Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,176)

Search Parameters:
Keywords = urban planning indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10605 KiB  
Article
Network Analysis of Outcome-Based Education Curriculum System: A Case Study of Environmental Design Programs in Medium-Sized Cities
by Yang Wang, Zixiao Zhan and Honglin Wang
Sustainability 2025, 17(15), 7091; https://doi.org/10.3390/su17157091 - 5 Aug 2025
Abstract
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of [...] Read more.
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of enrollment decline and market contraction critical for urban sustainability. Using network analysis, we construct curriculum support and contribution networks and course temporal networks to assess structural dependencies and teaching effectiveness, revealing structural patterns and optimizing the OBE-based Environmental Design curriculum to enhance educational quality and student competencies. Analysis reveals computer basic courses as knowledge transmission hubs, creating a course network with a distinct core–periphery structure. Technical course reforms significantly outperform theoretical course reforms in improving student performance metrics, such as higher average scores, better grade distributions, and reduced performance gaps, while innovative practice courses show peripheral isolation patterns, indicating limited connectivity with core curriculum modules, which reduces their educational impact. These findings provide empirical insights for curriculum optimization, supporting urban sustainable development through enhanced professional talent cultivation equipped to address environmental challenges like sustainable design practices and resource-efficient urban planning. Network analysis applications introduce innovative frameworks for curriculum reform strategies. Future research expansion through larger sample validation will support urban sustainable development goals and enhance professional talent cultivation outcomes. Full article
Show Figures

Figure 1

26 pages, 2459 KiB  
Article
Urban Agriculture for Post-Disaster Food Security: Quantifying the Contributions of Community Gardens
by Yanxin Liu, Victoria Chanse and Fabricio Chicca
Urban Sci. 2025, 9(8), 305; https://doi.org/10.3390/urbansci9080305 - 5 Aug 2025
Abstract
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. [...] Read more.
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. This study examined the potential of urban agriculture for enhancing post-disaster food security by calculating vegetable self-sufficiency rates. Specifically, it evaluated the capacity of current Wellington’s community gardens to meet post-disaster vegetable demand in terms of both weight and nutrient content. Data collection employed mixed methods with questionnaires, on-site observations and mapping, and collecting high-resolution aerial imagery. Garden yields were estimated using self-reported data supported by literature benchmarks, while cultivated areas were quantified through on-site mapping and aerial imagery analysis. Six post-disaster food demand scenarios were used based on different target populations to develop an understanding of the range of potential produce yields. Weight-based results show that community gardens currently supply only 0.42% of the vegetable demand for residents living within a five-minute walk. This rate increased to 2.07% when specifically targeting only vulnerable populations, and up to 10.41% when focusing on gardeners’ own households. However, at the city-wide level, the current capacity of community gardens to provide enough produce to feed people remained limited. Nutrient-based self-sufficiency was lower than weight-based results; however, nutrient intake is particularly critical for vulnerable populations after disasters, underscoring the greater challenge of ensuring adequate nutrition through current urban food production. Beyond self-sufficiency, this study also addressed the role of UA in promoting food diversity and acceptability, as well as its social and psychological benefits based on the questionnaires and on-site observations. The findings indicate that community gardens contribute meaningfully to post-disaster food security for gardeners and nearby residents, particularly for vulnerable groups with elevated nutritional needs. Despite the current limited capacity of community gardens to provide enough produce to feed residents, findings suggest that Wellington could enhance post-disaster food self-reliance by diversifying UA types and optimizing land-use to increase food production during and after a disaster. Realizing this potential will require strategic interventions, including supportive policies, a conducive social environment, and diversification—such as the including private yards—all aimed at improving food access, availability, and nutritional quality during crises. The primary limitation of this study is the lack of comprehensive data on urban agriculture in Wellington and the wider New Zealand context. Addressing this data gap should be a key focus for future research to enable more robust assessments and evidence-based planning. Full article
Show Figures

Figure 1

14 pages, 8210 KiB  
Article
Effects of Forest Environments in Attenuating D-Galactose-Induced Immunosenescence: Insights from a Murine Model
by Yanling Li and Xiaocong Li
Biology 2025, 14(8), 998; https://doi.org/10.3390/biology14080998 (registering DOI) - 5 Aug 2025
Abstract
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the [...] Read more.
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the differential impacts of urban forest versus urban environments on immunosenescence using a D-galactose-induced murine model. Mice were assigned to urban or forest environments for 8 weeks, with serum cytokines (IL-2, IL-6, TNF-α, IFN-γ), T-cell subsets, and organ indices analyzed. Forest environments exhibited significantly higher humidity and negative air ion concentrations alongside lower noise levels compared to urban settings. Aged forest-exposed mice showed attenuated immunosenescence markers, including significantly lower IL-6 levels (p < 0.01) and improved thymic indices, suggesting urban forest environments may mitigate immune decline. These findings highlight the potential of urban forests in promoting healthy aging, advocating for their integration into urban planning. Further human studies are warranted to translate these findings into public health strategies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

24 pages, 3518 KiB  
Article
Assessing Community Perception, Preparedness, and Adaptation to Urban Flood Risks in Malaysia
by Maniyammai Kumaresen, Fang Yenn Teo, Anurita Selvarajoo, Subarna Sivapalan and Roger A. Falconer
Water 2025, 17(15), 2323; https://doi.org/10.3390/w17152323 - 5 Aug 2025
Abstract
Urban flooding has significantly impacted the livelihoods of households and communities worldwide. It highlights the urgency of focusing on both flood preparedness and adaptation strategies to understand the community’s perception and adaptive capacity. This study investigates the levels of risk perception, flood preparedness, [...] Read more.
Urban flooding has significantly impacted the livelihoods of households and communities worldwide. It highlights the urgency of focusing on both flood preparedness and adaptation strategies to understand the community’s perception and adaptive capacity. This study investigates the levels of risk perception, flood preparedness, and adaptive capacity, while also exploring the inter-relationships among these factors within the context of urban flooding in Malaysia. A quantitative approach was employed, involving a structured questionnaire administered to residents in flood-prone urban areas across Greater Kuala Lumpur, Malaysia. A total of 212 responses were analysed using descriptive statistics, categorical index classification, and Spearman correlation analysis. The findings indicate that residents generally reported high levels of risk perception and preparedness, although adaptive capacity exhibited greater variability, with a mean score of 3.97 (SD = 0.64). Positive associations were found among risk perception, flood preparedness, and adaptive capacity. This study contributes to the existing knowledge by providing evidence on community resilience and highlighting key factors that can guide flood management policies and encourage adaptive planning at the community level. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

24 pages, 34850 KiB  
Article
New Belgrade’s Thermal Mosaic: Investigating Climate Performance in Urban Heritage Blocks Beyond Coverage Ratios
by Saja Kosanović, Đurica Marković and Marija Stamenković
Atmosphere 2025, 16(8), 935; https://doi.org/10.3390/atmos16080935 (registering DOI) - 3 Aug 2025
Viewed by 49
Abstract
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used [...] Read more.
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used to assess two scenarios: an “asphalt-only” environment, isolating the urban structure’s impact, and a “real-world” scenario, including green infrastructure (GI). Overall, the findings emphasize that while GI offers mitigation, the inherent urban built structure fundamentally determines thermal outcomes. An urban block’s thermal performance, it turns out, is a complex interplay between morphological factors and local climate. Crucially, simple metrics like Green Area Percentage (GAP) and Building Coverage Ratio (BCR) proved unreliable predictors of thermal performance. This highlights the critical need for urban planning regulations to evolve beyond basic surface indicators and embrace sophisticated, context-sensitive design principles for effective heat mitigation. Optimal performance arises from morphologies that actively manage heat accumulation and facilitate its dissipation, a characteristic exemplified by Block 22’s integrated design. However, even the best-performing Block 22 remains warmer compared to denser central areas, suggesting that urban densification can be a strategy for heat mitigation. Given New Belgrade’s blocks are protected heritage, targeted GI reinforcements remain the only viable approach for improving the outdoor thermal comfort. Full article
Show Figures

Figure 1

16 pages, 8879 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 - 2 Aug 2025
Viewed by 107
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 - 2 Aug 2025
Viewed by 83
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
Show Figures

Figure 1

25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 174
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

22 pages, 2934 KiB  
Article
Assessing the Cooling Effects of Urban Parks and Their Potential Influencing Factors: Perspectives on Maximum Impact and Accumulation Effects
by Xinfei Zhao, Kangning Kong, Run Wang, Jiachen Liu, Yongpeng Deng, Le Yin and Baolei Zhang
Sustainability 2025, 17(15), 7015; https://doi.org/10.3390/su17157015 - 1 Aug 2025
Viewed by 250
Abstract
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, [...] Read more.
Urban parks play an essential role in mitigating the urban heat island (UHI) effect driven by urbanization. A rigorous understanding of the cooling effects of urban parks can support urban planning efforts aimed at mitigating the UHI effect and enhancing urban sustainability. However, previous research has primarily focused on the maximum cooling impact, often overlooking the accumulative effects arising from spatial continuity. The present study fills this gap by investigating 74 urban parks located in the central area of Jinan and constructing a comprehensive cooling evaluation framework through two dimensions: maximum impact (Park Cooling Area, PCA; Park Cooling Efficiency, PCE) and cumulative impact (Park Cooling Intensity, PCI; Park Cooling Gradient, PCG). We further systematically examined the influence of park attributes and the surrounding urban structures on these metrics. The findings indicate that urban parks, as a whole, significantly contribute to lowering the ambient temperatures in their vicinity: 62.3% are located in surface temperature cold spots, reducing ambient temperatures by up to 7.77 °C. However, cooling intensity, range, and efficiency vary significantly across parks, with an average PCI of 0.0280, PCG of 0.99 °C, PCA of 46.00 ha, and PCE of 5.34. For maximum impact, PCA is jointly determined by park area, boundary length, and shape complexity, while smaller parks generally exhibit higher PCE—reflecting diminished cooling efficiency at excessive scales. For cumulative impact, building density and spatial enclosure degree surrounding parks critically regulate PCI and PCG by influencing cool-air aggregation and diffusion. Based on these findings, this study classified urban parks according to their cooling characteristics, clarified the functional differences among different park types, and proposed targeted recommendations. Full article
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 - 1 Aug 2025
Viewed by 144
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

16 pages, 3217 KiB  
Article
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 (registering DOI) - 1 Aug 2025
Viewed by 196
Abstract
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a [...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy. Full article
Show Figures

Graphical abstract

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 170
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

Back to TopTop