Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = urban wildlife

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 191
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

27 pages, 792 KiB  
Review
Double-Edged Sword: Urbanization and Response of Amniote Gut Microbiome in the Anthropocene
by Yi Peng, Mengyuan Huang, Xiaoli Sun, Wenqing Ling, Xiaoye Hao, Guangping Huang, Xiangdong Wu, Zheng Chen and Xiaoli Tang
Microorganisms 2025, 13(8), 1736; https://doi.org/10.3390/microorganisms13081736 - 25 Jul 2025
Viewed by 427
Abstract
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These [...] Read more.
Projections indicate that the global urban population is anticipated to reach 67.2% by 2050, accompanied by a threefold increase in urban built-up areas worldwide. Urbanization has profoundly transformed Earth’s natural environment, notably characterized by the drastic reduction and fragmentation of wildlife habitats. These changes contribute to local species extinction, leading to biodiversity loss and profoundly impacting ecological processes and regional sustainable development. However, within urban settings, certain ‘generalist’ species demonstrate survival capabilities contingent upon phenotypic plasticity. The co-evolution of gut microbiota with their hosts emerges as a key driver of this phenotypic plasticity. The presence of diverse gut microbiota constitutes a crucial adaptive mechanism essential for enabling hosts to adjust to rapid environmental shifts. This review comprehensively explores amniote gut microbial changes in the context of urbanization, examining potential drivers of these changes (including diet and environmental pollutants) and their potential consequences for host health (such as physiology, metabolism, immune function, and susceptibility to infectious and non-infectious diseases). Ultimately, the implications of the gut microbiome are highlighted for elucidating key issues in ecology and evolution. This understanding is expected to enhance our comprehension of species adaptation in the Anthropocene. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

17 pages, 3749 KiB  
Article
A Brown Bear’s Days in Vilnius, the Capital of Lithuania
by Linas Balčiauskas and Laima Balčiauskienė
Animals 2025, 15(14), 2151; https://doi.org/10.3390/ani15142151 - 21 Jul 2025
Viewed by 703
Abstract
In June 2025, a two-year-old female brown bear (Ursus arctos) appeared in the streets of Vilnius, the capital city of Lithuania. This sparked significant public, institutional, and media responses. This paper analyzes the event through ecological, social, and symbolic lenses to [...] Read more.
In June 2025, a two-year-old female brown bear (Ursus arctos) appeared in the streets of Vilnius, the capital city of Lithuania. This sparked significant public, institutional, and media responses. This paper analyzes the event through ecological, social, and symbolic lenses to explore how large carnivores are perceived and managed at the wildland–urban interface. Through an examination of media reports, policy responses, and theoretical perspectives from environmental sociology and narrative studies, we explore how the bear’s presence became a public safety concern and a culturally significant symbol. Public discourse revealed tensions between institutional authority and local ethical values, as evidenced by hunters’ refusal to carry out a kill permit. This case also illustrates the growing use of technology, such as drones, in urban wildlife management. The bear’s peaceful departure reinforced the effectiveness of nonlethal conflict resolution. This case underscores the importance of integrating ecological realities with social perceptions, media framing, and symbolic interpretations in large carnivore conservation. It emphasizes the need for interdisciplinary approaches that address the emotional and cultural aspects of human–wildlife interactions in rapidly urbanizing areas. Full article
(This article belongs to the Special Issue Carnivores and Urbanization)
Show Figures

Graphical abstract

14 pages, 4862 KiB  
Article
Gastrointestinal Parasitic Infections in Macaca fascicularis in Northeast Thailand: A One Health Perspective on Zoonotic Risks
by Teputid Kuasit, Manachai Yingklang, Penchom Janwan, Wanchai Maleewong, Weerachai Saijuntha, Siriporn Kuanamon and Tongjit Thanchomnang
Animals 2025, 15(14), 2112; https://doi.org/10.3390/ani15142112 - 17 Jul 2025
Viewed by 902
Abstract
Gastrointestinal (GI) parasitic infections in non-human primates are of growing concern due to their implications for both veterinary and public health. Long-tailed macaques (Macaca fascicularis), commonly found in peri-urban and temple environments in Southeast Asia, may act as reservoirs for zoonotic [...] Read more.
Gastrointestinal (GI) parasitic infections in non-human primates are of growing concern due to their implications for both veterinary and public health. Long-tailed macaques (Macaca fascicularis), commonly found in peri-urban and temple environments in Southeast Asia, may act as reservoirs for zoonotic parasites, posing risks to humans and domestic animals. This study investigated the prevalence and species diversity of GI parasites in free-ranging macaques from four provinces in Northeast Thailand (Loei, Khon Kaen, Bueng Kan, and Sisaket). A cross-sectional study was conducted between April and May 2025. A total of 445 fecal samples were examined using two parasitological techniques: agar plate culture (APC) and the formalin–ethyl acetate concentration technique (FECT). The overall prevalence of parasitic infection was 86.5%, with Strongyloides sp. (65.2%) as the most prevalent helminth and Balantioides coli-like (29.5%) and Entamoeba histolytica-like (28.8%) as the predominant protozoa. Other parasites identified included helminths (Trichuris sp., Ascaris sp.) and protozoa (Blastocystis sp., Iodamoeba bütschlii, Entamoeba coli, and Chilomastix mesnili). Mixed infections were frequently observed, with both helminths and protozoa co-occurring in 37.3% of cases. The high infection rates and parasite diversity reflect substantial environmental contamination and sustained transmission cycles. These findings underscore the importance of integrated surveillance in wildlife populations and the need for One Health-based approaches to minimize zoonotic transmission risks at the human–animal–environment interface. Full article
(This article belongs to the Section Wildlife)
Show Figures

Graphical abstract

18 pages, 1210 KiB  
Article
Under-Resourced Learning Programs Imperil Active Stewardship of Alaska’s Marine Systems for Food Security
by John Fraser, Rosemary Aviste, Megan Harwell and Jin Liu
Sustainability 2025, 17(14), 6436; https://doi.org/10.3390/su17146436 - 14 Jul 2025
Viewed by 360
Abstract
The future of marine sustainability depends on public understanding and trust in the policy recommendations that emerge from scientific research. For common pool marine resource decisions made by the people who depend on these resources for their food, employment, and economic future, understanding [...] Read more.
The future of marine sustainability depends on public understanding and trust in the policy recommendations that emerge from scientific research. For common pool marine resource decisions made by the people who depend on these resources for their food, employment, and economic future, understanding the current status of these marine systems and change is essential to ensure these resources will persist into the future. As such, the informal learning infrastructure is essential to increasing marine science literacy in a changing world. This mixed-methods research study analyzed the distribution and accessibility of marine science education and research across Alaska’s five geographic regions. Using the PRISMA framework, we synthesized data from 198 institutions and analyzed peer-reviewed literature on marine ecosystems to identify geographic and thematic gaps in access to informal science learning and research focus. In parallel, we undertook geospatial analysis and resource availability to describe the distribution of resources, types of informal learning infrastructure present across the state, regional presence, and resources to support informal marine science learning opportunities. Findings from this multifactor research revealed a concentration of resources in urban hubs and a lack of consistent access to learning resources for rural and Indigenous communities. The configurative literature review of 9549 publications identified topical underrepresentation of the Bering Sea and Aleutian Islands, as well as a lack of research on seabirds across all regions. Considered together, these results recommend targeted investments in rural engagement with marine science programming, culturally grounded partnerships, and research diversification. This review concludes that disparities in learning resource support and government-funded priorities in marine wildlife research have created conditions that undermine the local people’s participation in the sustainability of sensitive resources and are likely exacerbating declines driven by rapid change in Arctic and sub-Arctic waters. Full article
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
A Beautiful Bird in the Neighborhood: Canopy Cover and Vegetation Structure Predict Avian Presence in High-Vacancy City
by Sebastian Moreno, Andrew J. Mallinak, Charles H. Nilon and Robert A. Pierce
Land 2025, 14(7), 1433; https://doi.org/10.3390/land14071433 - 8 Jul 2025
Viewed by 505
Abstract
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How [...] Read more.
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How does bird species composition reflect the potential conservation value of these neighborhoods? (2) Which vegetation structures predict bird abundance across a fine-grained urban landscape? To answer these questions, we conducted avian and vegetation surveys across 100 one-hectare plots in St. Louis, Missouri, USA. These surveys showed that species richness was positively associated with canopy cover (β = 0.32, p = 0.003). Canopy cover was also the strongest predictor of American Robin (Turdus migratorius) and Northern Cardinal (Cardinalis cardinalis) abundance (β = 1.9 for both species). In contrast, impervious surfaces and abandoned buildings were associated with generalist species. European Starling (Sturnus vulgaris) abundance was strongly and positively correlated with NMS Axis 1 (r = 0.878), while Chimney Swift (Chaetura pelagica) abundance was negatively correlated (r = −0.728). These findings underscore the significance of strategic habitat management in promoting urban biodiversity and addressing ecological challenges within urban landscapes. They also emphasize the importance of integrating biodiversity goals into urban planning policies to ensure sustainable and equitable development. Full article
Show Figures

Figure 1

14 pages, 5485 KiB  
Article
Immersive 3D Soundscape: Analysis of Environmental Acoustic Parameters of Historical Squares in Parma (Italy)
by Adriano Farina, Antonella Bevilacqua, Matteo Fadda, Luca Battisti, Maria Cristina Tommasino and Lamberto Tronchin
Urban Sci. 2025, 9(7), 259; https://doi.org/10.3390/urbansci9070259 - 3 Jul 2025
Viewed by 373
Abstract
Sound source localization represents one of the major challenges for soundscapes due to the dynamicity of a large variety of signals. Many applications are found related to ecosystems to study the migration process of birds and animals other than other terrestrial environments to [...] Read more.
Sound source localization represents one of the major challenges for soundscapes due to the dynamicity of a large variety of signals. Many applications are found related to ecosystems to study the migration process of birds and animals other than other terrestrial environments to survey wildlife. Other applications on sound recording are supported by sensors to detect animal movement. This paper deals with the immersive 3D soundscape by using a multi-channel spherical microphone probe, in combination with a 360° camera. The soundscape has been carried out in three Italian squares across the city of Parma. The acoustic maps obtained from the data processing detect the directivity of dynamic sound sources as typical of an urban environment. The analysis of the objective environmental parameters (like loudness, roughness, sharpness, and prominence) was conducted alongside the investigations on the historical importance of Italian squares as places for social inclusivity. A dedicated listening playback is provided by the AGORA project with a portable listening room characterized by modular unit of soundbars. Full article
Show Figures

Figure 1

16 pages, 865 KiB  
Article
Beyond Boundaries—Genetic Implications of Urbanisation and Isolation in Eastern Grey Kangaroos (Macropus giganteus)
by Elizabeth Brunton, Alexis Levengood, Aaron Brunton, Neil Clarke, Graeme Coulson, Claire Wimpenny and Gabriel Conroy
Urban Sci. 2025, 9(7), 257; https://doi.org/10.3390/urbansci9070257 - 3 Jul 2025
Viewed by 648
Abstract
Understanding how urbanisation and habitat fragmentation influence wildlife is critical for biodiversity conservation. Fragmentation and population isolation can reduce genetic diversity, yet few studies have assessed these genetic impacts in urbanised environments. Eastern grey kangaroos (Macropus giganteus), widespread across eastern Australia, [...] Read more.
Understanding how urbanisation and habitat fragmentation influence wildlife is critical for biodiversity conservation. Fragmentation and population isolation can reduce genetic diversity, yet few studies have assessed these genetic impacts in urbanised environments. Eastern grey kangaroos (Macropus giganteus), widespread across eastern Australia, often inhabit landscapes shaped by urbanisation. Using single nucleotide polymorphism (SNP) data from scat and tissue samples, we compared genetic characteristics of kangaroo populations in urban and non-urban areas across three regions. We assessed the influence of habitat isolation on genetic diversity and relatedness at 18 study sites. Overall, urban populations did not show significantly lower genetic diversity than those in less developed areas (p > 0.05; Urban mean HO = 0.196, Non-urban mean HO = 0.188). However, populations fully isolated by roads, buildings, and fences exhibited reduced genetic diversity and increased inbreeding. Additionally, significant genetic differences were observed among regions. These findings suggest that while urbanisation alone may not always reduce genetic diversity, complete physical isolation poses greater risks to population genetic health. This study highlights how urban landscape features can shape the genetics of large terrestrial mammals and underscores the need for spatially informed urban planning and management strategies that maintain or restore habitat connectivity. Full article
Show Figures

Figure 1

12 pages, 1005 KiB  
Article
Habitat Urbanization, Circulating Glucose and Carotenoid Levels, and Body Condition Predict Variation in Blood Ketone Levels in House Finches (Haemorhous mexicanus) from the American Southwest
by Kevin J. McGraw, Victor Aguiar de Souza Penha, Kathryn N. DePinto, Dean J. Drake, Elise Crawford-Paz Soldán and Danielle Pais
Birds 2025, 6(3), 34; https://doi.org/10.3390/birds6030034 - 24 Jun 2025
Viewed by 476
Abstract
Real-time health assessment is crucial for diagnosing emerging threats to wildlife. Point-of-care instruments now allow detailed, affordable measurements of blood metabolites (e.g., glucose, triglycerides, ketones) in free-ranging animals. Ketones, however, remain understudied, especially in relation to environmental and life-history traits. Here, we assessed [...] Read more.
Real-time health assessment is crucial for diagnosing emerging threats to wildlife. Point-of-care instruments now allow detailed, affordable measurements of blood metabolites (e.g., glucose, triglycerides, ketones) in free-ranging animals. Ketones, however, remain understudied, especially in relation to environmental and life-history traits. Here, we assessed blood ketone variation in male House Finches (Haemorhous mexicanus) across two seasons (summer and winter) as a function of body condition, circulating glucose, carotenoids, lipid-soluble vitamins, and habitat urbanization (urban/suburban/rural). In both seasons, the interaction between capture site and glucose concentration predicted ketone levels: urban and suburban birds showed a negative relationship, while in summer, rural birds showed a positive one. Additionally, in winter, ketone levels were negatively associated with plasma carotenoids, indicating birds with higher carotenoid levels had lower ketone concentrations. These findings suggest that similar to patterns seen in biomedical research and our previous work on carotenoids and health, ketone status can serve as a valuable indicator of nutritional condition and fat metabolism in wild birds, particularly in the context of urbanization. Full article
(This article belongs to the Special Issue Resilience of Birds in Changing Environments)
Show Figures

Figure 1

14 pages, 2952 KiB  
Article
TreeGrid: A Spatial Planning Tool Integrating Tree Species Traits for Biodiversity Enhancement in Urban Landscapes
by Shrey Rakholia, Reuven Yosef, Neelesh Yadav, Laura Karimloo, Michaela Pleitner and Ritvik Kothari
Animals 2025, 15(13), 1844; https://doi.org/10.3390/ani15131844 - 22 Jun 2025
Viewed by 545
Abstract
Urbanization, habitat fragmentation, and intensifying urban heat island (UHI) effects accelerate biodiversity loss and diminish ecological resilience in cities, particularly in climate-vulnerable regions. To address these challenges, we developed TreeGrid, a functionality-based spatial tree planning tool designed specifically for urban settings in the [...] Read more.
Urbanization, habitat fragmentation, and intensifying urban heat island (UHI) effects accelerate biodiversity loss and diminish ecological resilience in cities, particularly in climate-vulnerable regions. To address these challenges, we developed TreeGrid, a functionality-based spatial tree planning tool designed specifically for urban settings in the Northern Plains of India. The tool integrates species trait datasets, ecological scoring metrics, and spatial simulations to optimize tree placement for enhanced ecosystem service delivery, biodiversity support, and urban cooling. Developed within an R Shiny framework, TreeGrid dynamically computes biodiversity indices, faunal diversity potential, canopy shading, carbon sequestration, and habitat connectivity while simulating localized reductions in land surface temperature (LST). Additionally, we trained a deep neural network (DNN) model using tool-generated data to predict bird habitat suitability across diverse urban contexts. The tool’s spatial optimization capabilities are also applicable to post-fire restoration planning in wildland–urban interfaces by guiding the selection of appropriate endemic species for revegetation. This integrated framework supports the development of scalable applications in other climate-impacted regions, highlighting the utility of participatory planning, predictive modeling, and ecosystem service assessments in designing biodiversity-inclusive and thermally resilient urban landscapes. Full article
Show Figures

Figure 1

42 pages, 2526 KiB  
Review
Arthropod-Borne Zoonotic Parasitic Diseases in Africa: Existing Burden, Diversity, and the Risk of Re-Emergence
by Ayman Ahmed, Emmanuel Edwar Siddig and Nouh Saad Mohamed
Parasitologia 2025, 5(3), 29; https://doi.org/10.3390/parasitologia5030029 - 20 Jun 2025
Cited by 1 | Viewed by 1015
Abstract
Vector-borne parasitic diseases represent a critical public health challenge in Africa, disproportionately impacting vulnerable populations and linking human, animal, and environmental health through the One Health framework. In this review, we explore the existing burden of these diseases, particularly those that are underreported. [...] Read more.
Vector-borne parasitic diseases represent a critical public health challenge in Africa, disproportionately impacting vulnerable populations and linking human, animal, and environmental health through the One Health framework. In this review, we explore the existing burden of these diseases, particularly those that are underreported. Climate change, urbanization, the introduction of alien species, and deforestation exacerbate the emergence and reemergence of arthropod-borne zoonotic parasitic diseases like malaria, leishmaniasis, and trypanosomiasis, complicating control and disease elimination efforts. Despite progress in managing certain diseases, gaps in surveillance and funding hinder effective responses, allowing many arthropod zoonotic parasitic infections to persist unnoticed. The increased interactions between humans and wildlife, driven by environmental changes, heighten the risk of spillover events. Leveraging comprehensive data on disease existence and distribution coupled with a One Health approach is essential for developing adaptive surveillance systems and sustainable control strategies. This review emphasizes the urgent need for interdisciplinary collaboration among medical professionals, veterinarians, ecologists, and policymakers to effectively address the challenges posed by vector-borne zoonotic parasitic diseases in Africa, ensuring improved health outcomes for both humans and animals. Full article
Show Figures

Figure 1

11 pages, 2131 KiB  
Case Report
Case of Japanese Marten (Martes melampus) Identification by mtDNA Analysis in a Series of Vehicle Cable Damage Incidents
by Reina Ueda, Yuko Kihara, Shin-ichi Hayama and Aki Tanaka
Animals 2025, 15(12), 1795; https://doi.org/10.3390/ani15121795 - 18 Jun 2025
Viewed by 375
Abstract
A series of incidents involving damage to vehicle speed sensor cables occurred in an urban area in Japan. At the request of the police, DNA analysis was conducted to identify the animal species responsible. Swab samples collected from the damaged sections of the [...] Read more.
A series of incidents involving damage to vehicle speed sensor cables occurred in an urban area in Japan. At the request of the police, DNA analysis was conducted to identify the animal species responsible. Swab samples collected from the damaged sections of the cables were subjected to PCR testing using mtDNA fragments. Sequencing analysis with universal primers (SCPH02500, SCPL02981) detected DNA from the Japanese marten (Martes melampus). A comprehensive examination that included morphological analysis of the cable damage and consideration of the ecological characteristics of the Japanese martens suggested that the damage was likely caused by this species. DNA analysis using mtDNA markers is a valuable tool for species identification in wildlife forensic veterinary investigations and serves as important scientific evidence in criminal cases involving animals. The findings from this case may contribute to future investigations in forensic veterinary science and ecological research and may also inform measures to prevent human–wildlife conflicts involving animals. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

22 pages, 1651 KiB  
Article
Stress and the City: Body Condition, Blood Parameters, Parasite Load, and Stomach Calorimetry of Rural and Urban European Rabbit Populations
by Madlen Fellmeth, Denise Babitsch, Anne Madel, Marie-Luise Schrödl, Marie-Christin Uhde, Angela Schießl, Bruno Streit, Markus Weinhardt and Bernd Hermann
Wild 2025, 2(2), 23; https://doi.org/10.3390/wild2020023 - 16 Jun 2025
Viewed by 411
Abstract
(1) Background: We combined physiological and morphological data of the European rabbit (Oryctolagus cuniculus) to provide insights into the question of how urbanization affects the health of urban wildlife populations. (2) Methods: We dissected 39 urban and 34 rural wild rabbits [...] Read more.
(1) Background: We combined physiological and morphological data of the European rabbit (Oryctolagus cuniculus) to provide insights into the question of how urbanization affects the health of urban wildlife populations. (2) Methods: We dissected 39 urban and 34 rural wild rabbits in order to compare organ weights, as well as stomach contents. Furthermore, we collected blood and fecal samples. (3) Results: Rural rabbits had a significantly longer body and a higher body weight as well as more fat tissue around their kidneys compared to urban rabbits. In contrast, the stomach, the intestines, the liver, the lung, and the brain of urban rabbits were significantly heavier. The amount of hematocrit, hemoglobin, and the mean corpuscular volume was significantly higher in urban rabbits. The caloric energy content of the stomach was comparable between rural and urban rabbits and was merely influenced by the season being higher in autumn. Rural rabbits had an overall higher mean parasite index compared to urban rabbits. (4) Conclusions: The results of our study allow for a deeper understanding of how density-dependent (e.g., transmission of diseases) and density-independent factors (e.g., food quality) influence the health status and life history traits of urban wildlife populations compared to their rural counterparts. Full article
Show Figures

Figure 1

11 pages, 487 KiB  
Review
Canine Distemper Virus in Mexico: A Risk Factor for Wildlife
by Juan Macías-González, Rebeca Granado-Gil, Lizbeth Mendoza-González, Cesar Pedroza-Roldán, Rogelio Alonso-Morales and Mauricio Realpe-Quintero
Viruses 2025, 17(6), 813; https://doi.org/10.3390/v17060813 - 3 Jun 2025
Viewed by 1214
Abstract
Canine distemper is caused by a morbillivirus similar to others that affect livestock and humans. The increase in host range and its persistence in wildlife reservoirs complicate eradication considerably. Canine distemper virus has been reported in wildlife in Mexico since 2007. Dogs were [...] Read more.
Canine distemper is caused by a morbillivirus similar to others that affect livestock and humans. The increase in host range and its persistence in wildlife reservoirs complicate eradication considerably. Canine distemper virus has been reported in wildlife in Mexico since 2007. Dogs were previously considered the main reservoirs, but high vaccination coverage in the USA has helped control the disease, and racoons (Procyon lotor) are now recognized as the main reservoirs of the agent in the USA, since they live in high densities in urban environments (peridomestic), where contact with domestic and wildlife species is common. Racoons are now considered to spread CDV in wildlife species and zoo animals. Mexico is home to at least two wildlife species that have been reported as carriers of the CDV infection in studies in the USA. Raccoons and Coyotes are distributed in several Mexican states and could play the same reservoir role as for the US. In addition, the increase in non-traditional pets expands the availability of susceptible individuals to preserve CDV in domiciliary and peri-domiciliary environments, contributing to the spread of the disease. Combined with incomplete vaccination coverage in domestic canids, this could contribute to maintaining subclinical infections. Infected pets with incomplete vaccination schedules could also spread CDV to other canines or wildlife coexisting species. In controlled habitats, such as flora and fauna sanctuaries, protected habitats, zoo collections, etc., populations of wildlife species and stray dogs facilitate the spread of CDV infection, causing the spilling over of this infectious agent. Restricting domestic pets from wildlife habitats reduces the chance of spreading the infection. Regular epidemiological surveillance and specific wildlife conservation practices can contribute to managing threatened species susceptible to diseases like CDV. This may also facilitate timely interventions in companion animals which eventually minimize the impact of this disease in both scenarios. Aim: The review discusses the circulation of CDV in wildlife populations, and highlights the need for epidemiological surveillance in wildlife, particularly in endangered wildlife species from Mexico. Through an extensive review of recent scientific literature about CDV disease in wildlife that has been published in local and international databases, the findings were connected with the current needs of information from a local to global perspective, and conclusions were made to broaden the context of Mexican epidemiological scenarios as closely related to the neighboring regions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

28 pages, 13595 KiB  
Article
Open-Set Recognition of Environmental Sound Based on KDE-GAN and Attractor–Reciprocal Point Learning
by Jiakuan Wu, Nan Wang, Huajie Hong, Wei Wang, Kunsheng Xing and Yujie Jiang
Acoustics 2025, 7(2), 33; https://doi.org/10.3390/acoustics7020033 - 28 May 2025
Viewed by 741
Abstract
While open-set recognition algorithms have been extensively explored in computer vision, their application to environmental sound analysis remains understudied. To address this gap, this study investigates how to effectively recognize unknown sound categories in real-world environments by proposing a novel Kernel Density Estimation-based [...] Read more.
While open-set recognition algorithms have been extensively explored in computer vision, their application to environmental sound analysis remains understudied. To address this gap, this study investigates how to effectively recognize unknown sound categories in real-world environments by proposing a novel Kernel Density Estimation-based Generative Adversarial Network (KDE-GAN) for data augmentation combined with Attractor–Reciprocal Point Learning for open-set classification. Specifically, our approach addresses three key challenges: (1) How to generate boundary-aware synthetic samples for robust open-set training: A closed-set classifier’s pre-logit layer outputs are fed into the KDE-GAN, which synthesizes samples mapped to the logit layer using the classifier’s original weights. Kernel Density Estimation then enforces Density Loss and Offset Loss to ensure these samples align with class boundaries. (2) How to optimize feature space organization: The closed-set classifier is constrained by an Attractor–Reciprocal Point joint loss, maintaining intra-class compactness while pushing unknown samples toward low-density regions. (3) How to evaluate performance in highly open scenarios: We validate the method using UrbanSound8K, AudioEventDataset, and TUT Acoustic Scenes 2017 as closed sets, with ESC-50 categories as open-set samples, achieving AUROC/OSCR scores of 0.9251/0.8743, 0.7921/0.7135, and 0.8209/0.6262, respectively. The findings demonstrate the potential of this framework to enhance environmental sound monitoring systems, particularly in applications requiring adaptability to unseen acoustic events (e.g., urban noise surveillance or wildlife monitoring). Full article
Show Figures

Figure 1

Back to TopTop