Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = urban droughts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2662 KB  
Article
Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile
by Javier A. Figueroa, Rosa Chandía-Jaure, Andrés Cataldo-Cunich, Sergio Cárdenas Muñoz and Francisca Fernández Cano
Plants 2025, 14(19), 3025; https://doi.org/10.3390/plants14193025 - 30 Sep 2025
Abstract
In Santiago, Chile, urban plants are highly vulnerable to drought or climate change. We hypothesize that would find high growth and survival rates in conditions of water scarcity among native species of central Chile. The goal was to determine the effect of the [...] Read more.
In Santiago, Chile, urban plants are highly vulnerable to drought or climate change. We hypothesize that would find high growth and survival rates in conditions of water scarcity among native species of central Chile. The goal was to determine the effect of the year season and an irrigation gradient on the survival and growth of native plant, in order to evaluate potential plant for use in urban green areas of central Chile. Four plots of 20 m2 were located in the Santiago center. In June 2024 twelve species were planted and from November 2024 to March 2025 were irrigated with 13.3, 10.1, 1.7 and 1.4 L/m2/day. The GLM and Kaplan–Meier survival analyses were used. Shoot growth rate was highly variable among species, among irrigation treatments applied, and among year seasons. Eight species showed water-related growth and shoot growth during the winter was very small and higher in spring. Two species showed evidence of water-related survival; in the other 10 species, no significant differences were found between irrigation treatments. Winter was the season with the highest survival rates for eleven species. In conclusion, the results suggest that native plants can achieve high survival rates with limited irrigation. This highlights their potential for use in the urban area in Mediterranean-type climates where rainfall is expected to be low due to climate change. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

21 pages, 10177 KB  
Article
Postcolonial Resilience in Casablanca: Colonial Legacies and Climate Vulnerability
by Pelin Bolca
Sustainability 2025, 17(19), 8656; https://doi.org/10.3390/su17198656 - 26 Sep 2025
Abstract
Casablanca, Morocco’s largest Atlantic port city, faces increasing exposure to floods, drought, and other risks that align with legacies of urban transformations carried out during the colonial period. This study examines how early-20th-century interventions—including the canalization and burial of the Oued Bouskoura, extensive [...] Read more.
Casablanca, Morocco’s largest Atlantic port city, faces increasing exposure to floods, drought, and other risks that align with legacies of urban transformations carried out during the colonial period. This study examines how early-20th-century interventions—including the canalization and burial of the Oued Bouskoura, extensive coastal reclamation, and the implementation of rigid zoning—were associated with a reconfiguration of the city’s hydrology and coincide with persistent socio-spatial inequalities. Using historical cartography, archival sources, and GIS-based overlays of colonial-era plans with contemporary hazard maps, the analysis reveals an indicative spatial correlation between today’s high-risk zones and areas transformed under the Protectorate, with the medina emerging as one of the most vulnerable districts. While previous studies have examined either colonial planning in architectural or contemporary climate risks through technical and governance lenses, this article illuminates historically conditioned relationships and long-term associations for urban resilience. In doing so, it empirically maps spatial associations and conceptually argues for reframing heritage not only as cultural memory but as a climate resource, illustrating how suppressed vernacular systems may inform adaptation strategies. This interdisciplinary approach provides a novel contribution to postcolonial city research, climate adaptation and heritage studies by proposing a historically conscious framework for resilience planning. Full article
Show Figures

Figure 1

21 pages, 5218 KB  
Article
Spatiotemporal Dynamics and Drivers of Wetland Change on Chongming Island (2000–2020) Using Deep Learning and Remote Sensing
by An Yi, Yang Yu, Hua Fang, Jiajun Feng and Jinlin Ji
J. Mar. Sci. Eng. 2025, 13(10), 1837; https://doi.org/10.3390/jmse13101837 - 23 Sep 2025
Viewed by 140
Abstract
Using Landsat series imagery and the deep learning model CITNet, this study conducted high-accuracy classification and spatiotemporal change analysis of wetlands on Chongming Island from 2000–2020 and explored the driving mechanisms by integrating climatic and anthropogenic factors. The results demonstrate that the total [...] Read more.
Using Landsat series imagery and the deep learning model CITNet, this study conducted high-accuracy classification and spatiotemporal change analysis of wetlands on Chongming Island from 2000–2020 and explored the driving mechanisms by integrating climatic and anthropogenic factors. The results demonstrate that the total wetland area decreased by approximately 125.5 km2 over the two decades. Among natural wetlands, tidal mudflats and shallow seawater zones continuously shrank, while herbaceous marshes exhibited a “decline recovery” trajectory. Artificial wetlands expanded before 2005 but contracted significantly thereafter, mainly due to aquaculture pond reduction. Wetland transformation was dominated by wetland-to-non-wetland conversions, peaking during 2005–2010. Driving factor analysis revealed a “human pressure dominated, climate modulated” pattern: nighttime light index (NTL) and GDP demonstrated strong negative correlations with wetland extent, while minimum temperature and the Palmer Drought Severity Index (PDSI) promoted herbaceous marsh expansion and accelerated artificial wetland contraction, respectively. The findings indicate that wetland changes on Chongming Island result from the combined effects of policy, economic growth, and ecological processes. Sustainable management should focus on restricting urban expansion in ecologically sensitive zones, optimizing water resource allocation under drought conditions, and incorporating climate adaptation and invasive species control into restoration programs to maintain both the extent and ecological quality of wetlands. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 1517 KB  
Article
Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment
by María Isabel Vásquez, Flavio Moreno, Néstor Orozco Suárez, Krafft H. Saldarriaga and Lucas Cifuentes
Forests 2025, 16(9), 1493; https://doi.org/10.3390/f16091493 - 20 Sep 2025
Viewed by 268
Abstract
Despite the progress to understand drought tolerance worldwide, the response of urban trees to the increased frequency and severity of droughts, particularly in tropical regions, remains unclear. Such an evaluation is essential for predicting future urban forest dynamics. The leaf turgor loss point [...] Read more.
Despite the progress to understand drought tolerance worldwide, the response of urban trees to the increased frequency and severity of droughts, particularly in tropical regions, remains unclear. Such an evaluation is essential for predicting future urban forest dynamics. The leaf turgor loss point (πTLP), leaf safety margins (SMs) and their relationship with functional traits were measured in ten native tree species during wet and dry seasons in a tropical urban environment. We detected interspecific variation in tree responses related to desiccation tolerance and desiccation avoidance as strategies to resist drought. Desiccation avoidance was linked to lower adjustment of midday water potentials and water-conservative traits such as high wood density, low specific leaf area (SLA), and high leaf dry matter content, while species with more negative πTLP maintained stomatal conductance and growth despite decreasing leaf water potentials. Although the differences between predawn and midday potentials during the dry season suggest that severe drought does not occur, some species showed negative safety margins. This indicates that while some urban trees can tolerate or avoid current dry periods, continued climate change may push certain species beyond their safe operating range, making species selection for urban planning increasingly critical. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

31 pages, 16858 KB  
Article
Modeling the Hydrological Regime of Litani River Basin in Lebanon for the Period 2009–2019 and Assessment of Climate Change Impacts Under RCP Scenarios
by Georgio Kallas, Salim Kattar and Guillermo Palacios-Rodríguez
Forests 2025, 16(9), 1461; https://doi.org/10.3390/f16091461 - 13 Sep 2025
Viewed by 418
Abstract
This study investigates the combined impact of climate change and land use changes on water resources and soil conditions in the Litani River Basin (LRB) in Lebanon. The Mediterranean region, including the LRB, is highly vulnerable to climate change. This study utilizes the [...] Read more.
This study investigates the combined impact of climate change and land use changes on water resources and soil conditions in the Litani River Basin (LRB) in Lebanon. The Mediterranean region, including the LRB, is highly vulnerable to climate change. This study utilizes the WiMMed (Water Integrated Management for Mediterranean Watersheds) model to assess hydrological variables such as infiltration, runoff, and soil moisture for the years 2009, 2014, and 2019. It considers 2019 climate conditions to project the 2040 scenarios for Representative Concentration Pathways (RCPs) 2.6 and 8.5, incorporating the unique characteristics of the Mediterranean watershed. Results indicate a concerning trend of declining infiltration, runoff, and soil moisture, particularly under the more severe RCP 8.5 scenario, with the most significant reductions occurring during summer. Land use changes, such as deforestation and urban expansion, are identified as key contributors to reduced infiltration and increased runoff. This study highlights the critical role of soil moisture in crop productivity and ecosystem health, showing how land cover changes and climate change intensify these effects. Soil moisture is highly sensitive to precipitation variations, with a 20% reduction in precipitation and a 5 °C temperature increase leading to substantial decreases in soil moisture. These findings highlight the urgent need for sustainable land management practices and climate mitigation strategies in the Litani River Basin (LRB) and similar Mediterranean watersheds. Protecting forests, implementing soil conservation measures, and promoting responsible urban development are crucial steps to maintain water resources and soil quality. Furthermore, this research offers valuable insights for policymakers, farmers, and environmentalists to prepare for potential droughts or flooding events, contributing to the preservation of this vital ecosystem. The data from this study, along with the recommended actions, can play a crucial role in fostering resilience at the national level, addressing the challenges posed by climate change. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

28 pages, 6020 KB  
Article
Drought Propagation and Risk Assessment in the Naoli River Basin Based on the SWAT-PLUS Model and Copula Functions
by Tao Liu, Zhenjiang Si, Yusu Zhao, Jing Wang, Yan Liu and Longfei Wang
Sustainability 2025, 17(18), 8219; https://doi.org/10.3390/su17188219 - 12 Sep 2025
Viewed by 387
Abstract
With the intensification of global climate change, extreme weather events increasingly threaten water resources and agricultural systems. This study focuses on the Naoli River Basin, employing the Standardized Precipitation Actual Evapotranspiration Index (SPAEI), the Standardized Runoff Index (SRI), and the Standardized Surface Moisture [...] Read more.
With the intensification of global climate change, extreme weather events increasingly threaten water resources and agricultural systems. This study focuses on the Naoli River Basin, employing the Standardized Precipitation Actual Evapotranspiration Index (SPAEI), the Standardized Runoff Index (SRI), and the Standardized Surface Moisture Index (SSMI) to assess the spatiotemporal variability of meteorological, hydrological, and agricultural droughts. Drought events are identified based on travel time theory, and joint distributions of drought characteristics are modeled using optimized two- and three-dimensional copula functions. Lagged correlation and Bayesian conditional probability analyses are used to explore drought propagation processes. Key findings include (1) the SWAT model showed strong runoff simulation performance (R2 > 0.75, NSE > 0.97), while the PLUS model achieved high land use simulation accuracy (overall accuracy > 0.93, Kappa > 0.85); (2) future projections suggest continued forest expansion and farmland decline, with water areas increasing under SSP245 and urban areas expanding under SSP585; (3) five CMIP6 models with high skill (r = 0.80, RMSE = 26.15) were selected via a Taylor diagram for scenario simulation; (4) copula-based joint drought probabilities vary temporally, with meteorological drought risks increasing under long-term moderate-emission scenarios, while hydrological and agricultural droughts show contrasting trends; (5) and under extreme meteorological drought, the conditional probability of extreme agricultural drought doubles from 0.12 (SSP245) to 0.24 (SSP585), indicating heightened vulnerability under high-emission pathways. These results offer critical insights for regional drought risk assessment and adaptive management under future climate scenarios. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

21 pages, 8044 KB  
Article
Synergistic Interactions Between Leaf Traits and Photosynthetic Performance in Young Pinus tabuliformis and Robinia pseudoacacia Trees Under Drought and Shade
by Xinbing Yang, Chang Liu, Shaoning Li, Xiaotian Xu, Bin Li, Meng Tian, Shaowei Lu and Na Zhao
Plants 2025, 14(18), 2825; https://doi.org/10.3390/plants14182825 - 10 Sep 2025
Viewed by 403
Abstract
Spring droughts, increasingly coinciding with canopy shade, interactively stress the growth of urban tree species and are poorly understood in Beijing. Three-year-old saplings of Pinus tabuliformis and Robinia pseudoacacia were subjected to comparative analysis under four drought–shade sequences, with a full-light, well-watered treatment [...] Read more.
Spring droughts, increasingly coinciding with canopy shade, interactively stress the growth of urban tree species and are poorly understood in Beijing. Three-year-old saplings of Pinus tabuliformis and Robinia pseudoacacia were subjected to comparative analysis under four drought–shade sequences, with a full-light, well-watered treatment serving as the control. During two periods encompassing the drought to wilting point and subsequent rewatering, we assessed leaf morphology, water status, photosynthetic gas exchange, and chlorophyll fluorescence. Both species exhibited losses in leaf water and carbon assimilation under drought, yet their adaptive strategies substantially differed. P. tabuliformis conserved water through the stable leaf anatomy and conservative stomatal control. In particular, P. tabuliformis under full-light and drought conditions decreased their specific leaf area (SLA) by 23%, as well as showing reductions in stomatal conductance (Gs) and transpiration rate (Tr) along with the drought duration (p < 0.01). As the duration of post-drought rewatering increased, the reductions in the net photosynthetic rates (Pn) of P. tabulaeformis showed that the shade condition intensified its photosynthetic limitation and slowed recovery after drought. Under low-light drought, R. pseudoacacia exhibited a 52% increase in SLA and a 77% decline in Gs; the latter was markedly smaller than the reduction observed under full-light drought. After rewatering, Gs displayed an overcompensation response. The rise in specific leaf area and the greater flexibility of stomatal regulation partly offset the adverse effects of drought. Nevertheless, post-drought Pn recovered to only 40%, significantly lower than the 61% recovery under full-light drought. Moreover, the negative correlation between SLA and Pn became significantly stronger, indicating that the “after-effects” of shade–drought hindered photosynthetic recovery once the stress was relieved. Drought duration eroded the phenotypic performance in both species, while the light environment during drought and subsequent rehydration determined the time trajectory and completeness of recovery. These results validate a trade-off between shade mitigation and drought legacy, and guide species selection: plant shade-tolerant R. pseudoacacia in light-limited urban pockets and reserve sun-dependent P. tabuliformis for open, high-light sites to enhance drought resilience of Beijing’s urban forests. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology (3rd Edition))
Show Figures

Graphical abstract

22 pages, 2560 KB  
Article
Challenging the Norm of Lawns in Public Urban Green Space: Insights from Expert Designers, Turf Growers and Managers
by Maria Ignatieva, Michael Hughes, Fahimeh Mofrad and Agata Cabanek
Land 2025, 14(9), 1814; https://doi.org/10.3390/land14091814 - 5 Sep 2025
Viewed by 531
Abstract
Lawns have evolved from medieval European grasslands into globally accepted urban green surfaces, serving recreational, aesthetic and cultural purposes. Today lawn surfaces are essential components of public urban green space (PUGS), fulfilling ecosystem services such as urban heat mitigation, carbon sequestration and social [...] Read more.
Lawns have evolved from medieval European grasslands into globally accepted urban green surfaces, serving recreational, aesthetic and cultural purposes. Today lawn surfaces are essential components of public urban green space (PUGS), fulfilling ecosystem services such as urban heat mitigation, carbon sequestration and social well-being. However, their ecological and resource-intensive disservices, particularly in dry climates, have prompted growing concerns among environmental scientists, urban planners and landscape designers. In water-scarce regions like Perth, Western Australia, traditional lawns face increasing scrutiny due to their high irrigation demands and limited ecological diversity. This study contributed to the transdisciplinary LAWN as Cultural and Ecological Phenomenon project, focusing on the perspectives of professionals, landscape architects, park managers, turf producers and researchers responsible for the planning, design and management of urban lawn in PUGS. Using qualitative methods (semi-structured in-depth interviews), the research explores expert insights on the values, challenges and future trajectories of lawn use in a warming, drying climate. The interviews included 21 participants. Findings indicate that while professionals acknowledge lawns’ continued relevance for sports and active recreation, water scarcity is a major concern influencing design and species selection. Alternatives such as drought-tolerant plants, hard landscaping and multifunctional green spaces are increasingly considered for non-sporting areas. Despite growing concerns, the ideal lawn is still envisioned as an expansive, green, soft surface, mirroring entrenched public preferences. This study underscores the need to balance environmental sustainability with public preference and cultural expectations of green lawns. Balancing expert insights with public attitudes is vital for developing adaptive, water-conscious landscape design strategies suited to future urban planning and environmental conditions in Mediterranean climates. Full article
Show Figures

Figure 1

19 pages, 2638 KB  
Article
Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project
by Jian Qi, Fengshou Yan, Qingqing Tian, Chaoqiang Yang, Yu Tian, Xin Li, Lei Guo, Qianfang Ma and Yunfei Ma
Water 2025, 17(17), 2618; https://doi.org/10.3390/w17172618 - 4 Sep 2025
Viewed by 972
Abstract
The construction of the Xinyang Urban Water Supply Project, centered on the Chushandian Reservoir, required a thorough investigation of high–low runoff encounters between the water source and receiving areas to optimize water allocation and operational scheduling. Based on the hydrological stations at Changtaiguan [...] Read more.
The construction of the Xinyang Urban Water Supply Project, centered on the Chushandian Reservoir, required a thorough investigation of high–low runoff encounters between the water source and receiving areas to optimize water allocation and operational scheduling. Based on the hydrological stations at Changtaiguan (CTG) on the main stream of the Huaihe River (HR) in the water source area and Miaowan (MW) on the main stream of the Honghe River in the receiving area, the trends and abrupt change characteristics of monthly runoff from 2014 to 2024 were analyzed using methods such as extremum symmetry mode decomposition (ESMD) and heuristic segmentation, with spatial encounter patterns determined using Copula functions. The results indicate that (1) the runoff in the water source area showed a quasi-6.05-month periodic characteristic on a monthly scale, while the runoff in the receiving area exhibited a quasi-6.72-month periodic characteristic on a monthly scale; (2) the water source area experienced runoff mutation in August 2015 (extreme drought) and June 2024 (extreme precipitation), with the receiving area responding 7 months earlier than the water source area, revealing differences in system vulnerability; (3) synchronous hydrological states were significantly more likely to occur (51.2%) compared with asynchronous conditions (25.2%), with the highest probability of “concurrent drought” (19.8%) and a high-risk “normal water source—receiving area drought” combination (14.1%). These findings provide theoretical and technical support for the optimized scheduling of the Chushandian Reservoir, improving the resilience and adaptability of the Xinyang Urban Water Supply Project to climate fluctuations and extreme hydrological events. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

27 pages, 17296 KB  
Article
Submicron Particles and Micrometeorology in Highly Densified Urban Environments: Heavy-Tailed Probability Study
by Patricio Pacheco Hernández, Eduardo Mera Garrido, Gustavo Navarro Ahumada, Javier Wachter Chamblas and Steicy Polo Pizan
Atmosphere 2025, 16(9), 1044; https://doi.org/10.3390/atmos16091044 - 2 Sep 2025
Viewed by 423
Abstract
Submicron particles (SPs), with diameters less than 1.0 μm, are a serious health risk, and urban meteorology variables (MVs), impacted by human activity, can support their sustainability. This study, in a city immersed in a basin geomorphology, is carried out during the summer [...] Read more.
Submicron particles (SPs), with diameters less than 1.0 μm, are a serious health risk, and urban meteorology variables (MVs), impacted by human activity, can support their sustainability. This study, in a city immersed in a basin geomorphology, is carried out during the summer period of high temperatures and variable relative humidity. An area of high urban density was selected, with the presence of high-rise buildings, urban canyons that favor heat islands, low forestation, intense vehicular traffic, and extreme conditions for MVs. Hourly measurements, in the form of time series, record the number of SPs (for diameters of 0.3, 0.5, and 1.0 μm) along with MVs (temperature (T), relative humidity (RH), and wind speed magnitude (WS)). The objective is to verify whether MVs (RH, T) promote the sustainability of SPs. For this purpose, Spearman’s analysis and a heavy-tailed probability function were used. The central tendency probability, a Gaussian distribution, was discarded since its probability does not discriminate extreme events. Spearman’s analysis yielded significant p-values and correlations between PM10, PM5.0, PM2.5, and SPs. However, this was not the case between MVs and SPs. By applying a heavy-tailed probability analysis to extreme events, the results show that MVs such as T and RH act in ways that can favor the accumulation and persistence of SP concentrations. This tendency could have been exacerbated during the measurement period by heat waves and a geographical environment under the influence of a prolonged drought resulting from climate change and global warming. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

22 pages, 2700 KB  
Article
Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities
by Vidjinnagni Vinasse Ametooyona Azagoun, Kossi Komi, Djigbo Félicien Badou, Expédit Wilfrid Vissin and Komi Selom Klassou
Geographies 2025, 5(3), 46; https://doi.org/10.3390/geographies5030046 - 2 Sep 2025
Viewed by 565
Abstract
Market gardening plays a crucial role in ensuring food security and reducing poverty in Africa’s rapidly urbanizing regions. However, urban agricultural systems are increasingly threatened by climatic shocks such as floods, droughts, and heat waves. This study uses an integrated approach to analyze [...] Read more.
Market gardening plays a crucial role in ensuring food security and reducing poverty in Africa’s rapidly urbanizing regions. However, urban agricultural systems are increasingly threatened by climatic shocks such as floods, droughts, and heat waves. This study uses an integrated approach to analyze the multidimensional factors of climatic vulnerability among urban market gardeners in the Grand Nokoué region of Benin. Based on socio–economic, technico–agronomic, and perceptual data collected from 369 growers, multiple correspondence analysis (MCA) coupled with ascending hierarchical analysis (AHA) was performed to identify vulnerability profiles. K–means partitioning was used to confirm the optimal number of groups, thereby guaranteeing the robustness and internal consistency of the typology. Three distinct vulnerability groups were identified, each characterized by specific socioeconomic, technical, and territorial characteristics, as well as varying exposure to the risks of flooding, drought, and dry spells. The results show that the most vulnerable farmers tend to be young women with low incomes, limited access to land, and a reliance on manual irrigation in flood–prone areas. These findings emphasize the uneven distribution of adaptive capacities and the pressing requirement for tailored public policies to enhance resilience, especially among small–scale, low–income, and land–insecure urban farmers, who are vulnerable to various climate–related risks. Full article
Show Figures

Figure 1

34 pages, 1136 KB  
Perspective
Biodiversity Conservation, a Crucial Step Towards Food and Nutritional Security, Food Justice and Climate Change Resilience in Africa
by Olufunke Omowumi Fajinmi, Tafadzwanashe Mabhaudhi and Johannes Van Staden
Plants 2025, 14(17), 2649; https://doi.org/10.3390/plants14172649 - 26 Aug 2025
Viewed by 1057
Abstract
Biodiversity conservation has been identified as an important climate change mitigation tool. Healthy ecosystems act as natural carbon sinks while also strengthening resilience, making them essential for climate change adaptation. Climate change effects have led to various negative impacts, including biodiversity loss and [...] Read more.
Biodiversity conservation has been identified as an important climate change mitigation tool. Healthy ecosystems act as natural carbon sinks while also strengthening resilience, making them essential for climate change adaptation. Climate change effects have led to various negative impacts, including biodiversity loss and food insecurity. The loss of forest biodiversity threatens vital wild fruits and vegetables that sustain rural communities, disrupting natural food sources and constituting a form of social injustice for poor, vulnerable, and previously marginalised groups in rural and semi-urban communities. Therefore, this study aimed to investigate the relationship between previous biodiversity conservation outcomes, ecosystem services, highly utilised wild vegetables and fruits, food and nutritional security, climate change effects, and climate resilience. We identified gaps in African biodiversity conservation and developed a conceptual framework to highlight integral principles required for the effective biodiversity conservation of wild forests in Africa. The integral principles are active community engagement, a strong network of stakeholders, sustainable plant resources management practices, legal reforms, and the creation of awareness through various platforms. Conservation policies should prioritise African indigenous wild, drought-tolerant vegetables and fruits that serve as an interface between food and medicine; play various roles in human survival in the form of ecosystem services; and act as carbon sinks to ensure a food-secure future with reduced climate change effects. The African indigenous community’s efforts in biodiversity conservation engagements are key to successful outcomes. Full article
Show Figures

Figure 1

14 pages, 3302 KB  
Article
Analysis of Coupled Response Characteristics of NAI Release and Stem Flow in Four Urban Greening Tree Species in Beijing During Drought Stress and Recovery Processes
by Xueqiang Liu, Bin Li, Weikang Zhang, Shaowei Lu, Jigui Wu, Jing An, Yaqian Fan, Na Zhao, Xiaotian Xu and Shaoning Li
Plants 2025, 14(17), 2630; https://doi.org/10.3390/plants14172630 - 23 Aug 2025
Viewed by 423
Abstract
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release [...] Read more.
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release of NAI by plants and sap flow in recent years, it is still unclear how the release of NAI by plants changes during drought stress and recovery processes, as well as the coupling effect between the release of NAI by plants and sap flow under drought stress. In this context, four typical green tree species, Robinia pseudoacacia, Quercus variabilis, Pinus tabulaeformis, and Platycladus orientalis, were selected as experimental materials. A drought stress and recovery control experiment was conducted based on OTC. The dynamic data of negative air ion concentration (NAIC) and sap flow rate during the process of drought stress and recovery were monitored to clarify the characteristics and correlations of NAI and sap flow changes in the experimental tree species under drought stress and recovery. The main research results are as follows: (1) At the end of the drought period, the NAI and sap flow in the drought treatment group significantly decreased (p < 0.01), compared with the control group (CK), and the reduction rate of sap flow (77.73 ± 4.96%) for each tree species was higher than that of NAI (47.78% ± 4.96%). (2) At 1 day after rehydration, the recovery amplitudes of NAI and sap flow for all tree species were the greatest; at 7 days after rehydration, the NAI and sap flow of the drought treatment group recovered to the levels of the control group (p > 0.05). (3) During different stages of drought rehydration, the response degree of NAI to sap flow varied. The study found that in the drought-rehydration stage, the correlation between the NAI released by each tree species and sap flow was the lowest at the drought endpoint. In conclusion, this research clarifies the changing patterns of plant NAI release and sap flow during drought-rehydration, as well as the response changes of NAI to sap flow. It provides a theoretical basis for selecting drought-tolerant tree species in arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 9308 KB  
Article
Profiling Climate Risk Patterns of Urban Trees in Wuhan: Interspecific Variation and Species’ Trait Determinants
by Wenli Zhu, Ming Zhang, Li Zhang, Siqi Wang, Lu Zhou, Xiaoyi Xing and Song Li
Forests 2025, 16(8), 1358; https://doi.org/10.3390/f16081358 - 21 Aug 2025
Viewed by 552
Abstract
Climate change poses significant threats to urban tree health and survival worldwide. This study evaluates climate suitability risks for 12 common tree species in Wuhan, a Chinese metropolis facing escalating climate challenges. We analyzed risk dynamics and interspecific variations across three periods, the [...] Read more.
Climate change poses significant threats to urban tree health and survival worldwide. This study evaluates climate suitability risks for 12 common tree species in Wuhan, a Chinese metropolis facing escalating climate challenges. We analyzed risk dynamics and interspecific variations across three periods, the baseline (1981–2022), near future (2023–2050), and distant future (2051–2100), quantifying climate risk as differences between local climate conditions and species’ climatic niches. We further examined how species’ geographic distribution and functional traits influence these climate risks. The results revealed significant warming trends in Wuhan during the baseline period (p < 0.05), with projected increases in temperature and precipitation under future scenarios (p < 0.05). The most prominent risk factors included the precipitation of the driest month (PDM), annual mean temperature (AMT), and maximum temperature of the warmest month (MTWM), indicating intensifying drought–heat stress in this region. Among the studied species, Cedrus deodara (Roxb.) G. Don, Platanus acerifolia (Aiton) Willd., Metasequoia glyptostroboides Hu & W.C.Cheng, and Ginkgo biloba L. faced significantly higher hydrothermal risks (p < 0.05), whereas Koelreuteria bipinnata Franch. and Osmanthus fragrans (Thunb.) Lour. exhibited lower current risks but notable future risk increases (p < 0.05). Regarding the factors driving these interspecific variation patterns, the latitude of species’ distribution centroids showed significant negative correlations with the risk values of the minimum temperature of the coldest month (MTCM) (p < 0.05). Among functional traits, the wood density (WD) and xylem vulnerability threshold (P50) were negatively correlated with precipitation-related risks (p < 0.05), while the leaf dry matter content (LDMC) and specific leaf area (SLA) were positively associated with temperature-related risks (p < 0.05). These findings provide scientific foundations for developing climate-adaptive species selection and management strategies that enhance urban forest resilience under climate change in central China. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

27 pages, 2444 KB  
Article
Adaptive Response of Petunia × hybrida Plants to Water-Scarce Urban Substrates
by Milica Grubač, Tijana Narandžić, Magdalena Pušić Devai, Jovana Ostojić, Sandra Bijelić, Jelena Čukanović, Anastasija Vujović and Mirjana Ljubojević
Urban Sci. 2025, 9(8), 325; https://doi.org/10.3390/urbansci9080325 - 18 Aug 2025
Viewed by 949
Abstract
The use of hydrogel and biostimulants holds great potential for plants’ adaptation to stressful urban conditions, increasing their tolerance to drought stress. In this study, we investigated the plant performance and anatomical response of Petunia × hybrida hort. ex E. Wilm., cultivated under [...] Read more.
The use of hydrogel and biostimulants holds great potential for plants’ adaptation to stressful urban conditions, increasing their tolerance to drought stress. In this study, we investigated the plant performance and anatomical response of Petunia × hybrida hort. ex E. Wilm., cultivated under different substrate volumes and compositions, hydrogel amendments, and biostimulant treatments, as well as their interactions under drought stress. Namely, the plants were planted in pots with a substrate depth of 7 cm and 10 cm and cultivated under different combinations of organic (peat) and inorganic (perlite) substrates. Moreover, half of the plants were subjected to hydrogel and biostimulant treatments. Different watering intervals (24–96 h) were applied in combination with exposing the plants to direct sunlight for 8–10 h. The results showed that a larger substrate depth, along with hydrogel and biostimulant amendments in a mixture of perlite and peat, helps plants adapt to dry conditions when grown in shallow substrates, providing optimal water availability and thus contributing to the physiological adaptation of plants to water deficit. The study clearly demonstrates that substrate selection and irrigation frequency must be jointly optimized to ensure resilient urban greening. Hydrogels stand out as essential amendments, enabling significant water savings by extending irrigation intervals without compromising vascular growth or drought resilience. These water-efficient substrate strategies are vital for sustainable urban vegetation management, especially as cities face increasing environmental pressures and the imperative of climate adaptation, thereby supporting multiple Sustainable Development Goals. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

Back to TopTop