Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reason for Choosing the Zone
2.3. Data Collection
2.4. Data Processing
2.5. Data Analysis
2.5.1. Technique for Selecting the Number of Axes to Be Defined
2.5.2. Selecting and Integrating Additional Variables
2.5.3. Identification of Typological Profiles
- d2(i,j): chi2 distance between individuals i and j.
- fik,fjk: Frequency (or reduced centered values) of k modalities for i and j.
- pk: global proportion of the k–mode.
- k: total number of modalities.
3. Results
3.1. Socio–Demographic Characteristics
3.2. Analysis of the Main Climatic Hazards Likely to Affect Market Gardeners
3.3. Market Gardeners’ Profile
3.3.1. Structuring of Market Gardener Profiles by MCA Factorial Axis Oppositions
3.3.2. Analysis of the Relationship Between Market Gardeners’ Profiles and Their Sensitivity to Climatic Extremes
3.4. Categorization of Market Garden Farms
4. Discussion
- ✓
- Integrate urban agriculture into urban and land use planning documents to avoid installation in at–risk areas and reduce land use conflicts.
- ✓
- Establish a system for registering land leases for market gardeners.
- ✓
- Develop differentiated support programs (training, targeted subsidies, and adapted microcredits) that address gender and generational inequalities to strengthen capacity for adaptation.
- ✓
- Deploy local agroclimatic services using accessible channels such as SMS, local radio stations, and relay agents to disseminate climate bulletins that are easy to understand and include practical recommendations on crop choices and resilience practices.
- ✓
- Train young market gardeners and women, who are heavily represented in the vulnerable group, in resilient agricultural practices such as mulching, intercropping, and using drought–tolerant varieties, through climate–smart farmer schools.
Limitations of the Study and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allarané, N.; Azagoun, V.V.A.; Atchadé, A.J.; Hetcheli, F.; Atela, J. Urban Vulnerability and Adaptation Strategies against Recurrent Climate Risks in Central Africa: Evidence from N’Djaména City (Chad). Urban Sci. 2023, 7, 97. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate 2022, 10, 164. [Google Scholar] [CrossRef]
- Ofoezie, E.I.; Eludoyin, A.O.; Udeh, E.B.; Onanuga, M.Y.; Salami, O.O.; Adebayo, A.A. Climate, Urbanization and Environmental Pollution in West Africa. Sustainability 2022, 14, 15602. [Google Scholar] [CrossRef]
- Dölekoğlu, C.Ö.; Gün, S. Urban Agriculture: Search for Agricultural Practice in Urbanized Rural Areas. Turk. J. Agric. Food Sci. Technol. 2017, 5, 1461–1469. [Google Scholar] [CrossRef]
- Schilleci, F.; Giampino, A.; Todaro, V. Forms and Processes of Settlement Pressure on Natural Systems. In Urban Regionalisation Processes; Lo Piccolo, F., Picone, M., Todaro, V., Eds.; UNIPA Springer Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 65–84. ISBN 978-3-030-64468-0. [Google Scholar]
- Preiss, P.V.; Schneider, S.; Marsden, T. Challenges and Perspectives for Food and Agriculture in Urbanized Societies in the 21st Century: An Introduction; Emerald Publishing Ltd.: Leeds, UK, 2022; Volume 26, pp. 1–6. [Google Scholar]
- Abdoulaye, A.-R.; Ramanou, A.Y.M.A. Urban Market–Gardening in Parakou (Republic of Benin): Spatial Dynamics, Food Security, Protection of the Environment and Creation of Employments. J. Geosci. Environ. Prot. 2015, 3, 93–103. [Google Scholar] [CrossRef]
- Céline, A.; Olivia, A.; Joëlle, S.; Michel, V.; Marc, O. Growth of Market Gardening for Local Sales in the Mount Everest Tourist Region of Pharak, Nepal. Rev. Géogr. Alp. 2019, 107-3, 1–17. [Google Scholar] [CrossRef]
- Thiaw, I.; Faye, C.; Dacosta, H.; Dione, D. Market Gardening and the Economy of Urban and Peri–Urban Households in the City of Dakar: Case of the Municipalities of Hann–Bel–Air, Parcelles Assainies, Ouakam and Grand–Yoff. Int. J. Environ. Agric. Biotechnol. 2022, 7, 092–111. [Google Scholar] [CrossRef]
- Knapp, L.; Veen, E.; Renting, H.; Wiskerke, J.S.C.; Groot, J.C.J. Vulnerability Analysis of Urban Agriculture Projects: A Case Study of Community and Entrepreneurial Gardens in the Netherlands and Switzerland. Urban Agric. Reg. Food Syst. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Mensah, J.K. Urban Agriculture, Local Economic Development and Climate Change: Conceptual Linkages. Int. J. Urban Sustain. Dev. 2023, 15, 141–151. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecología Urbana: Diseño de Granjas Urbanas Ricas En Biodiversidad, Productivas y Resilientes. Agro Sur 2018, 46, 49–60. [Google Scholar] [CrossRef]
- Grafius, D.R.; Edmondson, J.L.; Norton, B.A.; Clark, R.; Mears, M.; Leake, J.R.; Corstanje, R.; Harris, J.A.; Warren, P.H. Estimating Food Production in an Urban Landscape. Sci. Rep. 2020, 10, 5141. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban Vegetable for Food Security in Cities. A Review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Tomatis, F.; Egerer, M.; Correa–Guimaraes, A.; Navas–Gracia, L.M. Urban Gardening in a Changing Climate: A Review of Effects, Responses and Adaptation Capacities for Cities. Agriculture 2023, 13, 502. [Google Scholar] [CrossRef]
- Yanogo, P.I. Rainfall Variability and Changes in Market Gardening Systems: A Case Study in Réo (Mid–West Region of Burkina Faso). Present Environ. Sustain. Dev. 2024, 17, 213–228. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Pizzorni, M.; Innocenti, A.; Tollin, N. Droughts and Floods in a Changing Climate and Implications for Multi–Hazard Urban Planning: A Review. City Environ. Interact. 2024, 24, 100169. [Google Scholar] [CrossRef]
- Van Der Wiel, K.; Bintanja, R. Contribution of Climatic Changes in Mean and Variability to Monthly Temperature and Precipitation Extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Degefu, M.A.; Kifle, F. Impacts of Climate Variability on the Vegetable Production of Urban Farmers in the Addis Ababa Metropolitan Area: Nexus of Climate–Smart Agricultural Technologies. Clim. Serv. 2024, 33, 100430. [Google Scholar] [CrossRef]
- Nguyen, H.T.M.; Nguyen, B.P.; Ha, A.T.; Tran, V.T. Assessment of Climate Change Vulnerability to Urban Agriculture: A Case Study for the Crops Sector in Hochiminh City, Vietnam. 2023.
- Nofiu, N.; Baharudin, S.A. The Vulnerability of Smallholder Farmers to Flooding, Poverty, and Coping Strategies: A Systematic Review. Mesop. J. Agric. 2024, 52, 1–13. [Google Scholar] [CrossRef]
- Xie, Y.; Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Murphy, R.; Suraci, J.P.; Lischka, S.; Lark, T.J. U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land 2023, 12, 574. [Google Scholar] [CrossRef]
- Graner, A.; Dzamah, A.-F.; Ahovi, K.D.; Tchangani, L.; Michel, I. A Peri–Urban Market–Gardening Territory in Transition in Togo’s Djagblé Floodplain: Towards Agro–Ecological Practices? Acta Hortic. 2022, 1356, 179–190. [Google Scholar] [CrossRef]
- Maiga, Y. Market Gardening Exploitations in the Lowland of Sourgou–Center: Between Variability in Farming Practices, Land Precarity, Spatial Environmental Inequalities, and Producers’ Adaptation Strategies. Cuad. Geogr. 2023, 11, 57–79. [Google Scholar] [CrossRef]
- Marmai, N.; Franco Villoria, M.; Guerzoni, M. How the Black Swan Damages the Harvest: Extreme Weather Events and the Fragility of Agriculture in Developing Countries. PLoS ONE 2022, 17, e0261839. [Google Scholar] [CrossRef]
- Ahouangan, B.S.C.M.; Koura, B.I.; Lesse, A.D.P.; Ahoyo, C.C.; Toyi, S.M.; Vissin, E.W.; Houinato, M.R.B. Typology Analysis and Adaptive Capacity of Commercial Gardening Farmers to Climate Change in Peri–Urban Areas along the Coastal Area of Benin (West Africa). Front. Sustain. Food Syst. 2024, 8, 1356665. [Google Scholar] [CrossRef]
- Kouévi, T.A.; Adé, C.K.; N´Danikou, S.; Mongbo, R.L.; Komlan, C.; Dagnon, G.N.; Djossouvi, C.O.E.A.; Legba, E.C.; Achigan–Dako, E.G. Preferences of Market Gardeners for Traditional Vegetables and Associated Factors in Urban Areas of Southern Benin. Future Food J. Food Agric. Soc. 2023, 11. [Google Scholar] [CrossRef]
- Houessou, M.D.; Van De Louw, M.; Sonneveld, B.G.J.S. What Constraints the Expansion of Urban Agriculture in Benin? Sustainability 2020, 12, 5774. [Google Scholar] [CrossRef]
- Atidegla, S.C.; Koumassi, H.D.; Houssou, E.S. Variabilité Climatique et Production Maraîchère dans la Plaine Inondable d’Ahomey–Gblon au Bénin. Int. J. Biol. Chem. Sci. 2018, 11, 2254. [Google Scholar] [CrossRef]
- Babah-Daouda, M.; Yabi, A.J.; Orou Wari, B. Variabilité Climatique et Rendement Maraîcher dans les Communes de Djougou et de Tanguiéta au Nord–Bénin. Int. J. Biol. Chem. Sci. 2022, 15, 1923–1936. [Google Scholar] [CrossRef]
- Azagoun, V.V.A.; Komi, K.; Vissin, E.W.; Klassou, K.S. Analysis of the Dynamics of Hydroclimatic Extremes in Urban Areas: The Case of Grand–Nokoué in Benin, West Africa. Climate 2025, 13, 39. [Google Scholar] [CrossRef]
- Egerer, M.; Lin, B.; Kendal, D. Temperature Variability Differs in Urban Agroecosystems across Two Metropolitan Regions. Climate 2019, 7, 50. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2024 Revision—Benin Country Profile. Available online: https://population.un.org/wup/countryprofiles?country=Benin (accessed on 2 August 2025).
- Moreau, T.L.; Adams, T.; Mullinix, K.; Fallick, A.; Condon, P.M. Chapter 25 Recommended Practices for Climate–Smart Urban and Peri–Urban Agriculture. In Sustainable Food Planning: Evolving Theory and Practice; Viljoen, A., Ed.; Brill|Wageningen Academic: Wageningen, The Netherlands, 2012; pp. 295–306. ISBN 978-90-8686-826-1. [Google Scholar]
- Apraku, A.; Morton, J.F.; Apraku Gyampoh, B. Climate Change and Small–Scale Agriculture in Africa: Does Indigenous Knowledge Matter? Insights from Kenya and South Africa. Sci. Afr. 2021, 12, e00821. [Google Scholar] [CrossRef]
- Williams, P.A.; Crespo, O.; Abu, M. Assessing Vulnerability of Horticultural Smallholders to Climate Variability in Ghana: Applying the Livelihood Vulnerability Approach. Environ. Dev. Sustain. 2020, 22, 2321–2342. [Google Scholar] [CrossRef]
- Djohy, G.L.; Sounon Bouko, B. Vulnérabilité et Dynamiques Adaptatives des Agropasteurs aux Mutations Climatiques dans la Commune de Tchaourou au Bénin. Rev. Élev. Méd. Vét. Pays Trop. 2021, 74, 27–35. [Google Scholar] [CrossRef]
- Kumbrottil Sundaran, N.; Radhakrishnan, A.; Ravindran, D.; Palackal Bonny, B.; Vijayan Nandini, N. Climate Change and Farmer Livelihoods in Wayanad, India: A Livelihood Vulnerability Index Assessment. Nat. Hazards Earth Syst. Sci. Discuss. 2024, 2024, 1–23. [Google Scholar] [CrossRef]
- Fuchs, S.; Birkmann, J.; Glade, T. Vulnerability Assessment in Natural Hazard and Risk Analysis: Current Approaches and Future Challenges. Nat. Hazards 2012, 64, 1969–1975. [Google Scholar] [CrossRef]
- Nagano, T.; Sekiyama, T. Review of Vulnerability Factors Linking Climate Change and Conflict. Climate 2023, 11, 104. [Google Scholar] [CrossRef]
- Adjatini, A.; Bonou-Gbo, Z.; Boco, A.; Yedomonhan, H.; Dansi, A. Diversité Biologique et Caractérisation de l’Activité de Maraîchage sur le Site de Grand–Popo au Sud Bénin. Int. J. Biol. Chem. Sci. 2020, 13, 2750. [Google Scholar] [CrossRef]
- Dossa, K.F.; Bissonnette, J.-F.; Barrette, N.; Bah, I.; Miassi, Y.E. Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS–SEM Analysis of FAO Data. Climate 2025, 13, 19. [Google Scholar] [CrossRef]
- Mounirou, I.; Yebou, J. Is Contract Arrangement Source of Income Gain among Parboiled Rice Stakeholders in Benin? A Doubly Robust Analysis. Heliyon 2023, 9, e19121. [Google Scholar] [CrossRef]
- Sultan, B.; Bossa, A.Y.; Salack, S.; Sanon, M. Introduction Générale. In Risques Climatiques et Agriculture en Afrique de l’Ouest; Sultan, B., Bossa, A.Y., Salack, S., Sanon, M., Eds.; IRD Éditions: Paris, France, 2020; pp. 11–14. ISBN 978-2-7099-2820-5. [Google Scholar]
- Papathoma-Köhle, M.; Thaler, T.; Fuchs, S. An Institutional Approach to Vulnerability: Evidence from Natural Hazard Management in Europe. Environ. Res. Lett. 2021, 16, 044056. [Google Scholar] [CrossRef]
- Halkos, G.; Skouloudis, A.; Malesios, C.; Jones, N. A Hierarchical Multilevel Approach in Assessing Factors Explaining Country–Level Climate Change Vulnerability. Sustainability 2020, 12, 4438. [Google Scholar] [CrossRef]
- INSAE. Résultats Provisoires du RGPH 4; MDAEP—Ministère du Développement, de l’Analyse Économique et de la Prospective: Cotonou, Bénin, 2013; p. 8. [Google Scholar]
- Report Value Chain Maraichage Benin FINALE.Pdf. Available online: https://agritrop.cirad.fr/596364/1/Report%20Value%20Chain%20maraichage%20Benin%20FINALE.pdf (accessed on 22 January 2023).
- Garren, S.T.; Cleathero, B.A. Assessment of Required Sample Sizes for Estimating Proportions. Asian J. Probab. Stat. 2024, 26, 48–56. [Google Scholar] [CrossRef]
- Chander, N. Sample Size Estimation. J. Indian Prosthodont. Soc. 2017, 17, 217. [Google Scholar] [CrossRef] [PubMed]
- Patel, D. Sample Size Estimation in Clinical Trials. Natl. J. Community Med. 2024, 15, 503–508. [Google Scholar] [CrossRef]
- Sztabiński, P.B. The Use of Face–to–Face Interviews in Mixed Mode Design: The Problem of the Achieved Sample. Clov. Spoločnosť 2019, 22, 1–28. [Google Scholar] [CrossRef]
- Muszyński, M.; Jabkowski, P. What Can Interviewer–Collected Paradata Tell About Measurement Quality in Face–to–Face Surveys? Analyzing Response Styles in Six Rounds of the European Social Survey. 2023. Available online: https://osf.io/preprints/psyarxiv/byz45_v1 (accessed on 1 August 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Baccar, M.; Bouaziz, A.; Dugué, P.; Gafsi, M.; Le Gal, P.-Y. Sustainability Viewed from Farmers’ Perspectives in a Resource–Constrained Environment. Sustainability 2020, 12, 8671. [Google Scholar] [CrossRef]
- Baki, C.B.; Wellens, J.; Traoré, F.; Palé, S.; Djaby, B.; Bambara, A.; Thao, N.T.T.; Hié, M.; Tychon, B. Assessment of Hydro–Agricultural Infrastructures in Burkina Faso by Using Multiple Correspondence Analysis Approach. Sustainability 2022, 14, 13303. [Google Scholar] [CrossRef]
- Ruggeri, G.; Mazzocchi, C.; Corsi, S. Urban Gardeners’ Motivations in a Metropolitan City: The Case of Milan. Sustainability 2016, 8, 1099. [Google Scholar] [CrossRef]
- Achim, A. Testing the Number of Required Dimensions in Exploratory Factor Analysis. Quant. Methods Psychol. 2017, 13, 64–74. [Google Scholar] [CrossRef]
- Kiliç, A.F. Deciding the Number of Dimensions in Explanatory Factor Analysis: A Brief Overview of the Methods. Pamukkale Univ. J. Soc. Sci. Inst. 2022, 51, 305–318. [Google Scholar] [CrossRef]
- Ngome, I.; Foeken, D. “My Garden Is a Great Help”: Gender and Urban Gardening in Buea, Cameroon. GeoJournal 2012, 77, 103–118. [Google Scholar] [CrossRef]
- Blessing, O.D. Challenges Encountered by Urban Women Farmers in Their Agricultural Activities. Agric. Ext. J. 2019, 3. [Google Scholar] [CrossRef]
- Azam-Ali, S.; Ahmadzai, H.; Choudhury, D.; Goh, E.V.; Jahanshiri, E.; Mabhaudhi, T.; Meschinelli, A.; Modi, A.T.; Nhamo, N.; Olutayo, A. Marginal Areas and Indigenous People Priorities for Research and Action. In Science and Innovations for Food Systems Transformation; Springer International Publishing: Cham, Switzerland, 2023; pp. 261–279. ISBN 978-3-031-15702-8. [Google Scholar]
- Leite, S.P.; Ávila, R.V.D. Reforma Agrária e Desenvolvimento na América Latina: Rompendo com o Reducionismo das Abordagens Economicistas. Rev. Econ. Sociol. Rural. 2007, 45, 777–805. [Google Scholar] [CrossRef]
- Tuan, N.T.; Hegedűs, G.; Phuong, N.T.T. Urbanization and Forecast Possibilities of Land Use Changes by 2050: New Evidence in Ho Chi Minh City, Vietnam. Open Agric. 2025, 10, 20250421. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Huang, Q.; Ding, M.; He, Y.; Liu, M.; Yang, C. Water Infrastructure Impacts of Agricultural Industry in China under Extreme Weather: A System Dynamics Model of a Multi–Level, Climate Resilience Perspective. Systems 2024, 12, 562. [Google Scholar] [CrossRef]
- Wijekoon, W.M.S.M.; Gunawardena, E.R.N.; Aheeyar, M.M.M.; De Silva, W.P.R.P. Resilience of Farmers at Water Shortage Situations in Minor Irrigation Systems: A Case Study in Kurunegala District, Sri Lanka. Trop. Agric. Res. 2018, 29, 242. [Google Scholar] [CrossRef]
- Akakpo, K.; Leauthaud, C.; Ben Aissa, N.; Bouarfa, S.; Bahri, A. In the Search for Innovative Agroecological Farming Practices in Irrigated Landscapes of North Africa: Case of Kairouan Plain in Central Tunisia. 2018, PS-7.3-03. Available online: https://agritrop.cirad.fr/588924/ (accessed on 8 July 2025).
- Kanda, M.; Wala, K.; Batawila, K.; Djaneye-Boundjou, G.; Ahanchede, A.; Akpagana, K. Le Maraîchage Périurbain à Lomé: Pratiques Culturales, Risques Sanitaires et Dynamiques Spatiales. Cah. Agric. 2009, 18, 356–363. [Google Scholar] [CrossRef]
- Sonneveld, B.G.J.S.; Houessou, M.D.; Van Den Boom, G.J.M.; Aoudji, A. Where Do I Allocate My Urban Allotment Gardens? Development of a Site Selection Tool for Three Cities in Benin. Land 2021, 10, 318. [Google Scholar] [CrossRef]
- Nair, R.; Barche, S. Protected Cultivation of Vegetables—Present Status and Future Prospects in India. Indian J. Appl. Res. 2011, 4, 245–247. [Google Scholar] [CrossRef]
- Yanore, L.; Sok, J.; Oude Lansink, A. Do Dutch Farmers Invest in Expansion despite Increased Policy Uncertainty? A Participatory Bayesian Network Approach. Agribusiness 2024, 40, 93–115. [Google Scholar] [CrossRef]
- Ekpodessi, S.G.N.; Nakamura, H. Impact of Insecure Land Tenure on Sustainable Agricultural Development: A Case Study of Agricultural Lands in the Republic of Benin, West Africa. Sustainability 2022, 14, 14041. [Google Scholar] [CrossRef]
- Kousar, R. Secured Land Rights, Household Welfare and Agricultural Productivity: Evidence from Rural Pakistan. Pak. J. Agric. Sci. 2018, 55, 243–247. [Google Scholar] [CrossRef]
Commune | Population of Market Gardeners | Sample | |
---|---|---|---|
Number | Proportion (%) | ||
Cotonou | 608 | 132 | 36 |
Ouidah | 322 | 87 | 23 |
Sèmè–Podji | 909 | 150 | 41 |
Total | 1839 | 369 | 100 |
N° | Variables | Modalities |
---|---|---|
1 | Location | Cotonou | Ouidah | Sèmè–podji |
2 | Age_group | Adult (35–60) | Young (<35) | Senior (>60) |
3 | Gender | Female | Male |
4 | Education_level | Literate | None | Primary | Secondary | University |
5 | Land_tenure | Purchase | Public domain | Inheritance | Rental |
6 | Access_to_info | No | Yes |
7 | Access_to_credit | No | Yes |
8 | Monthly_income_XOF | <50,000 | >100,000 | 50,000–100,000 |
9 | Water_source | Surface water | Borehole | Well |
10 | Area_m2 | [1000, 3000) | [500, 1000) | <500, >3000 |
11 | Flood_risk | Low | High | Medium |
12 | Heatwave_risk | Low | High | Medium |
13 | Drought_risk | Low | High | Medium |
14 | Irrigation_system | Manual | Motorized |
15 | Agroecological_practice | Agro_Rot_Ass | Ass_simpl | Rot_ass | Rot_simpl * |
Variable | N = 369 1 | Variable | N = 369 1 |
---|---|---|---|
Location | Monthly income (XOF) | ||
Cotonou | 132 (36%) | <50,000 | 155 (42%) |
Ouidah | 87 (24%) | >100,000 | 138 (37%) |
Sèmè–podji | 150 (41%) | 50,000–100,000 | 76 (21%) |
Gender | Access to credit | 32 (8.7%) | |
Female | 78 (21%) | Land tenure | |
Male | 291 (79%) | Inheritance | 11 (3.0%) |
Age group | Public domain | 262 (71%) | |
Adult (35–60) | 220 (60%) | Purchase | 22 (6.0%) |
Senior (>60) | 33 (8.9%) | Rental | 74 (20%) |
Young (<35) | 116 (31%) | Area_m2 | |
Education level | [1000, 3000) | 198 (54%) | |
Literate | 32 (8.7%) | [500, 1000) | 25 (6.8%) |
None | 32 (8.7%) | <500 | 125 (34%) |
Primary | 115 (31%) | >3000 | 21 (5.7%) |
Secondary | 171 (46%) | Water source | |
University | 19 (5.1%) | Borehole | 173 (47%) |
Surface water | 91 (25%) | ||
Well | 105 (28%) |
Characteristic | N = 369 1 |
---|---|
Flooding | |
Low | 23 (6.2%) |
Medium | 166 (45%) |
High | 180 (49%) |
Heatwave | |
Low | 119 (32%) |
Medium | 162 (44%) |
High | 88 (24%) |
Drought | |
Low | 130 (35%) |
Medium | 155 (42%) |
High | 84 (23%) |
Characteristic | Cla/Mod | Global | p-Value | v-Test |
---|---|---|---|---|
Cluster 1 | ||||
Heatwave_High | 98.86 | 23.85 | <0.01 | 19.5 |
Drought_High | 98.81 | 22.76 | <0.01 | 18.5 |
Irrigation_Manual | 100.0 | 18.97 | <0.01 | 16.3 |
Flooding_High | 46.11 | 48.78 | <0.01 | 10.6 |
<500 m2 | 56.8 | 33.88 | <0.01 | 10.6 |
Agroecological_practice_Ass_simpl | 50.88 | 30.89 | <0.01 | 8.0 |
Water_Source_Surface Water | 51.43 | 28.46 | <0.01 | 7.6 |
Monthly_Income_XOF ≤ 50,000 | 43.23 | 42.01 | <0.01 | 7.6 |
Cotonou | 39.39 | 35.77 | <0.01 | 5.2 |
Land_Tenure_Public Land | 29.77 | 71.00 | <0.01 | 4.6 |
Female | 38.46 | 21.14 | <0.01 | 3.3 |
Youth (<35 years old) | 31.03 | 31.44 | <0.01 | 2.2 |
Cluster 2 | ||||
Heatwave_Medium | 100 | 43.90 | <0.01 | 21.4 |
Drought_Medium | 100 | 42.01 | <0.01 | 20.3 |
[1000–3000] m2 | 67.68 | 53.66 | <0.01 | 9.6 |
Irrigation_Motorized | 55.52 | 81.03 | <0.01 | 9.6 |
Monthly_Income_XOF = 50,000 to 100,000 | 85.53 | 20.60 | <0.01 | 8.1 |
Agroecological_Practice = Crop Rotation and Association | 59.63 | 59.08 | <0.01 | 6.9 |
Ouidah | 70.11 | 23.58 | <0.01 | 5.4 |
Water_Source = Well | 69.23 | 24.66 | <0.01 | 5.3 |
Flooding_High | 91.30 | 6.23 | <0.01 | 4.7 |
Land_Tenure = Public Land | 52.29 | 71.00 | <0.01 | 4.5 |
Cotonou | 58.33 | 35.77 | <0.01 | 3.8 |
[500–1000] m2 | 80 | 6.78 | <0.01 | 3.6 |
Education_Level = None | 62.5 | 8.67 | <0.01 | 2.0 |
Cluster 3 | ||||
Heatwave_Low | 96.64 | 32.25 | <0.01 | 20.1 |
Drought_Low | 88.46 | 35.23 | <0.01 | 18.6 |
Semè–Podji | 72.67 | 40.65 | <0.01 | 14.8 |
Flooding_Medium | 65.66 | 44.99 | <0.01 | 13.5 |
Water_Source = Borehole | 58.38 | 46.88 | <0.01 | 10.8 |
Monthly_Income_XOF < 100,000 | 57.25 | 37.40 | <0.01 | 8.2 |
Land_Tenure = Rental | 68.92 | 20.05 | <0.01 | 7.5 |
Irrigation_System = Motorized | 38.80 | 81.03 | <0.01 | 7.4 |
<3000 m2 | 100 | 5.69 | <0.01 | 6.9 |
Land_Tenure = Inheritance | 90.91 | 2.98 | <0.01 | 4.0 |
Male | 34.71 | 78.86 | <0.01 | 2.7 |
Access_to_Credit = Yes | 50 | 8.67 | <0.01 | 2.3 |
Adult (35–60 years old) | 35.91 | 59.62 | <0.01 | 2.2 |
Agroecological_Practice = Rotation and Association | 47.06 | 9.21 | <0.01 | 2.0 |
Variable | Cluster 1 (%) | Cluster 2 (%) | Cluster 3 (%) | p-Value |
---|---|---|---|---|
Heatwave_High | 85.2 | 13.6 | 1.1 | <0.01 |
Drought_High | 89.3 | 9.5 | 1.2 | <0.01 |
Irrigation_Manual | 97.1 | 2.9 | 0.0 | <0.01 |
Flooding_High | 67.8 | 31.7 | 0.6 | <0.01 |
<500 m2 | 65.6 | 31.2 | 3.2 | <0.01 |
Agroecological_practice_Ass_simpl | 97.1 | 2.9 | 0.0 | <0.01 |
Water_Source_Surface Water | 96.7 | 1.1 | 2.2 | <0.01 |
Monthly_Income_XOF ≤ 50,000 | 76.8 | 19.4 | 3.9 | <0.01 |
Cotonou | 66.7 | 33.3 | 0.0 | <0.01 |
Land_Tenure_Public Land | 55.0 | 44.7 | 0.4 | <0.01 |
Female | 60.3 | 39.7 | 0.0 | <0.01 |
Youth (<35 years old) | 32.8 | 67.2 | 0.0 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azagoun, V.V.A.; Komi, K.; Badou, D.F.; Vissin, E.W.; Klassou, K.S. Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities. Geographies 2025, 5, 46. https://doi.org/10.3390/geographies5030046
Azagoun VVA, Komi K, Badou DF, Vissin EW, Klassou KS. Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities. Geographies. 2025; 5(3):46. https://doi.org/10.3390/geographies5030046
Chicago/Turabian StyleAzagoun, Vidjinnagni Vinasse Ametooyona, Kossi Komi, Djigbo Félicien Badou, Expédit Wilfrid Vissin, and Komi Selom Klassou. 2025. "Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities" Geographies 5, no. 3: 46. https://doi.org/10.3390/geographies5030046
APA StyleAzagoun, V. V. A., Komi, K., Badou, D. F., Vissin, E. W., & Klassou, K. S. (2025). Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities. Geographies, 5(3), 46. https://doi.org/10.3390/geographies5030046