Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = urban estuary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 248
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 582
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

25 pages, 5819 KiB  
Article
Future Development and Water Quality for the Pensacola and Perdido Bay Estuary Program: Applications for Urban Development Planning
by Tricia Kyzar, Michael Volk, Dan Farrah, Paul Owens and Thomas Hoctor
Land 2025, 14(7), 1446; https://doi.org/10.3390/land14071446 - 11 Jul 2025
Cited by 1 | Viewed by 391
Abstract
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these [...] Read more.
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these new residents, 801 km2 of wetlands were converted to developed uses between 1996 and 2016. These conversions present a significant threat to Florida’s unique ecosystems and highlight the need to prioritize conservation and water resource protection, both for the natural and human services that wetland and upland landscapes provide. To better understand the relationship between future development and water resources, we used future development and event mean concentration (EMC) models for Escambia and Santa Rosa counties in Florida (USA) to assess impacts from development patterns on water quality/runoff and water resource protection priorities. This study found that if future development densities increased by 30%, reductions of 7713 acres for developed land, 17,768 acre feet of stormwater volume, ~88k lb/yr total nitrogen, and ~15k lb/yr total phosphorus could be achieved. It also found that urban infill, redevelopment, and stormwater management are essential and complementary tools to broader growth management strategies for reducing sprawl while also addressing urban stormwater impacts. Full article
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 390
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

26 pages, 4805 KiB  
Article
Comparison of Heavy Metal Pollution, Health Risk, and Sources Between Surface and Deep Layers for an Agricultural Region Within the Pearl River Delta: Implications for Soil Environmental Research
by Zhenwei Bi, Yu Guo, Zhao Wang, Zhaoyu Zhu, Mingkun Li and Tingping Ouyang
Toxics 2025, 13(7), 548; https://doi.org/10.3390/toxics13070548 - 29 Jun 2025
Viewed by 332
Abstract
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In [...] Read more.
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In the present study, Concentrations of eight heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, As, and Hg) were determined for 72 pairs of surface and deep soil samples collected from an agricultural region close to the Pearl River estuary. Subsequently, heavy metal pollution and potential health risks were assessed using the Geo-accumulation Index and Potential Ecological Risk Index, a dose response model and Monte Carlo simulation, respectively. Principal component analysis (PCA) and the positive matrix factorization (PMF) receptor model were combined to analyze heavy metal sources. The results indicated that average concentrations of all heavy metals exceeded their corresponding background values. Cd was identified as the main pollutant due to its extremely high values of Igeo and Er. Unacceptable potential heavy metal non-carcinogenic and carcinogenic risks indicated by respectively calculated HI and TCR, higher than thresholds 1.0 and 1.0 × 10−4, mainly arose from heavy metals As, Cd, Cr, and Ni through food ingestion and dermal absorption. Anthropogenic sources respectively contributed 19.7% and 38.9% for soil As and accounted for the main contributions to Cd, Cu, and Hg (Surface: 90.2%, 65.4%, 67.3%; Deep: 53.8%, 54.6%, 56.2%) within surface and deep layers. These results indicate that soil heavy metal contents with deep layers were also significantly influenced by anthropogenic input. Therefore, we suggest that both surface and deep soils should be investigated simultaneously to gain relatively accurate results for soil heavy metal pollution and source apportionments. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

14 pages, 5388 KiB  
Article
An Inversion Model for Suspended Sediment Concentration Based on Hue Angle Optical Classification: A Case Study of the Coastal Waters in the Guangdong-Hong Kong-Macao Greater Bay Area
by Junying Yang, Ruru Deng, Yiwei Ma, Jiayi Li, Yu Guo and Cong Lei
Sensors 2025, 25(6), 1728; https://doi.org/10.3390/s25061728 - 11 Mar 2025
Viewed by 693
Abstract
The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is one of the most urbanized and industrialized coastal regions in China, where intense human activities contribute to substantial terrestrial sediment discharge into the adjacent marine environment. However, complex hydrodynamic conditions and high spatiotemporal variability pose [...] Read more.
The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is one of the most urbanized and industrialized coastal regions in China, where intense human activities contribute to substantial terrestrial sediment discharge into the adjacent marine environment. However, complex hydrodynamic conditions and high spatiotemporal variability pose challenges for accurate suspended sediment concentration (SSC) retrieval. Developing water quality retrieval models based on different classifications of water bodies could enhance the accuracy of SSC inversion in coastal waters. Therefore, this study classified the coastal waters of the GBA into clear and turbid zones based on Hue angle α, and established retrieval models for SSC using a single-scattering approximation model for clear zones and a secondary-scattering approximation model for turbid zones based on radiative transfer processes. Model validation with in-situ data shows a coefficient of determination (R2) of 0.73, a root mean square error (RMSE) of 8.30, and a mean absolute percentage error (MAPE) of 42.00%. Spatial analysis further reveals higher SSC in the waters around Qi’ao Island in the Pearl River Estuary (PRE) and along the coastline of Guanghai Bay, identifying these two areas as priorities for attention. This study aims to offer valuable insights for SSC management in the coastal waters of the GBA. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 11993 KiB  
Article
Evaluating the Impact of Environmental Factors on Bacterial Populations in Riverine, Estuarine, and Coastal Sediments
by Ramganesh Selvarajan, Ming Yang, Henry J. O. Ogola, Timothy Sibanda and Akebe Luther King Abia
Diversity 2024, 16(12), 749; https://doi.org/10.3390/d16120749 - 6 Dec 2024
Cited by 2 | Viewed by 1687
Abstract
Aquatic ecosystems, including rivers, estuaries, and coastal environments, are crucial for maintaining biodiversity, regulating nutrient cycles, and supporting human livelihoods. However, these ecosystems are increasingly being threatened by urbanization, making it essential to understand their microbial communities and their ecological roles. This study [...] Read more.
Aquatic ecosystems, including rivers, estuaries, and coastal environments, are crucial for maintaining biodiversity, regulating nutrient cycles, and supporting human livelihoods. However, these ecosystems are increasingly being threatened by urbanization, making it essential to understand their microbial communities and their ecological roles. This study employed high-throughput 16S rRNA gene sequencing to characterize the bacterial communities within the riverine, estuarine, and coastal sediments of Adyar Creek, Chennai, India. Proteobacteria were the dominant phylum across most samples, with proportions ranging from 39.65% to 72.09%. Notably, the estuarine environment exhibited a distinct taxonomic profile characterized by a significant abundance of Firmicutes (47.09% of the bacterial population). Distinct bacterial classes were observed across sediment types: Alphaproteobacteria (30.07–34.32%) in riverine sediments, Bacilli dominated estuarine sediments (40.17%), and Gammaproteobacteria (15.71–51.94%) in coastal sediments. The most significant environmental factors influencing the bacterial community composition across these samples were pH, salinity, phosphate, and nitrate. LEfSe (Linear discriminant analysis Effect Size) analysis identified specific genera within the estuary, including Bacillus (20.26%), unclassified_Paenibacillus (12.87%), Clostridium (3.81%), Gailella (3.17%), Paenibacillus (3.02%), Massilia (1.70%), Paraburkholderia (1.42%), and Pantoea (1.15%), as potential biomarkers for habitat health. Functional analysis revealed an elevated expression of the genes associated with ABC transporters and carbon metabolism in the estuary, suggesting a heightened nutrient cycling capacity. Furthermore, co-occurrence network analysis indicated that bacterial communities exhibit a strong modular structure with complex species interactions across the three sediment types. These findings highlight bacterial communities’ critical role and the key drivers in estuarine ecosystems, establishing a baseline for further investigations into the functional ecology of these vulnerable ecosystems. Full article
Show Figures

Figure 1

17 pages, 12741 KiB  
Article
Variations in Phytoplankton Blooms in the Yangtze River Estuary and Its Adjacent Waters Induced by Climate and Human Activities
by Yan Luo, Ling Zhou, Rui Wu, Jingjie Dong, Xinchun Chen, Zhenjie Zhu and Jiafeng Xu
Water 2024, 16(23), 3505; https://doi.org/10.3390/w16233505 - 5 Dec 2024
Viewed by 1208
Abstract
The long-term characteristics of phytoplankton blooms and the relative importance of driving factors in the Yangtze River Estuary (YRE) and its adjacent waters remains unclear. This study explored the temporal and spatial patterns of blooms and their driving factors in the YRE and [...] Read more.
The long-term characteristics of phytoplankton blooms and the relative importance of driving factors in the Yangtze River Estuary (YRE) and its adjacent waters remains unclear. This study explored the temporal and spatial patterns of blooms and their driving factors in the YRE and its adjacent waters using MODIS bloom data from 2003 to 2020. Bloom intensity varied along both longitudinal and latitudinal gradients, with very few blooms occurring near the shore and in the open sea. Temporally, blooms exhibited seasonal variations, peaking during the summer and being weakest during the winter. Sea surface temperature was the primary driving factor behind the seasonal variations in algal blooms. The implementation of controlling the pace of urban land development, returning farmland to forest, and initiating marine pollution prevention programs have contributed to a downward trend in the bloom intensity. Additionally, the operation of the Three Gorges Dam altered the Yangtze River’s diluted water during the summer months, thereby reducing the bloom intensity. Conversely, the Taiwan Warm Current promoted an increase in the bloom intensity. Elucidation of the spatiotemporal patterns and the driving factors of blooms in the YRE and its adjacent waters provide crucial support for the prediction and management of algal blooms. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Water Environment Monitoring)
Show Figures

Figure 1

17 pages, 5385 KiB  
Article
Patterns in Anthropogenic Nitrogen and Water Quality Leading to Phytoplankton Blooms in Urban Estuaries
by Richard C. Dugdale, Alexander E. Parker and Frances P. Wilkerson
J. Mar. Sci. Eng. 2024, 12(11), 2029; https://doi.org/10.3390/jmse12112029 - 9 Nov 2024
Viewed by 1313
Abstract
The San Francisco Estuary (SFE) ecosystem receives anthropogenic ammonium (NH4) from agricultural runoff and sewage treatment plants and has low chlorophyll levels. As observed in other aquatic systems, NH4 at concentrations < 4 µmol/L inhibits nitrate (NO3) uptake [...] Read more.
The San Francisco Estuary (SFE) ecosystem receives anthropogenic ammonium (NH4) from agricultural runoff and sewage treatment plants and has low chlorophyll levels. As observed in other aquatic systems, NH4 at concentrations < 4 µmol/L inhibits nitrate (NO3) uptake by phytoplankton and can reduce the frequency with which phytoplankton assimilate all available inorganic nitrogen (i.e., NO3 and NH4); paradoxically, elevated NH4 can reduce the chances of phytoplankton blooms in some high NH4 ecosystems. For blooms to occur, NH4 must first be reduced to non-repressive levels, then NO3 uptake can occur and is accompanied by more rapid carbon (C) uptake and chlorophyll accumulation. The consequence of this sequence is that when NO3 uptake, C uptake, or chlorophyll concentrations are plotted against ambient NH4, a rectangular hyperbola results. Here, these relationships are statistically described for a variety of SFE field data, and their management applications are discussed. These relationships enable ambient NH4 to be used to predict both the likelihood of blooms and to investigate historical changes in productivity when no rate measurements were made. We apply the statistical relationship to a 40-year time series from the SFE during which there was an ecosystem-scale change in the estuarine foodweb with a drastic decline in pelagic fishes (the pelagic organism decline) and suggest that this period aligned with the lowest annual primary production and highest NH4. The relationship may be generalizable to other high-nitrogen, low-growth systems and aid nutrient management decisions, assuming potential limitations are considered. Full article
Show Figures

Figure 1

25 pages, 10451 KiB  
Article
County-Level Spatiotemporal Dynamics and Driving Mechanisms of Carbon Emissions in the Pearl River Delta Urban Agglomeration, China
by Fei Wang, Changjian Wang, Xiaojie Lin, Zeng Li and Changlong Sun
Land 2024, 13(11), 1829; https://doi.org/10.3390/land13111829 - 4 Nov 2024
Cited by 1 | Viewed by 1025
Abstract
Encouraging cities to take the lead in achieving carbon peak and carbon neutrality holds significant global implications for addressing climate change. However, existing studies primarily focus on the urban scale, lacking more comprehensive county-level analyses, which hampers the effective implementation of differentiated carbon [...] Read more.
Encouraging cities to take the lead in achieving carbon peak and carbon neutrality holds significant global implications for addressing climate change. However, existing studies primarily focus on the urban scale, lacking more comprehensive county-level analyses, which hampers the effective implementation of differentiated carbon mitigation policies. Therefore, this study focused on the Pearl River Delta urban agglomeration in China, adopting nighttime light data and socio-economic spatial data to estimate carbon emissions at the county level. Furthermore, trend analysis, spatial autocorrelation analysis, and Geodetector were adopted to elucidate the spatiotemporal patterns and influencing factors of county-level carbon emissions. Carbon emissions were predominantly concentrated in the counties on the eastern bank of the Pearl River Estuary. Since 2010, there has been a deceleration in the growth rate of carbon emissions in the region around the Pearl River Estuary, with some counties exhibiting declining trends. Throughout the study period, construction land expansion consistently emerged as a predominant factor driving carbon emission growth. Additionally, foreign direct investment, urbanization, and fixed asset investment each significantly contributed to the increased carbon emissions during different development periods. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development)
Show Figures

Figure 1

27 pages, 26911 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Coupling and Coordination between the Ecosystem Service Value and Economy in the Pearl River Delta Urban Agglomeration of China
by Zeduo Zou, Xiaodie Yuan, Zhuo Zhang, Xingyan Li and Chunshan Zhou
Land 2024, 13(10), 1670; https://doi.org/10.3390/land13101670 - 14 Oct 2024
Cited by 7 | Viewed by 1488
Abstract
In the context of pursuing high-quality development, the coupling and coordination of the ecosystem and economy has become the fundamental goal and inevitable choice for achieving the sustainable development of urban agglomerations. Based on remote sensing and statistical data for the Pearl River [...] Read more.
In the context of pursuing high-quality development, the coupling and coordination of the ecosystem and economy has become the fundamental goal and inevitable choice for achieving the sustainable development of urban agglomerations. Based on remote sensing and statistical data for the Pearl River Delta (PRD) region from 2005 to 2020, in this paper, we construct an index system of the ecological and economic levels to assess the ecosystem service value (ESV). We use the equivalent factor method, entropy method, coupling coordination model, and relative development model to systematically grasp the spatial pattern of the levels of the two variables, analyse and evaluate their spatial and temporal coupling and coordination characteristics, and test the factors influencing their coupling and coordination using the geographical and temporal weighted regression (GTWR) model. The results show that ① the ESV in the PRD exhibited a fluctuating decreasing trend, while the level of the economy exhibited a fluctuating increasing trend; ② the coordination degree of the ESV and economy in the PRD exhibited a fluctuating increasing trend, and the region began to enter the basic coordination period in 2007; ③ in terms of the spatial distribution of the coordination degree, there was generally a circular pattern, with the Pearl River Estuary cities as the core and a decrease in the value towards the periphery; ④ the coordinated development model is divided into balanced development, economic guidance, and ESV guidance, among which balanced development is the major type; ⑤ the results of the GTWR reveal that the influencing factors exhibited significant spatial–temporal heterogeneity. Government intervention and openness were the dominant factors affecting the coordination, and the normalised difference vegetation index was the main negative influencing factor. Full article
(This article belongs to the Special Issue Ecological and Cultural Ecosystem Services in Coastal Areas)
Show Figures

Figure 1

22 pages, 25663 KiB  
Article
Trade-Off and Coordination between Development and Ecological Protection of Urban Agglomerations along Rivers: A Case Study of Urban Agglomerations in the Shandong Section of the Lower Yellow River
by Anbei Liu, Tingting Yan, Shengxiang Shi, Weijun Zhao, Sihang Ke and Fangshu Zhang
Land 2024, 13(9), 1368; https://doi.org/10.3390/land13091368 - 26 Aug 2024
Cited by 1 | Viewed by 1025
Abstract
Urban development of clusters situated along rivers significantly affects the health of the river ecosystems, the quality of urban environments, and the overall well-being of local communities. Ecosystem service supply value (ESSV) measures the delivery of ecosystem goods and services within a specific [...] Read more.
Urban development of clusters situated along rivers significantly affects the health of the river ecosystems, the quality of urban environments, and the overall well-being of local communities. Ecosystem service supply value (ESSV) measures the delivery of ecosystem goods and services within a specific timeframe in a particular area. Using the lower Yellow River urban agglomeration (Shandong section) as a case, we comprehensively applied land use structure and intensity change analysis, quantitative calculation of ESS, and geographical probe methods to unveil ESS and its mechanism of response to the spatio-temporal evolution of the intensity of land use in urban agglomeration along the river. The key results were as follows: (1) Over the past two decades, farmland and construction land areas have continued to decrease and increase, respectively, with the intensity of land use change being highest from 2005 to 2010. (2) ESS has continued to rise over the past 20 years, with the income in 2020 being 11.142 billion yuan, an increase of 31.13%. The “low-value areas” are mainly concentrated in Liaocheng City, Dezhou City, and Tai’an City, which are characterized by predominantly flat terrains where farmland constitutes the principal land use type. Conversely, “high-value areas” are largely in the counties bordering the Yellow River, including the upper estuary in the north and the rugged, southeastern terrains. (3) Areas with concentrated ESSV were primarily localized in the northern estuary area and along the Yellow River in a scattered point-like pattern. The spatial distribution of hotspots has become increasingly concentrated, transitioning from points to planes. Conversely, cold spots initially increased in number before subsequently decreasing. Waterbody was the most sensitive ESSV-determining factor. (4) The spatial heterogeneity of ESSV emerges as a consequence of the interaction of multiple factors, and among these interactions, those involving NDVI and POP contain the greatest explanatory power. Our findings are expected to offer a scientific foundation for optimizing land spatial patterns and enhancing ecological management in the lower Yellow River region. Full article
Show Figures

Figure 1

15 pages, 19280 KiB  
Article
Comparing the Environmental Influences and Community Assembly of Protist Communities in Two Anthropogenic Coastal Areas
by Wenwen Qiao, Hongbo Li, Jinyong Zhang, Xiaohan Liu, Ruofei Jin and Hongjun Li
Microorganisms 2024, 12(8), 1618; https://doi.org/10.3390/microorganisms12081618 - 8 Aug 2024
Cited by 1 | Viewed by 1666
Abstract
Anthropogenic stresses are intensively affecting the structure and function of microbial communities in coastal ecosystems. Despite being essential components of coastal ecosystems, the environmental influences and assembly processes of protist communities remain largely unknown in areas with severe disturbance. Here, we used 18S [...] Read more.
Anthropogenic stresses are intensively affecting the structure and function of microbial communities in coastal ecosystems. Despite being essential components of coastal ecosystems, the environmental influences and assembly processes of protist communities remain largely unknown in areas with severe disturbance. Here, we used 18S rRNA gene high-throughput sequencing to compare the composition, assembly process, and functional structure of the protist communities from the coastal areas of the Northern Yellow Sea (NYS) and the Eastern Bohai Sea (EBS). These two areas are separated by the Liaodong Peninsula and experience different anthropogenic stresses due to varying degrees of urbanization. We detected significant differences between the protist communities of the two areas. Environmental and geographic factors both influenced the composition of protist communities, with environmental factors playing a greater role. The neutral community model indicated that the assembly of protist communities was governed by deterministic processes, with stochastic processes having a stronger influence in the EBS area compared to the NYS area. The phototrophic and consumer communities, influenced by different environmental factors, differed significantly between the two areas. Our results provide insights into the biogeography and assembly of protist communities in estuaries under anthropogenic stresses, which may inform future coastal management. Full article
(This article belongs to the Special Issue Microbial Community Structure in Marine and Coastal Sediments)
Show Figures

Figure 1

18 pages, 3370 KiB  
Article
Phytoplankton Diversity, Spatial Patterns, and Photosynthetic Characteristics Under Environmental Gradients and Anthropogenic Influence in the Pearl River Estuary
by Jing Xia, Haojie Hu, Xiu Gao, Jinjun Kan, Yonghui Gao and Ji Li
Biology 2024, 13(7), 550; https://doi.org/10.3390/biology13070550 - 22 Jul 2024
Cited by 7 | Viewed by 3239
Abstract
The Pearl River Estuary (PRE) is one of the world’s most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities’ dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm [...] Read more.
The Pearl River Estuary (PRE) is one of the world’s most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities’ dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm) of phytoplankton in different salinity habitats of PRE (oceanic, estuarine, and freshwater zones) was studied, revealing a complex correlation with the environment. Fv/Fm of phytoplankton ranged from 0.16 to 0.45, with taxa in the upper Lingdingyang found to be more stressed. Community composition and structure were analyzed using 18S rRNA, accompanied by a pigment analysis utilized as a supplementary method. Nonmetric multidimensional scaling analysis indicated differences in the phytoplankton spatial distribution along the estuarine gradients. Specificity-occupancy plots identified different specialist taxa for each salinity habitat. Dinophyta and Haptophyta were the predominant taxa in oceanic areas, while Chlorophyta and Cryptophyta dominated freshwater. Bacillariophyta prevailed across all salinity gradients. Canonical correlation analysis and Mantel tests revealed that temperature, salinity, and elevated nutrient levels (i.e., NO3-N, PO43−-P, and SiO32−-Si) associated with anthropogenic activities significantly influenced the heterogeneity of community structure. The spatial distribution of phytoplankton, along with in situ photosynthetic characteristics, serves as a foundational basis to access estuarine primary productivity, as well as community function and ecosystem health. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

14 pages, 7036 KiB  
Article
Analysis of Land Use Changes in the Sado Estuary (Portugal) from the 19th to the 21st Century, Based on Historical Maps, Fieldwork, and Remote Sensing
by Neise Mare de Souza Alves, Nuno Pimentel, Débora Barbosa da Silva, Miguel Inácio, Ana Graça Cunha and Maria da Conceição Freitas
Sustainability 2024, 16(13), 5798; https://doi.org/10.3390/su16135798 - 8 Jul 2024
Viewed by 1645
Abstract
This study analyses land use changes in the Sado Estuary (West-Central Portugal) based on a multi-temporal analysis of 19th century cartographic data and 21st century remote sensing land use maps, updated by fieldwork. A GIS plot of land use evolution is summarized in [...] Read more.
This study analyses land use changes in the Sado Estuary (West-Central Portugal) based on a multi-temporal analysis of 19th century cartographic data and 21st century remote sensing land use maps, updated by fieldwork. A GIS plot of land use evolution is summarized in a quantitative table. The comparison shows the changes in land use, with increasing occupation by human economic activities, including extensive agriculture and forestry, as well as localized urbanization and industrialization. The main elements of the landscape impacted by anthropogenic uses were (i) hydrography—river dams affected the flow dynamics and sedimentary processes in the estuary; (ii) vegetation—increasing agriculture and forestry reduced the area of native vegetation, which is now mostly occupied by vineyards, pine forests and cork oaks; (iii) wetlands—tidal and alluvial plains are being occupied by rice cultivation, aquaculture, industries, and ports; (iv) coastal dunes—new developments are occupying large areas of Holocene coastal dunes; and (v) natural environment—mining and dredging have affected some habitats and biodiversity. This analysis is intended to help the territorial organization of present and future economic activities, as well as to reduce environmental and social problems, thus promoting the long-term sustainability of this rapidly evolving region. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

Back to TopTop