with BERT embeddings (84.73% accuracy) closely followed by the simpler Tf–Idf approach (83.73% accuracy) and the state-of-the-art model Linq-Embed-Mistral (83.54% accuracy), while Gemma-2B and GloVe embeddings yielded slightly lower performances (80.91% and 78.11% accuracy, respectively). Contrary to initial expectations—that richer semantic and contextual embeddings would substantially outperform simpler frequency-based methods—the competitive accuracy of Tf–Idf suggests that the choice and frequency of the words used might be more important than semantic or contextual information in Alzheimer’s detection. This work represents an effort toward implementing user-friendly software capable of offering an initial indicator of Alzheimer’s risk, potentially reducing the need for an in-person clinical visit. Full article
Show Figures

Figure 1

35 pages, 2924 KiB  
Article
A Monitoring System for Measuring the Cognitive Cycle via a Continuous Reaction Time Task
by Teodor Ukov, Georgi Tsochev and Radoslav Yoshinov
Systems 2025, 13(7), 597; https://doi.org/10.3390/systems13070597 (registering DOI) - 17 Jul 2025
Abstract
The cognitive cycle has been studied via cognitive architectures and by analyzing cognitive experiments. An emerging theoretical approach suggests that several automatic cognitive processes retrieve information, making it available to an internal agent, which in turn decides which information to access. Derived from [...] Read more.
The cognitive cycle has been studied via cognitive architectures and by analyzing cognitive experiments. An emerging theoretical approach suggests that several automatic cognitive processes retrieve information, making it available to an internal agent, which in turn decides which information to access. Derived from this view, four phases of the cognitive cycle can be formulated and reproduced within a cognitive monitoring system. This exploratory work presents a new theory, Attention as Internal Action, and proposes a hypothesis about the relationship between an iteration of the cognitive cycle and a conscious motor action. The design of a continuous reaction time task is presented as a tool for quick cognitive evaluation. Via continuously provided user responses, the computational system behind the task adapts triggering stimuli based on the suggested hypothesis. Its software implementation was employed to assess whether a previously conducted simulation of the cognitive cycle’s time range aligned with empirical data. A control group was assigned to perform a separate simple reaction time task in a sequence of five days. The analysis showed that the experimental cognitive monitoring system produced results more closely aligned with the established understanding of the timing of the cognitive cycle than the control task did. Full article
Show Figures

Figure 1

19 pages, 5755 KiB  
Article
A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs
by Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe and Iain Murray
Computers 2025, 14(7), 284; https://doi.org/10.3390/computers14070284 (registering DOI) - 17 Jul 2025
Abstract
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the [...] Read more.
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users. Full article
(This article belongs to the Special Issue AI for Humans and Humans for AI (AI4HnH4AI))
Show Figures

Figure 1

35 pages, 1464 KiB  
Systematic Review
Assessing Transparency of Robots, Exoskeletons, and Assistive Devices: A Systematic Review
by Nicol Moscatelli, Cristina Brambilla, Valentina Lanzani, Lorenzo Molinari Tosatti and Alessandro Scano
Sensors 2025, 25(14), 4444; https://doi.org/10.3390/s25144444 (registering DOI) - 17 Jul 2025
Abstract
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are [...] Read more.
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are heterogeneous. It follows that there is a need to clarify, summarize, and assess how transparency is commonly defined and measured. Thus, the goal of this review is to systematically examine how transparency is conceptualized and evaluated across studies. To this end, we performed a structured search across three major scientific databases. After a thorough screening process, 20 out of 400 identified articles were further examined and included in this review. Despite being recognized as a desirable and essential characteristic of READs in many domains of application, our findings reveal that transparency is still inconsistently defined and evaluated, which limits comparability across studies and hinders the development of standardized evaluation frameworks. Indeed, our screening found significant heterogeneity in both terminology and evaluation methods. The majority of the studies used either a mechanical or a kinematic definition, mostly focusing on the intrinsic behavior of the device and frequently giving little attention to the device impact of the user and on the user’s perception. Furthermore, user-centered or physiological assessments could be examined further, since evaluation metrics are usually based on kinematic and robot mechanical metrics. Only a few studies have examined the underlying motor control strategies, using more in-depth methods such as muscle synergy analysis. These findings highlight the need for a shared taxonomy and a standardized framework for transparency evaluation. Such efforts would enable more reliable comparisons between studies and support the development of more effective and user-centered READs. Full article
(This article belongs to the Special Issue Wearable Sensors, Robotic Systems and Assistive Devices)
Show Figures

Figure 1

33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 (registering DOI) - 17 Jul 2025
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

28 pages, 2701 KiB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 (registering DOI) - 17 Jul 2025
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

49 pages, 3444 KiB  
Article
A Design-Based Research Approach to Streamline the Integration of High-Tech Assistive Technologies in Speech and Language Therapy
by Anna Lekova, Paulina Tsvetkova, Anna Andreeva, Georgi Dimitrov, Tanio Tanev, Miglena Simonska, Tsvetelin Stefanov, Vaska Stancheva-Popkostadinova, Gergana Padareva, Katia Rasheva, Adelina Kremenska and Detelina Vitanova
Technologies 2025, 13(7), 306; https://doi.org/10.3390/technologies13070306 - 16 Jul 2025
Abstract
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face [...] Read more.
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face difficulties when integrating these technologies into practice due to technical challenges and a lack of user-friendly interfaces. To address this gap, a design-based research approach has been employed to streamline the integration of SARs, VR and ConvAI in SLT, and a new software platform called “ATLog” has been developed for designing interactive and playful learning scenarios with ATs. ATLog’s main features include visual-based programming with graphical interface, enabling therapists to intuitively create personalized interactive scenarios without advanced programming skills. The platform follows a subprocess-oriented design, breaking down SAR skills and VR scenarios into microskills represented by pre-programmed graphical blocks, tailored to specific treatment domains, therapy goals, and language skill levels. The ATLog platform was evaluated by 27 SLT experts using the Technology Acceptance Model (TAM) and System Usability Scale (SUS) questionnaires, extended with additional questions specifically focused on ATLog structure and functionalities. According to the SUS results, most of the experts (74%) evaluated ATLog with grades over 70, indicating high acceptance of its usability. Over half (52%) of the experts rated the additional questions focused on ATLog’s structure and functionalities in the A range (90–100), while 26% rated them in the B range (80–89), showing strong acceptance of the platform for creating and running personalized interactive scenarios with ATs. According to the TAM results, experts gave high grades for both perceived usefulness (44% in the A range) and perceived ease of use (63% in the A range). Full article
Show Figures

Figure 1

25 pages, 4668 KiB  
Article
An Asynchronous Federated Learning Aggregation Method Based on Adaptive Differential Privacy
by Jiawen Wu, Geming Xia, Hongwei Huang, Chaodong Yu, Yuze Zhang and Hongfeng Li
Electronics 2025, 14(14), 2847; https://doi.org/10.3390/electronics14142847 - 16 Jul 2025
Abstract
Federated learning is a distributed machine learning technique that allows multiple devices to collaborate on learning a shared model without exchanging data. It can be used to improve model accuracy while protecting user privacy. However, traditional federated learning is vulnerable to attacks from [...] Read more.
Federated learning is a distributed machine learning technique that allows multiple devices to collaborate on learning a shared model without exchanging data. It can be used to improve model accuracy while protecting user privacy. However, traditional federated learning is vulnerable to attacks from generative adversarial networks (GANs). As a new privacy protection method, differential privacy enhances privacy protection capabilities by sacrificing some data accuracy. To optimize the privacy budget allocation scheme in traditional differential privacy, we propose a differential privacy method called ADP-FL, which dynamically adjusts the privacy budget based on Newton’s Law of Cooling. While maintaining the overall privacy budget, it dynamically tunes adaptive parameters to improve training accuracy. Additionally, we propose an asynchronous federated learning aggregation scheme that combines privacy budget with data freshness, thereby reducing the impact of differential privacy on accuracy. We conducted extensive experiments on differential privacy algorithms based on Gaussian mechanisms and Laplace mechanisms. The experimental results show that, under the same privacy budget, our algorithm achieves higher accuracy and lower communication overhead compared to the baseline algorithm. Full article
(This article belongs to the Special Issue Emerging Trends in Federated Learning and Network Security)
Show Figures

Figure 1

18 pages, 2073 KiB  
Article
Amine-Modified Diatomaceous Earth Syringe Platform (DeSEI) for Efficient and Cost-Effective EV Isolation
by Hyo Joo Lee, Jinkwan Lee, Namheon Kim and Yong Shin
Int. J. Mol. Sci. 2025, 26(14), 6843; https://doi.org/10.3390/ijms26146843 - 16 Jul 2025
Abstract
Conventional methods for isolating extracellular vesicles (EVs) are often limited by long processing times, a low purity, and a reliance on specialized equipment. To overcome these challenges, we developed the DeSEI (amine-functionalized Diatomaceous earth-based Syringe platform for EV Isolation), a novel platform employing [...] Read more.
Conventional methods for isolating extracellular vesicles (EVs) are often limited by long processing times, a low purity, and a reliance on specialized equipment. To overcome these challenges, we developed the DeSEI (amine-functionalized Diatomaceous earth-based Syringe platform for EV Isolation), a novel platform employing low-cost, amine-functionalized diatomaceous earth (ADe) within a simple syringe–filter system. The capture mechanism leverages the electrostatic interaction between the positively charged ADe and the negatively charged EV surface, enabling a rapid and efficient isolation. The optimized 30 min protocol yields intact EVs with morphology, size, and protein markers comparable to those from ultracentrifugation, ensuring minimal cellular contamination. Notably, DeSEI exhibited a nearly 60-fold higher recovery efficiency of EV-derived miRNA compared to ultracentrifugation. The platform further proved its versatility with a rapid one-step miRNA extraction protocol and a user-friendly cartridge format. The direct miRNA extraction capability is particularly advantageous for a streamlined biomarker analysis, while the cartridge design illustrates a clear pathway toward developing point-of-care diagnostic tools. The DeSEI offers a promising alternative to existing methods for EV-based research by providing a combination of speed, simplicity, and procedural flexibility that does not require specialized equipment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop