Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile
Abstract
1. Introduction
2. Results
2.1. Shoot Growth
2.2. Species Survival
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Species Selection
4.3. Experimental Design
4.4. Statistical Design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Li, C.; Zhao, X.; Zhu, T. Arid Urban Green Areas Reimagined: Transforming Landscapes with Native Plants for a Sustainable Future in Aksu, Northwest China. Sustainability 2024, 16, 1546. [Google Scholar] [CrossRef]
- McPherson, E.G. Cooling urban heat islands with sustainable landscapes. In The Ecological City: Preserving and Restoring Urban Biodiversity; Platt, R.H., Rowntree, R.A., Muick, P.C., Eds.; University of Massachusetts Press: Amherst, MA, USA, 1994; pp. 151–171. [Google Scholar]
- Richter, M.; Heinemann, K.; Meiser, N.; Dickhaut, W. Trees in sponge cities—A systematic review of trees as a component of blue-green infrastructure, vegetation engineering principles, and Stormwater management. Water 2024, 16, 655. [Google Scholar] [CrossRef]
- Catalano, C.; Laudicina, V.A.; Badalucco, L.; Guarino, R. Some European green roof norms and guidelines through the lens of biodiversity: Do ecoregions and plant traits also matter? Ecol. Eng. 2018, 115, 15–26. [Google Scholar] [CrossRef]
- Rasoolzadeh, R.; Mobarghaee, N.; Esmaeilzadeh, H.; Rashidi, Y.; Marcu, M.V.; Sadeghi, S.M.M. Carbon sequestration and storage of urban trees in a polluted semiarid city. Forests 2024, 15, 1488. [Google Scholar] [CrossRef]
- Varela-Stasinopoulou, D.S.; Nektarios, P.A.; Ntoulas, N.; Trigas, P.; Roukounakis, G.I. Sustainable Growth of Medicinal and Aromatic Mediterranean Plants Growing as Communities in Shallow Substrate Urban Green Roof Systems. Sustainability 2023, 15, 5940. [Google Scholar] [CrossRef]
- Burch, W.R., Jr.; Grove, J.M. People, trees and participation on the urban frontier. Unasylva 1993, 44, 19–27. [Google Scholar]
- Dwyer, J.F.; McPherson, E.G.; Schroeder, H.W.; Rowntree, R.A. Assessing the benefits and costs of the urban forest. J. Arboric. 1992, 18, 227–234. [Google Scholar] [CrossRef]
- Simpson, J.R.; McPherson, E.G. San Francisco Bay Area State of the Urban Forest Final Report; Center for Urban Forest Research USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2007; p. 81. [Google Scholar]
- Faber Taylor, A.; Kuo, F.E. Could exposure to everyday green spaces help treat ADHD? Evidence from children’s play settings. Appl. Psychol. Health Well-Being 2011, 3, 281–303. [Google Scholar] [CrossRef]
- Bele, A.; Chakradeo, U. Public perception of biodiversity: A literature review of its role in urban green spaces. J. Land. Ecol. 2021, 14, 1–28. [Google Scholar] [CrossRef]
- Lohr, V.I.; Pearson-Mims, C.H.; Tarnai, J.; Dillman, D.A. How urban resident rate and rank the benefits and problems associated with trees in cities. Arboric. Urban For. 2004, 30, 28–35. [Google Scholar] [CrossRef]
- Irarrázaval, F. El imaginario” verde” y el verde urbano como instrumento de consumo inmobiliario: Configurando las condiciones ambientales del área Metropolitana de Santiago. Rev. INVI 2012, 27, 73–103. [Google Scholar] [CrossRef]
- Uribe, S.V.; Villaseñor, N.R. Inequities in urban tree care based on socioeconomic status. Urban For. Urban Green. 2024, 96, 128363. [Google Scholar] [CrossRef]
- Kornienko, V.; Reuckaya, V.; Shkirenko, A.; Meskhi, B.; Olshevskaya, A.; Odabashyan, M.; Shevchenko, V.; Teplyakova, S. Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities. Plants 2025, 14, 2052. [Google Scholar] [CrossRef]
- Catalano, C.; Marcenò, C.; Laudicina, V.A.; Guarino, R. Thirty years unmanaged green roofs: Ecological research and design implications. Landsc. Urban Plan. 2016, 149, 11–19. [Google Scholar] [CrossRef]
- Allen, K.S.; Harper, R.W.; Bayer, A.; Brazee, N.J. A review of nursery production systems and their influence on urban tree survival. Urban For. Urban Green. 2017, 21, 183–191. [Google Scholar] [CrossRef]
- de la Fuente, L.M.; Ovalle, J.F.; Arellano, E.C.; Ginocchio, R. Does woody species with contrasting root architecture require different container size in nursery? Madera Bosques 2018, 24, e2421419. [Google Scholar] [CrossRef]
- Aloisio, J.M.; Palmer, M.I.; Tuininga, A.R.; Lewis, J.D. Introduced and native plant species composition of vacant unmanaged green roofs in New York City. Urban Ecosyst. 2020, 23, 1227–1238. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A.; Barton, D.N.; Cariñanos, P.; Dobbs, C.; Eleuterio, A.A.; Escobedo, F.J.; Hauer, R.; Hermy, M.; et al. Assessing climate risk to support urban forests in a changing climate. Plants People Planet 2022, 4, 201–213. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, G. Suggested key variables for assessment of soil quality in urban roadside tree systems. J. Soils Sediments 2021, 21, 2130–2140. [Google Scholar] [CrossRef]
- Vico, G.; Thompson, S.E.; Manzoni, S.; Molini, A.; Albertson, J.D.; Almeida-Cortez, J.S.; Fay, P.A.; Feng, X.; Guswa, A.J.; Liu, H.; et al. Climatic, ecophysiological, and phenological control son plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 2015, 8, 660–681. [Google Scholar] [CrossRef]
- Yáñez, M.A.; Espinoza, S.E.; Magni, C.R.; Martínez-Herrera, E. Early Growth and physiological acclimation to shade and water restriction of seven sclerophyllous species of the Mediterranean forests of central Chile. Plants 2024, 13, 2410. [Google Scholar] [CrossRef]
- Rodríguez, C.; Serrano, J.; Sánchez, R.; Leiva, E. The Hydrosocial Cycle and the Inequalities in Access to Water in Rural Areas of Metropolitan Region of Santiago, Chile. Water 2024, 16, 2811. [Google Scholar] [CrossRef]
- Fuentes, I.; Fuster, R.; Avilés, D.; Vervoort, W. Water scarcity in central Chile: The effect of climate and land cover changes on hydrologic resources. Hydrol. Sci. J. 2021, 66, 1028–1044. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Teillier, S.; Guerrero-Leiva, N.; Ray-Bobadilla, C.; Rivano, S.; Saavedra, D.; Castro, S.A. Flora vascular en el espacio público de Santiago, Chile. Gayana Bot. 2016, 73, 85–103. [Google Scholar] [CrossRef]
- Ekren, E.; Çorbacı, Ö.L.; Kordon, S. Evaluation of plants based on ecological tolerance criteria: A case study of urban open green spaces in Rize, Türkiye. Turk. J. For. Sci. 2024, 8, 107–131. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Castro, S.A.; Reyes, M.; Teillier, S. Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study. Urban Ecosyst. 2018, 21, 645–655. [Google Scholar] [CrossRef]
- Guevara, B.R.; Uribe, S.V.; de la Maza, C.L.; Villaseñor, N.R. Socioeconomic disparities in urban forest diversity and structure in green areas of Santiago de Chile. Plants 2024, 13, 1841. [Google Scholar] [CrossRef] [PubMed]
- Blasi, C.; Biondi, E.; Izco, J. 100 years of plant sociology: A celebration. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2011, 145, 1–3. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Conway, T.M.; Almas, A.D.; Coore, D. Ecosystem services, ecological integrity, and native species planting: How to balance these ideas in urban forest management? Urban For. Urban Green. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Arcos-LeBert, G.; Aravena-Hidalgo, T.; Figueroa, J.A.; Jaksic, F.M.; Castro, S.A. Native trees provide more benefits than exotic trees when ecosystem services are weighted in Santiago, Chile. Trees 2021, 35, 1663–1672. [Google Scholar] [CrossRef]
- D’Amato, L.; Bartoli, F.; Savo, V.; Caneva, G. Promoting native biodiversity: An evaluation of multifactorial and bioclimatic selection criteria for street trees in Italian cities. Urban For. Urban Green. 2025, 107, 128784. [Google Scholar] [CrossRef]
- Rundel, P.W. Landscape disturbance in Mediterranean-type ecosystems: An overview. In Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems; Rundel, P.W., Montenegro, G., Jaksic, F.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 3–22. [Google Scholar]
- Fernández, F.; Delaunoy, J.; Chiang, L.; Reyes, M. Metodología de valor paisajístico: Selección de plantas nativas para la infraestructura verde pública de la Región Metropolitana. In Biodiversidad Urbana en Chile: Estado del Arte y los Desafíos Futuros, 2nd ed.; Figueroa, J.A., Lazzoni, I., Eds.; Ediciones Universidad Central de Chile: Santiago, Chile, 2025; in press. [Google Scholar]
- Grimm, N.B.; Pickett, S.T.; Hale, R.L.; Cadenasso, M.L. Does the ecological concept of disturbance have utility in urban social–ecological–technological systems? Ecosyst. Health Sustain. 2017, 3, e01255. [Google Scholar] [CrossRef]
- Degerickx, J.; Roberts, D.A.; McFadden, J.P.; Hermy, M.; Somers, B. Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef]
- Ward, E.B.; Doroski, D.A.; Felson, A.J.; Hallett, R.A.; Oldfield, E.E.; Kuebbing, S.E.; Bradford, M.A. Positive long-term impacts of restoration on soils in an experimental urban forest. Ecol. Appl. 2021, 31, e02336. [Google Scholar] [CrossRef]
- Agrupación de Especies Nativas Según Condiciones Agroecológicas Aptas para su Cultivo. Available online: https://www.pumahuida.cl/wp-content/uploads/2022/03/AGRUPACIÓN-DE-ESPECIES-NATIVAS-SEGÚN-CONDICIONES-AGROECOLÓGICAS-APTAS-PARA-SU-CULTIVO-M.-MUSALEM_VI-CONGRESO-DE-FLORA-NATIVA-2019_opt.pdf (accessed on 29 September 2025).
- Listas de Especies Nativas para Distintas Situaciones de Paisaje. Available online: https://www.pumahuida.cl/informacion-tecnica/ (accessed on 28 July 2025).
- Rodríguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.L.; Fuentes, N.; Kiessling, A.; Mihoc, M.; Pauchard, A.; et al. Catálogo de las plantas vasculares de Chile. Gayana Bot. 2018, 75, 1–430. [Google Scholar] [CrossRef]
- Hoffmann, J.A. Flora Silvestre de Chile. Zona Central. Una Guía para la Identificación de las Especies Vegetales Más Frecuentes, 5th ed.; Fundación Claudio Gay: Santiago, Chile, 2012; p. 250. [Google Scholar]
- Armesto, J.J.; Pickett, S.T.A. Experiments on disturbance in old-field plant communities: Impact on species richness and abundance. Ecology 1985, 66, 230–240. [Google Scholar] [CrossRef]
- Becerra, P.I.; Cruz, G.; Ríos, S.; Castelli, G. Importance of irrigation and plant size in the establishment success of different native species in a degraded ecosystem of central Chile. Bosque 2013, 34, 23–24. [Google Scholar] [CrossRef]
- Becerra, P.I.; Arellano, E.C.; Vilagrosa, A.; Hernández, G.; Figueroa, C. The provision of water and shade but not soil amendments in degraded habitats increases the seedling survival of woody species in restoration processes of the Chilean sclerophyllous forest. Trees 2024, 38, 523–535. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Kazemi, F. The growth and survival of plants in urban green roofs in a dry climate. Sci. Total Environ. 2014, 476, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Armesto, J.J.; Arroyo, M.T.K.; Hinojosa, F.L. The Mediterranean environment of central PM Chile. In The Physical Geography of South America; Veblen, T.T., Young, K.R., Orme, A.R., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 184–199. [Google Scholar]
- Rundel, P.W.; Arroyo, M.T.; Cowling, R.M.; Keeley, J.E.; Lamont, B.B.; Vargas, P. Mediterranean biomes: Evolution of their vegetation, floras, and climate. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 383–407. [Google Scholar] [CrossRef]
- Chandía-Jaure, R.; Cataldo-Cunich, A.; Fernández-Cano, F.; Figueroa, J.A.; Godoy-Donoso, D. Refugios biourbanos: Guía para evaluar la efectividad de soluciones basadas en la naturaleza para el diseño urbano sensible al agua, como estrategia de adaptación al cambio climático; Universidad Tecnológica Metropolitana: Santiago, Chile, 2025; in press. [Google Scholar]
- Teillier, S.; Macaya-Berti, J.; García, N.; Marticorena, A.; Rojas, G.; Niemeyer, H.M. Flora de la Región Metropolitana de Santiago. Guía para la Identificación de las Especies; Asia Pacific Offset: Hong-Kong, China, 2022; 671p. [Google Scholar]
- Everard, K.; Seabloom, E.W.; Harpole, W.S.; De Mazancourt, C. Plant water use affects competition for nitrogen: Why drought favors invasive species in California. Am. Nat. 2010, 175, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Burlett, R.; Trueba, S.; Bouteiller, X.P.; Forget, G.; Torres-Ruiz, J.M.; Martin-StPaul, N.K.; Parise, C.; Cochard, H.; Delzon, S. Minimum leaf conductance during drought: Unravelling its variability and impact on plant survival. New Phytol. 2025, 246, 1001–1014. [Google Scholar] [CrossRef]
- Ortuño, M.A.; Machtig, A.E.; Chacón, M.A.; Cuzmar, J.; Fontúrbel, F.E. Spatial distribution of Puya coerulea Lindl. in response to abiotic factors and accompanying species in the Río Clarillo National Reserve. Gayana Bot. 2019, 76, 115–118. [Google Scholar] [CrossRef]
- Prieto, I.; Martínez-Tillería, K.; Martínez-Manchego, L.; Montecinos, S.; Pugnaire, F.I.; Squeo, F.A. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: Patterns and control mechanisms. Oecologia 2010, 163, 855–865. [Google Scholar] [CrossRef]
- León, M.F.; Squeo, F.A.; Gutiérrez, J.R.; Holmgren, M. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. J. Veg. Sci. 2011, 22, 120–129. [Google Scholar] [CrossRef]
- Gerstmann, C.; Miranda, M.; Condal, A. Description of space-time variability of the potential productivity of Acacia caven espinales based on MODIS images and the Enhanced Vegetation Index (EVI). Int. J. Agric. Nat. Res. 2010, 37, 63–73. [Google Scholar] [CrossRef]
- Sepúlveda, M.; Bown, H.E.; Fernandez, B. Stomatal conductance responses of Acacia caven to seasonal patterns of water availability at different soil depths in a Mediterranean savanna. Water 2018, 10, 1534. [Google Scholar] [CrossRef]
- Ginocchio, R.; de la Fuente, L.M.; Orrego, F.; Díaz, M.J.; Báez, J.; Ovalle, J.F. A novel fast-vegetative propagation technique of the pioneer shrub Baccharis linearis on mine tailings by adding compost. Int. J. Phytoremediat. 2021, 23, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Tillería, K.; Loayza, A.P.; Sandquist, D.R.; Squeo, F.A.; Ward, D. No evidence of a trade-off between drought and shade tolerance in seedlings of six coastal desert shrub species in north-central Chile. J. Veg. Sci. 2012, 23, 1051–1061. [Google Scholar] [CrossRef]
- Carvajal, D.E.; Loayza, A.P.; López, R.P.; Toro, P.J.; Squeo, F.A. Growth and early seedling survival of four Atacama Desert shrub species under experimental light and water availability regimes. Rev. Chil. Hist. Nat. 2014, 87, 28. [Google Scholar] [CrossRef]
- Torres, R.; Squeo, F.A.; Jorquera, C.; Aguirre, E.; Ehleringer, J.R. Evaluación de la capacidad estacional de utilizar eventos de precipitación en tres especies de arbustos nativos de Chile con distintos sistemas radiculares. Rev. Chil. Hist. Nat. 2002, 75, 737–749. [Google Scholar] [CrossRef]
- Newbold, T.; Oppenheimer, P.; Etard, A.; Williams, J.J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 2020, 4, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Caneva, G.; Kumbaric, A.; Savo, V.; Casalini, R. Ecological approach in selecting extensive green roof plants: A data-set of Mediterranean plants. Plant Biosyst. 2015, 149, 374–383. [Google Scholar] [CrossRef]
- Bambach, N.; Meza, F.J.; Gilabert, H.; Miranda, M. Impacts of climate change on the distribution of species and communities in the Chilean Mediterranean ecosystem. Reg. Environ. Change 2013, 13, 1245–1257. [Google Scholar] [CrossRef]
- McPhee, J.; Cortés, G.; Rojas, M.; García, L.; Descalzi, A.; Vargas, L. Downscaling climate changes for Santiago: What effects can be expected? In Climate Adaptation Santiago; Krellenberg, K., Hansjürgens, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 19–41. [Google Scholar]
- Densidad de Población y Vivienda. Censo. 2017. Available online: https://storymaps.arcgis.com/stories/fc03ad1481f44b6299b81c22c91497fe (accessed on 28 July 2025).
- De Mattos, C. Globalización y transformación metropolitana en el caso de Santiago. In Los Nuevos Modos de Gestión de la Metropolización; Hidalgo, R., Arenas, F., Coll, J.L., Eds.; Pontificia Universidad Católica de Chile: Santiago, Chile, 2003; pp. 27–55. [Google Scholar]
- Romero, H.; Vásquez, A. Evaluación ambiental del proceso de urbanización de las cuencas del piedemonte andino de Santiago de Chile. Eur. Secur. 2005, 94, 97–118. [Google Scholar] [CrossRef]
- Romero, H.; Molina, M.; Moscoso, C.; Sarricolea, P.; Smith, P.; Vásquez, A. Caracterización de los cambios de usos y coberturas de suelo causados por la expansión urbana de Santiago, análisis de sus factores explicativos e inferencias ambientales. In Movilidad Espacial y Reconfiguración Metropolitana; de Mattos, C., Hidalgo, R., Eds.; Pontificia Universidad Católica de Chile: Santiago, Chile, 2007; pp. 251–270. [Google Scholar]
- Chandia-Jaure, R.; Cataldo-Cunich, A.; Bustamante-Oleart, C.; Fernandez Cano, F.; Figueroa, J.A.; Villagrán-Escobar, M. Bio-Urban Shelters. Neighborhood-scale intervention model for water sensitive urban design. In Proceedings of the 14° Encuentro Diseño Urbano, Readu, Punta Arenas, Chile, 6 November 2024. [Google Scholar]
- Luebert, F.; Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile; Editorial Universitaria: Santiago, Chile, 2017; p. 316. [Google Scholar]
- Ivelic-Sáez, J.; Reckmann, O.; López, R.; Uribe, H.; Valenzuela, J.; Ibarra, D. Bases para el riego en Magallanes. Boletín INIA 2021, 459, 92. [Google Scholar]
- Fernández, F.; Chiang, L.; Figueroa, J.A. Guía de Recomendaciones para Jardines Eficientes en el Espacio Público en la Región Metropolitana; Universidad Central de Chile: Santiago, Chile, 2025; p. 63. [Google Scholar]
Species | N | Dependent Variable | 13.3 L/m2/Day | 10.1 L/m2/Day | 1.7 L/m2/Day | 1.4 L/m2/Day | p-Value | Responses |
---|---|---|---|---|---|---|---|---|
Cistanthe laxiflora | 12 | Growth | 2.0 (1.4) a,b | 2.8 (1.4) a | 0.4 (1.4) a,b | −3.2 (1.4) b | * | Highly sensitive |
Survival | 83.3 a,b | 100 a | 91.7 a,b | 75.0 b | * | |||
Nasella laevissima | 12 | Growth | 7.4 (1.2) a | 10.5 (1.2) a | 7.9 (1.2) a | 0.9 (1.2) b | *** | Highly sensitive |
Survival | 83.3 a,b | 91.7 a,b | 100 a | 66.7 b | * | |||
Andeimalva chilensis | 18 | Growth | 22.3 (3.3) a | 17.7 (3.3) a | 5.6 (3.3) b | 11.6 (3.3) a,b | ** | Sensitive |
Survival | 83.3 | 72.2 | 61.1 | 83.3 | n.s. | |||
Colliguaja odorifera | 6 | Growth | 10.7 (2.1) a | 5.0 (2.1) a,b | 1.4 (2.1) b | 3.5 (2.1) a,b | * | Sensitive |
Survival | 100 | 100 | 83,3 | 100 | n.s. | |||
Puya alpestri | 6 | Growth | 5.6 (1.1) a | 3.6 (1.1) a,b | 1.2 (1.1) b | 1.3 (1.1) b | * | Sensitive |
Survival | 100 | 100 | 100 | 100 | n.s. | |||
Puya coerulea | 6 | Growth | 3.8 (0.8) a | 3.6 (0.8) a | 0.02 (0.9) b | 0.02 (0.9) b | ** | Sensitive |
Survival | 100 | 100 | 100 | 80 | n.s. | |||
Senna cumingii | 9 | Growth | 11.0 (2.2) a | 4.1 (2.3) a,b | −0.4 (2.2) b | 4.7 (2.2) a,b | ** | Sensitive |
Survival | 88.9 | 75,0 | 77,8 | 100 | n.s. | |||
Vachelia caven | 6 | Growth | 16.7 (2.7) a,b | 21.6 (2.7) a | 6.2 (2.7) b | 7.3 (2.7) b | *** | Sensitive |
Survival | 100 | 100 | 100 | 100 | n.s. | |||
Baccharis linearis | 6 | Growth | 15.3 (2.1) | 19.5 (2.1) | 19.5 (2.1) | 12.4 (2.1) | n.s. | Non-sensitive |
Survival | 100 | 100 | 100 | 100 | n.s. | |||
Balbisia peduncularis | 9 | Growth | 8.1 (2.7) | 3.1 (2.7) | 7.6 (2.7) | 6.2 (2.7) | n.s. | Non-sensitive |
Survival | 77.8 | 66.7 | 100 | 100 | n.s. | |||
Encelia canescens | 12 | Growth | 0.9 (2.9) | 4.1 (2.9) | 5.4 (2.9) | 2.9 (3.1) | n.s. | Non-sensitive |
Survival | 41.7 | 58.3 | 75.0 | 63.3 | n.s. | |||
Sphaeralcea obtusiloba | 8 | Growth | 13.9 (3.0) | 16.0 (3.5) | 7.9 (3.0) | 11.2 (3.0) | n.s. | Non-sensitive |
Survival | 100 | 100 | 87.5 | 100 | n.s. |
Species | N | Effect Intra-Subject | Contrast Intra-Subject | Effect Inter-Subject | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TIME | TIME × TREAT | TIME | TIME × TREAT | TREAT | |||||||
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | ||
Andeimalva chilensis | 18 | 41.43 | *** | 4.00 | ** | 79.58 | *** | 5.37 | ** | 4.78 | ** |
Baccharis linearis | 6 | 36.96 | *** | 2.61 | * | 63.80 | *** | 2.67 | n.s. | 2.68 | n.s. |
Balbisia peduncularis | 9 | 7.71 | ** | 1.62 | n.s. | 17.03 | *** | 1.71 | n.s. | 0.70 | n.s. |
Cistanthe laxiflora | 12 | 10.09 | ** | 0.29 | n.s. | 10.24 | ** | 0.11 | n.s. | 3.61 | * |
Colliguaja odorifera | 6 | 4.34 | * | 3.21 | * | 6.04 | * | 4.88 | * | 3.80 | * |
Encelia canescens | 12 | 12.25 | *** | 0.97 | n.s. | 20.26 | *** | 0.57 | n.s. | 0.74 | n.s. |
Nasella laevissima | 12 | 30.19 | *** | 3.53 | ** | 33.20 | *** | 0.34 | n.s. | 11.33 | *** |
Puya alpestri | 6 | 13.82 | *** | 5.74 | *** | 18.74 | *** | 5.48 | ** | 3.55 | * |
Puya coerulea | 6 | 7.71 | ** | 2.60 | n.s. | 18.19 | *** | 6.30 | ** | 6.10 | ** |
Senna cumingii | 9 | 7.59 | ** | 2.33 | n.s. | 10.35 | ** | 2.37 | n.s. | 4.71 | ** |
Sphaeralcea obtusiloba | 8 | 19.65 | *** | 3.38 | ** | 27.26 | *** | 5.06 | ** | 1.2 | n.s. |
Vachelia caven | 6 | 20.31 | *** | 4.59 | ** | 47.77 | *** | 6.92 | ** | 7.59 | ** |
Non-woody | 35 | 21.03 | *** | 1.45 | n.s. | 34.11 | *** | 0.09 | n.s. | 8.63 | *** |
Woody | 75 | 63.15 | *** | 8.27 | *** | 46.97 | *** | 7.44 | *** | 5.73 | *** |
Species | Family | Life Form | Criteria | |||
---|---|---|---|---|---|---|
Environmental | Aesthetic | Cultural | Management | |||
Cistanthe laxiflora | Montiaceae | Perennial herb | Endemic. Tolerant of saline soils, poor in nutrients, and low moisture. Flowers attract native pollinators | Pink fuchsia flowers in spring and summer | No information | Plant in full sun in association with many species |
Nasella laevissima | Poaceae | Perennial herb | Endemic. Tolerant in low-moisture soils and poor in nutrients and eroded. | Species with diverse shapes, colors, and subject to the wind | No information | Plant in full sun. Fast growth rate |
Andeimalva chilensis | Malvaceae | Shrub | Endemic. Tolerant of saline soils, poor in nutrients, and low moisture. Attracts a diversity of floral fauna. | Extensive pink coloration and attractive appearance of flowering | No information | Plant in full sun, tolerates pruning, and resistant to pests and diseases |
Colliguaja odorifera | Euphorbiaceae | Shrub | Endemic. Tolerant in low-moisture soils and poor in nutrients. | Edges of leaves and flowers are reddish in color. Ballistic seed dispersal | Medicinal. Insecticide. Dyeing. Handcrafted | Plant in full sun. Fast growth rate, resists pruning |
Puya alpestri | Bromeliaceae | Perennial herb | Endemic. Tolerant in low-moisture soils and poor in nutrients. Attracts hummingbirds and butterflies | Attractive colors, textures, structure, and shapes of the plant. Flowers in spring and fruits in summer | Edible | Plant in full sun and resists pruning |
Puya coerulea | Bromeliaceae | Perennial herb | Endemic. Tolerant in low-moisture soils and poor in nutrients. Attracts hummingbirds and butterflies | Attractive colors, textures, structure, and shapes of the plant. Flowers in spring and fruits in summer | No information | Plant in full sun and resists pruning |
Senna cumingii | Fabaceae | Shrub | Endemic. Tolerant of saline soils, poor in nutrients, low moisture and fixes nitrogen | Golden yellow flowers in spring and summer | No information | Plant in full sun |
Vachelia caven | Fabaceae | Tree | Endemic. Tolerant of saline soils, poor in nutrients, low moisture and fixes nitrogen. Attracts birds | A variety of colors throughout the year | Edible. Medicinal. Fuel. Handcrafted. Dye | Plant in full sun. Fast growth rate |
Baccharis linearis | Asteraceae | Shrub | Native. Tolerant in low-moisture soils and eroded. Attracts pollinators | Attractive colors, textures, structure, and shapes of the plant | Medicinal | Plant in full sun. Fast growth rate, tolerates pruning, and resistant to pests and diseases |
Balbisia peduncularis | Vivianiaceae | Shrub | Native. Tolerant of saline soils, poor in nutrients, and low moisture. | Attractive flowers in spring and summer. | No information. | Plant in full sun. |
Encelia canescens | Asteraceae | Shrub | Native. Tolerant in low-moisture soils and poor in nutrients. Attracts native pollinating bees | Yellow flowers in spring and fall | No information | Plant in full sun. Fast growth rate |
Sphaeralcea obtusiloba | Malvaceae | Shrub | Endemic. Tolerant in low-moisture soils and poor in nutrients. Attracts native pollinating bees | Lilac flowers in spring and fall. Attractive colors, textures, and shapes of the foliage | Medicinal | Plant in full sun. Fast growth rate and resistant to pests |
UCEN | UTEM | |||
---|---|---|---|---|
Average irrigation (L/m2/day) | 13.3 | 1.4 | 10.1 | 1.7 |
Initial date | 23 November 2024 | 2 December 2024 | 2 December 2024 | 2 December 2024 |
Final date | 19 March 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa, J.A.; Chandía-Jaure, R.; Cataldo-Cunich, A.; Cárdenas Muñoz, S.; Fernández Cano, F. Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile. Plants 2025, 14, 3025. https://doi.org/10.3390/plants14193025
Figueroa JA, Chandía-Jaure R, Cataldo-Cunich A, Cárdenas Muñoz S, Fernández Cano F. Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile. Plants. 2025; 14(19):3025. https://doi.org/10.3390/plants14193025
Chicago/Turabian StyleFigueroa, Javier A., Rosa Chandía-Jaure, Andrés Cataldo-Cunich, Sergio Cárdenas Muñoz, and Francisca Fernández Cano. 2025. "Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile" Plants 14, no. 19: 3025. https://doi.org/10.3390/plants14193025
APA StyleFigueroa, J. A., Chandía-Jaure, R., Cataldo-Cunich, A., Cárdenas Muñoz, S., & Fernández Cano, F. (2025). Native Plants Can Strengthen Urban Green Infrastructure: An Experimental Case Study in the Mediterranean-Type Region of Central Chile. Plants, 14(19), 3025. https://doi.org/10.3390/plants14193025