Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,450)

Search Parameters:
Keywords = urban concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3024 KiB  
Article
Evaluating Emissions from Select Urban Parking Garages in Cincinnati, OH, Using Portable Sensors and Their Potentials for Sustainability Improvement
by Alyssa Yerkeson and Mingming Lu
Sustainability 2025, 17(15), 7108; https://doi.org/10.3390/su17157108 - 5 Aug 2025
Abstract
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. [...] Read more.
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. In this study, the air quality in three urban garages was investigated with portable instruments at the entrance and exit gates and inside the garages. Garage emissions measured include CO2, PM2.5, PM10, NO2, and total VOCs. The results suggested that the PM2.5 levels in these garages tend to be higher than the ambient levels. The emissions also exhibit seasonal variations, with the highest concentrations occurring in the summer, which are 20.32 µg/m3 in Campus Green, 14.25 µg/m3 in CCM, and 15.23 µg/m3 in Washington Park garages, respectively. PM2.5 measured from these garages is strongly correlated (with an R2 of 0.64) with ambient levels. CO2 emissions are higher than ambient levels but within the indoor air quality limit. This suggests that urban garages in Cincinnati tend to enrich ambient air concentrations, which can affect garage users and garage attendants. Portable sensors are capable of long-term emission monitoring and are compatible with other technologies in smart garage development. With portable air sensors becoming increasingly accessible and affordable, there is an opportunity to integrate these devices with smart garage management systems to enhance the sustainability of parking garages. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

14 pages, 8210 KiB  
Article
Effects of Forest Environments in Attenuating D-Galactose-Induced Immunosenescence: Insights from a Murine Model
by Yanling Li and Xiaocong Li
Biology 2025, 14(8), 998; https://doi.org/10.3390/biology14080998 (registering DOI) - 5 Aug 2025
Viewed by 23
Abstract
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the [...] Read more.
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the differential impacts of urban forest versus urban environments on immunosenescence using a D-galactose-induced murine model. Mice were assigned to urban or forest environments for 8 weeks, with serum cytokines (IL-2, IL-6, TNF-α, IFN-γ), T-cell subsets, and organ indices analyzed. Forest environments exhibited significantly higher humidity and negative air ion concentrations alongside lower noise levels compared to urban settings. Aged forest-exposed mice showed attenuated immunosenescence markers, including significantly lower IL-6 levels (p < 0.01) and improved thymic indices, suggesting urban forest environments may mitigate immune decline. These findings highlight the potential of urban forests in promoting healthy aging, advocating for their integration into urban planning. Further human studies are warranted to translate these findings into public health strategies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

14 pages, 2981 KiB  
Article
LAMP-Based 4-Channel Microfluidic Chip for POCT Detection of Influenza A H1N1, H3N2, and Influenza B Victoria Viruses
by Xue Zhao, Jiale Gao, Yijing Gu, Zheng Teng, Xi Zhang, Huanyu Wu, Xin Chen, Min Chen and Jilie Kong
Biosensors 2025, 15(8), 506; https://doi.org/10.3390/bios15080506 - 4 Aug 2025
Viewed by 184
Abstract
Background: Influenza viruses are major pathogens responsible for respiratory infections and pose significant risks to densely populated urban areas. RT-qPCR has made substantial contributions in controlling virus transmission during previous COVID-19 epidemics, but it faces challenges in terms of detection time for [...] Read more.
Background: Influenza viruses are major pathogens responsible for respiratory infections and pose significant risks to densely populated urban areas. RT-qPCR has made substantial contributions in controlling virus transmission during previous COVID-19 epidemics, but it faces challenges in terms of detection time for large sample sizes and susceptibility to nucleic acid contamination. Methods: Our study designed loop-mediated isothermal amplification primers for three common influenza viruses: A/H3N2, A/H1N1, and B/Victoria, and utilized a 4-channel microfluidic chip to achieve simultaneous detection. The chip initiates amplification by centrifugation and allows testing of up to eight samples at a time. Results: By creating a closed amplification system in the microfluidic chip, aerosol-induced nucleic acid contamination can be prevented through physically isolating the reaction from the operating environment. The chip can specifically detect A/H1N1, A/H3N2, and B/Victoria and has no signal for other common respiratory viruses. The testing process can be completed within 1 h and can be sensitive to viral RNA at concentrations as low as 10−3 ng/μL for A/H1N1 and A/H3N2 and 10−1 ng/μL for B/Victori. A total of 296 virus swab samples were further analyzed using the microfluidic chip method and compared with the classical qPCR method, which resulted in high consistency. Conclusions: Our chip enables faster detection of influenza virus and avoids nucleic acid contamination, which is beneficial for POCT establishment and has lower requirements for the operating environment. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

16 pages, 3581 KiB  
Article
Safety Equipment Planning Through Experimental Analysis of Hydrogen Leakage and Ventilation in Enclosed Spaces
by Hee-La Jang, Hyeon-Seok Seo, Hong-Cheol Shin and In-Ju Hwang
Sustainability 2025, 17(15), 7070; https://doi.org/10.3390/su17157070 - 4 Aug 2025
Viewed by 116
Abstract
In South Korea, securing ground space for installing hydrogen refueling stations in urban areas is challenging due to limited ground space and high-density development. Safety concerns for hydrogen systems in enclosed urban environments also require careful consideration. To address this issue, this study [...] Read more.
In South Korea, securing ground space for installing hydrogen refueling stations in urban areas is challenging due to limited ground space and high-density development. Safety concerns for hydrogen systems in enclosed urban environments also require careful consideration. To address this issue, this study explored a method of undergrounding hydrogen infrastructure as a solution for urban hydrogen charging stations. This study examined the characteristics of hydrogen diffusion and concentration reduction under leakage conditions within a confined hydrogen infrastructure, focusing on key safety systems, including emergency shut-off valves (ESVs) and ventilation fans. We discovered that the ESV reduced hydrogen concentration by over 80%. Installing two or more ventilation fans arranged horizontally improves airflow and enhances ventilation efficiency. Moreover, increasing the number of fans reduces stagnant zones within the space, effectively lowering the average hydrogen concentration. Full article
Show Figures

Figure 1

22 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Viewed by 109
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Viewed by 90
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 239
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 238
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

27 pages, 22029 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 - 1 Aug 2025
Viewed by 171
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 - 1 Aug 2025
Viewed by 205
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

12 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 248
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

44 pages, 58273 KiB  
Article
Geological Hazard Susceptibility Assessment Based on the Combined Weighting Method: A Case Study of Xi’an City, China
by Peng Li, Wei Sun, Chang-Rao Li, Ning Nan and Sheng-Rui Su
Geosciences 2025, 15(8), 290; https://doi.org/10.3390/geosciences15080290 - 1 Aug 2025
Viewed by 245
Abstract
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an [...] Read more.
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an innovative combined weighting method, integrating subjective weights from the hierarchical analysis method and objective weights from the entropy method, as well as an information value model for susceptibility assessment. The main results are as follows: (1) There are 787 hazard points—landslides/collapses are concentrated in loess areas and Qinling foothills, while subsidence/fissures are concentrated in plains. (2) The combined weighting method effectively overcame the limitations of single methods. (3) Validation using hazard density and ROC curves showed that the combined weighting information value model achieved the highest accuracy (AUC = 0.872). (4) The model was applied to classify the disaster susceptibility of Xi’an into high (12.31%), medium (18.68%), low (7.88%), and non-susceptible (61.14%) zones. The results are consistent with the actual distribution of disasters, thus providing a scientific basis for disaster prevention. Full article
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 242
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

Back to TopTop