Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methodology
2.3.1. Extremum Symmetry Mode Decomposition
2.3.2. Heuristic Segmentation Algorithm
2.3.3. Copula Function
3. Results
3.1. Periodic and Trend Characteristics of Runoff
3.1.1. Temporal Evolution Characteristics of Runoff in the Water Source Area
3.1.2. Temporal Evolution Characteristics of Runoff in the Water Receiving Area
3.2. Mutation Characteristics of Runoff
3.3. Analysis of the Characteristics of High–Low Runoff Encounters
3.3.1. Marginal Distribution Functions in the Water Source and Receiving Areas
3.3.2. Copula Functions in the Water Source and Receiving Areas
3.3.3. Probability Analysis of High–Low Runoff Encounters
4. Discussion
5. Conclusions
- (1)
- Periodic Patterns: The runoff in the water source area was controlled by the East Asian monsoon, showing a quasi-6.05-month periodicity at the monthly scale and a quasi-12.10-month periodicity at the interannual scale. In the receiving area, due to the regulation effect of the underlying surface, the runoff exhibited a quasi-6.72-month periodicity at the monthly scale and a quasi-20.17-month periodicity at the interannual scale. This difference requires the engineering scheduling to account for the regional hydrological response lag effect (approximately 2–3 months).
- (2)
- Mutation Characteristics: The 2015 drought event caused a 40% reduction in the runoff of the water source area. In the receiving area, due to the small reservoir capacity (only 2660 km2 of catchment area), the abrupt change occurred 7 months earlier, highlighting the vulnerability of the tributary system. The 2024 abrupt change, which increased in magnitude, is associated with extreme precipitation of 350 mm, suggesting that future responses to sudden hydrological events need to be strengthened.
- (3)
- Risk Management: The Gumbel Copula model demonstrated that synchronous hydrological states exhibited higher occurrence probabilities (51.2%) than asynchronous conditions (48.8%), with a distinct frequency hierarchy as follows: co-dry (19.8%) > co-wet (16.5%) > co-normal (14.9%) > source-normal and receiving-dry (14.1%) > source-wet/dry and receiving-normal (9.9%) > source-normal and receiving-wet (6.6%) > source-dry and receiving-wet (5.8%) > source-wet and receiving-dry (2.5%). The analysis conclusions of this study can support the new round of water resource planning and scheduling in Xinyang City.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, P.Y.; Wu, J.H. Water resources and sustainable development. Water 2023, 16, 134. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.L.; Gao, C.; Tang, X. Coupling coordination and driving mechanisms of water resources carrying capacity under the dynamic interaction of the water-social-economic-ecological environment system. Sci. Total Environ. 2024, 920, 171011. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.; Wang, D.; Xu, J.M.; Yu, Y. Study on spatial and temporal differences of water resource sustainable development and its influencing factors in the Yellow River Basin, China. Sustainability 2023, 15, 14316. [Google Scholar] [CrossRef]
- Duan, F.; Wen, S.Y.; Fan, X.N.; Li, J.C.; Zhou, R.; Wu, J.S.; Dong, C.C. Simulation of multi-scale water supply service flow pathways and ecological compensation for urban–rural sustainability: A case study of the Fenhe River Basin. Land 2025, 14, 664. [Google Scholar] [CrossRef]
- Mondal, S.; Mishra, A. Quantifying the precipitation, evapotranspiration, and soil moisture network’s interaction over global land surface hydrological cycle. Water Resour. Res. 2024, 60, e2023WR034861. [Google Scholar] [CrossRef]
- Yu, Y.L.; Fu, J.Y.; Liu, B.J.; Huang, Z.Q.; Tan, X.J. Assessing spatiotemporal variation in dry-wet abrupt alternation using an improved process-based approach. J. Hydrol. Reg. Stud. 2024, 54, 101859. [Google Scholar] [CrossRef]
- Yao, P.P.; Gao, H.Y.; Yu, X.X.; Feng, Y.K.; Wang, Y.K. Analysis of runoff variability and periodicity in the Qinghai Lake Basin. Hydrology 2025, 12, 83. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhao, X.H.; Guo, Q.C.; Wu, X.X. A novel hybrid model by integrating TCN with TVFEMD and permutation entropy for monthly non-stationary runoff prediction. Sci. Rep. 2024, 14, 31699. [Google Scholar] [CrossRef]
- Ma, C.M.; Lu, J.H.; Hao, Y.H.; Zhu, J.F.; Zhao, Z.P.; Hao, H.Q.; Xu, K. Modeling spatial–temporal behavior of precipitation-driven karst spring discharge using a hybrid deep learning model. Hydrology 2025, 655, 132948. [Google Scholar] [CrossRef]
- He, S.N.; Hao, C.Y. Analysis on spatial-temporal variation characteristics of climate in Qinling-Huaihe demarcation zone since 1961. Ecol. Indic. 2024, 158, 111345. [Google Scholar] [CrossRef]
- Xu, D.; Liu, D.Y.; Yan, Z.H.; Ren, S.; Xu, Q. Spatiotemporal variation characteristics of precipitation in the Huaihe River Basin, China, as a result of climate change. Water 2023, 15, 181. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.F.; Zhang, B.Y.; Zhang, C. Drought propagation across meteorological, hydrological and agricultural systems in the Lancang-Mekong River Basin. Hydrol. Process. 2024, 38, e15130. [Google Scholar] [CrossRef]
- Wang, H.X.; Yuan, W.Q.; Yang, H.; Hong, F.T.; Yang, K.F.; Guo, W.X. The ecological–hydrological regime of the Han River basin under changing conditions: The coupled influence of human activities and climate change. Ecohydrology 2024, 17, e2632. [Google Scholar] [CrossRef]
- Ankush; Goel, N.K.; Rajendran, V. Modelling climate change-induced nonstationarity in rainfall extremes: A comprehensive approach for hydrological analysis. Technol. Forecast. Soc. 2024, 208, 123693. [Google Scholar] [CrossRef]
- Qu, B.; Jiang, E.H.; Li, J.Q.; Liu, Y.; Liu, C. Coupling coordination relationship of water resources, eco-environment and socio-economy in the water-receiving area of the Lower Yellow River. Ecol. Indic. 2024, 160, 111766. [Google Scholar] [CrossRef]
- Sun, S.Q.; Lü, Y.H.; Fu, B.J. Relations between physical and ecosystem service flows of freshwater are critical for water resource security in large dryland river basin. Sci. Total Environ. 2023, 857, 159549. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Ganguly, S. A review on the research advances in groundwater–surface water interaction with an overview of the phenomenon. Water 2023, 15, 1552. [Google Scholar] [CrossRef]
- Guo, W.X.; Sang, Y.; Hu, J.W.; Wang, W.P.; Wang, H.X. Characteristics and attribution analysis of runoff and sediment evolution in the Wei River mainstream, China. J. Water Clim. Change 2023, 14, 2432–2447. [Google Scholar] [CrossRef]
- Cui, J.K.; Jian, S.Q. Spatiotemporal Variation of Runoff and Its Influencing Factors in the Yellow River Basin, China. Water 2023, 15, 2058. [Google Scholar] [CrossRef]
- He, Z.H.; Pan, S.; Gu, X.L.; Xu, M.J.; Wang, M.Q. Study on the driving mechanism of lagged effects based on different time scales in a karst drainage basin in South China. Sci. Rep. 2023, 13, 9347. [Google Scholar] [CrossRef]
- Doost, Z.H.; Yaseen, Z.M. Allocation of reservoirs sites for runoff management towards sustainable water resources: Case study of Harirud River Basin, Afghanistan. J. Hydrol. 2024, 634, 131042. [Google Scholar] [CrossRef]
- Biazar, S.M.; Golmohammadi, G.; Nedhunuri, R.R.; Shaghaghi, S.; Mohammadi, K. Artificial intelligence in hydrology: Advancements in soil, water resource management, and sustainable development. Sustainability 2025, 17, 2250. [Google Scholar] [CrossRef]
- Gao, Y.F.; Sahin, A.; Vrugt, J.A. Probabilistic sensitivity analysis with dependent variables: Covariance-based decomposition of hydrologic models. Water Resour. Res. 2023, 59, e2022WR032834. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ilinca, C. Hydrological drought frequency analysis in water management using univariate distributions. Appl. Sci. 2023, 13, 3055. [Google Scholar] [CrossRef]
- Deger, I.H.; Esıt, M.; Yuce, M.I. Univariate and bivariate hydrological drought frequency analysis by copula functions. Water Resour. Manag. 2023, 37, 4881–4907. [Google Scholar] [CrossRef]
- Fu, X.H.; Wang, P.; Cheng, L.; Han, R.; Dong, Z.C.; Li, Z.F. Assessment of future climate change in the Huaihe River Basin using bias-corrected CMIP5 GCMs with consideration of climate non-stationarity. Water 2025, 17, 195. [Google Scholar] [CrossRef]
- Ilinca, C.; Stanca, S.C.; Anghel, C.G. Assessing flood risk: LH-moments method and univariate probability distributions in flood frequency analysis. Water 2023, 15, 3510. [Google Scholar] [CrossRef]
- Pabaghi, Z.; Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Bivariate analysis of extreme precipitation using copula functions in arid and semi-arid regions. Atmosphere 2023, 14, 275. [Google Scholar] [CrossRef]
- Wan, F.; Xiao, L.F.; Chai, Q.H.; Li, L. Study on the streamflow compensation characteristics of reservoirs in Luanhe River Basin based on Copula function. Water Supply 2022, 22, 2311–2321. [Google Scholar] [CrossRef]
- Guan, X.K.; Dong, Z.C.; Luo, Y.; Zhong, D.Y. Multi-objective optimal allocation of river basin water resources under full probability scenarios considering wet–dry encounters: A case study of Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 11652. [Google Scholar] [CrossRef]
- Zhang, C.; Nong, X.Z.; Shao, D.G.; Chen, L.H. An integrated risk assessment framework using information theory-based coupling methods for basin-scale water quality management: A case study in the Danjiangkou Reservoir Basin, China. Sci. Total Environ. 2023, 884, 163731. [Google Scholar] [CrossRef]
- Wang, W.C.; Cheng, Q.; Chau, K.W.; Hu, H.; Zang, H.F.; Xu, D.M. An enhanced monthly runoff time series prediction using extreme learning machine optimized by salp swarm algorithm based on time varying filtering based empirical mode decomposition. J. Hydrol. 2023, 620, 129460. [Google Scholar] [CrossRef]
- Du, M.; Huang, S.Z.; Singh, V.P.; Leng, G.Y.; Huang, Q.; Li, Y.F. Quantifying the effects of direct human activities and climate change on the spatial propagation of hydrological drought in the Yellow River Basin, China. J. Hydrol. 2024, 643, 131931. [Google Scholar] [CrossRef]
- Dos Santos, Y.C.; Pessoa, Z.S. Adaptive capacity management in municipalities in the Semiarid region of Brazil: Application of a composite index. Clim. Risk Manag. 2025, 48, 100696. [Google Scholar] [CrossRef]
- Zarepour Moshizi, M.; Yousefi, A.; Amini, A.M.; Shojaei, P. Rural vulnerability to water scarcity in Iran: An integrative methodology for evaluating exposure, sensitivity and adaptive capacity. GeoJournal 2023, 88, 2121–2136. [Google Scholar] [CrossRef]
- Li, X.Y.; Guo, X.N.; Li, W.Y.; Wang, Y.T.; Dong, J.P.; Wan, X.Y.; Liu, W.F. Optimal dispatching and section water source composition analysis of the South-to-North Water Diversion Eastern Route Project. Water Resour. Prot. 2025, 41, 171–178. (In Chinese) [Google Scholar]
- Yu, H.L.; Yu, B.; Zhang, X.M.; Fan, Y.; Wen, S.; Jiao, S.S. Spatiotemporal evolution of the water system’s structure and its relationship with urban system based on fractal dimension: A case study of the Huaihe River Basin, China. Entropy 2025, 27, 92. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xiao, Y.M.; Wang, K.; Wang, T. A study on the spatial and temporal evolution of multi-year extreme precipitation in the Huaihe River Basin. Theor. Appl. Climatol. 2023, 152, 397–405. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, Z.J. Extreme-point symmetric mode decomposition method for data analysis. Adv. Data Sci. Adapt. 2013, 5, 1350015. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, J.C.; Huang, W.C. Hydrological data projection using empirical mode decomposition: Applications in a changing climate. Water 2024, 16, 2669. [Google Scholar] [CrossRef]
- Qi, J.; Ma, D.Y.; Chen, Z.K.; Tian, Q.Q.; Tian, Y.; He, Z.K.; Ma, Q.F.; Ma, Y.F.; Guo, L. Runoff Evolution Characteristics and Predictive Analysis of Chushandian Reservoir. Water 2025, 17, 2015. [Google Scholar] [CrossRef]
- Vaibhav, V. Fast inverse nonlinear Fourier transform. Phys. Rev. E 2018, 98, 013304. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.H.; Huang, F.; Yu, F.; Shen, X.Z.; Han, S.; Qian, Z.; Jiang, H. Differentiating the effects of streamflow and topographic changes on the water level of Dongting Lake, China, using the LSTM network and scenario analysis. Water 2023, 15, 3742. [Google Scholar] [CrossRef]
- Liu, J.H.; Yuan, X.S.; Lu, M.X.; Li, Y.M. Analysis of spatiotemporal characteristics of precipitation at different levels in Beijing based on Mann-Kendall test and wavelet analysis. Water Supply 2024, 24, 3208–3225. [Google Scholar] [CrossRef]
- Osmani, M.; Mahjouri, N.; Haghbin, S. Spatio-temporal nonstationarity analysis and change point detection in multivariate hydrological time-series. J. Hydroinform. 2024, 26, 2085–2103. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, J.Q.; Chen, Y.Q.; Yuan, J.; Li, X.; Zhu, J.Y. The important role of tributaries and flood events in sediment transport: A study on the spatiotemporal variability of water and sediment discharge upstream and downstream of the Three Gorges Reservoir. CATENA 2024, 234, 107594. [Google Scholar] [CrossRef]
- Mikaeili, O.; Shourian, M. Assessment of the analytic and hydrologic methods in separation of watershed response to climate and land use changes. Water Resour. Manag. 2023, 37, 2575–2591. [Google Scholar] [CrossRef]
- Hao, Z.C.; AghaKouchak, A. Multivariate standardized drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Sherly, M.A.; Karmakar, S.; Chan, T.; Rau, C. Design rainfall framework using multivariate parametric-nonparametric approach. J. Hydrol. Eng. 2016, 21, 04015049. [Google Scholar] [CrossRef]
- Tong, M.; Li, L.L.; Li, Z.; Tian, Z.H. Spatiotemporal analysis of future precipitation changes in the Huaihe river basin based on the NEX-GDDP-CMIP6 dataset and monitoring data. Water 2023, 15, 3805. [Google Scholar] [CrossRef]
- Hu, Y.B.; Xu, S.J.; Wang, K.; Liang, S.X.; Su, C.; Feng, Z.G.; Zhao, M.J. Comparative Analysis of Extreme Flood Characteristics in the Huai River Basin: Insights from the 2020 Catastrophic Event. Water 2025, 17, 1815. [Google Scholar] [CrossRef]
- Latif, Y.; Fan, K.; Wang, G.; Paluš, M. Cross-scale causal information flow from the El Niño–Southern Oscillation to precipitation in eastern China. Earth Syst. Dynam. 2024, 15, 1509–1526. [Google Scholar] [CrossRef]
- Chen, Z.H.; Zheng, Z.H. The strongest early-summer drought-flood abrupt alternation event over the Huang-Huai-Hai River Basin in 2024 since the 1980s: Perspective of anomalous subseasonal circulation evolution. Atmos. Ocean. Sci. Lett. 2025, 18, 100648. [Google Scholar] [CrossRef]
- Bai, M.; Li, Z.L.; Huo, P.Y.; Wang, J.W.; Li, Z.J. Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China. J. Arid. Land 2023, 15, 523–544. [Google Scholar] [CrossRef]
- Natarajan, N.; Vasudevan, M.; Ahash Raja, S.; Mohanpradaap, K.; Sneha, G.; Joshna Shanu, S. An assessment methodology for drought severity and vulnerability using precipitation-based indices for the arid, semi-arid and humid districts of Tamil Nadu, India. Water Supply 2023, 23, 54–79. [Google Scholar] [CrossRef]
- Baharanchi, O.G.; Lotfi, A.; Yousefpour, R. Beyond immediate relief: Investigating multi-faceted water management in inter-basin water transfer projects. J. Clean. Prod. 2024, 470, 143243. [Google Scholar] [CrossRef]
- He, Z.B. Situation, strategy and enlightenment of emergency water regulation of suppressing saltwater and replenishing freshwater in the Pearl River during the dry seasons in recent 20 years. China Flood Drought Manag. 2024, 34, 6–10+22. (In Chinese) [Google Scholar]
- Hu, N.J.; Shao, D.G.; Chen, S.; Xu, B.L.; Fang, L.Z. Optimal water store control of ponds in irrigation district based on stochastic precipitation simulation. Trans. Chin. Soc. Agric. Eng. 2016, 32, 105–110. [Google Scholar]
- Li, T.Q.; Zhou, P.C.; Yang, L.B.; Lu, P.; Chen, S.L.; Chen, P.; Hu, Y.F. Research and Application of Reservoir Comprehensive Operation Chart Considering Ecology and Power Generation. China Rural Water Hydropower 2023, 5, 79–84. (In Chinese) [Google Scholar]
- Tarafdar, S.; Dutta, S. Long-term decline in rainfall causing depletion in groundwater aquifer storage sustaining the springflow in the middle-Himalayan headwaters. J. Earth Syst. Sci. 2023, 132, 124. [Google Scholar] [CrossRef]
- Liu, K.; Guan, B.L.; Zhai, J.Q.; Wang, Q.M.; Zhao, Y.; Cao, Y.K.; Zhang, L.L. Characteristics and lag time of meteorological drought propagation to hydrological drought in the Haihe River Basin. Sustainability 2025, 17, 5134. [Google Scholar] [CrossRef]
Name | Cumulative Distribution Function (CDF) | Parameters |
---|---|---|
Lognormal (Logn) | ||
Gen. Pareto (GP) | ||
Pearson Type III (P-III) | ||
Log-Logistic (Log-L) | ||
Gen. Extreme Value (GEV) | ||
Weibull (Wbl) |
Name | Function Expression | Parameter Range |
---|---|---|
Clayton | ||
Gumbel | ||
Frank | ||
Gaussian | ||
Student t |
IMF Components | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | R |
---|---|---|---|---|---|---|---|
Period (months) | 6.05 | 12.10 | 24.20 | 40.33 | 40.33 | 60.50 | |
VCR (%) | 24.67 | 35.59 | 11.52 | 12.18 | 4.82 | 1.24 | 9.99 |
Correlation coefficient | 0.26 | 0.54 | 0.14 | 0.24 | 0.26 | 0.06 | 0.17 |
IMF Components | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | R |
---|---|---|---|---|---|---|---|
Period (months) | 6.72 | 17.29 | 20.17 | 24.20 | 60.50 | 60.50 | |
VCR (%) | 14.69 | 23.00 | 30.77 | 3.45 | 11.66 | 4.78 | 11.66 |
Correlation coefficient | 0.36 | 0.23 | 0.30 | 0.25 | 0.15 | 0.06 | 0.22 |
Name | K-S Test | A-D Statistic | Optimal Distribution | Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Logn | GP | P-III | Log-L | GEV | Wbl | Logn | GP | P-III | Log-L | GEV | Wbl | |||
Water source area | √ | √ | √ | √ | √ | √ | 1.25 | 1.23 | 1.10 | 0.80 | 1.50 | 2.29 | Log-L | = 1.02 = 2.33 = 11.04 |
Water receiving area | √ | × | × | √ | √ | × | 1.37 | 3.07 | 4.12 | 1.06 | 0.79 | 3.99 | GEV | k = −0.61 σ = 5.50 μ = 4.82 |
Copula Function | NSE | RMSE | θ |
Gaussian | 0.9876 | 0.3411 | 0.6141 |
T | 0.9810 | 0.4235 | 2.1531 |
Clayton | 0.9820 | 0.4112 | 0.9312 |
Frank | 0.9873 | 0.3450 | 4.2222 |
Gumbel | 0.9883 | 0.3316 | 1.6649 |
Probability % | Receiving-Wet | Receiving-Normal | Receiving-Dry |
---|---|---|---|
Source-wet | 16.5 | 9.9 | 2.5 |
Source-normal | 6.6 | 14.9 | 14.1 |
Source-dry | 5.8 | 9.9 | 19.8 |
High–Low Runoff Encounters Scenarios | Probability | Scheduling Response Measures |
---|---|---|
Co-dry | 19.8% | Activating backup water sources, limiting high-water-consuming industries |
Source-normal and receiving-dry | 14.1% | 20% reservoir capacity reservation |
Co-wet | 16.5% | Enhanced ecological water supplementation and power generation |
Source-wet and receiving-dry | 2.5% | Conventional operation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yan, F.; Tian, Q.; Yang, C.; Tian, Y.; Li, X.; Guo, L.; Ma, Q.; Ma, Y. Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project. Water 2025, 17, 2618. https://doi.org/10.3390/w17172618
Qi J, Yan F, Tian Q, Yang C, Tian Y, Li X, Guo L, Ma Q, Ma Y. Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project. Water. 2025; 17(17):2618. https://doi.org/10.3390/w17172618
Chicago/Turabian StyleQi, Jian, Fengshou Yan, Qingqing Tian, Chaoqiang Yang, Yu Tian, Xin Li, Lei Guo, Qianfang Ma, and Yunfei Ma. 2025. "Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project" Water 17, no. 17: 2618. https://doi.org/10.3390/w17172618
APA StyleQi, J., Yan, F., Tian, Q., Yang, C., Tian, Y., Li, X., Guo, L., Ma, Q., & Ma, Y. (2025). Analysis of High–Low Runoff Encounters Between the Water Source and Receiving Areas in the Xinyang Urban Water Supply Project. Water, 17(17), 2618. https://doi.org/10.3390/w17172618