Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = uracil derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 879 KB  
Communication
1H NMR for Comparative Metabolic Analysis of Whey and WPC-80
by Ingrid Sousa, Gaia Meoni, Leonardo Tenori, Marta Pozza, Massimo De Marchi and Giovanni Niero
Metabolites 2025, 15(12), 770; https://doi.org/10.3390/metabo15120770 - 28 Nov 2025
Viewed by 524
Abstract
Background/Objectives: Metabolites are low-molecular-weight organic compounds (<1 kDa) that act as intermediates and end products of cellular metabolism. Their characterization provides valuable information on the nutritional quality, functionality, and potential health impacts of food products. In the dairy sector, proton nuclear magnetic resonance [...] Read more.
Background/Objectives: Metabolites are low-molecular-weight organic compounds (<1 kDa) that act as intermediates and end products of cellular metabolism. Their characterization provides valuable information on the nutritional quality, functionality, and potential health impacts of food products. In the dairy sector, proton nuclear magnetic resonance (1H NMR) spectroscopy has emerged as a powerful tool for metabolite profiling, enabling the simultaneous identification and quantification of diverse compounds. In this study, 1H NMR was applied to characterize and compare the metabolic composition of whey, a major by-product of cheese and yogurt production, and whey protein concentrate (WPC-80), a whey derivative containing approximately 80% protein by weight and rich in essential amino acids. Methods: Five whey and four WPC-80 samples from a single Parmigiano Reggiano dairy plant were collected, each representing a biologically independent sample. Statistical evaluation was performed using Mann–Whitney U tests to identify significantly different metabolites between groups, while principal component analysis and partial least squares discriminant analysis were employed to assess group separation and determine discriminant metabolites. Results: The results revealed marked compositional differences: whey was higher in dimethyl sulfone, succinate, orotate, fumarate, and lactose (p < 0.05), whereas WPC-80 contained significantly higher levels of histidine, formate, glucose + glucose-6-phosphate, acetate, and choline (p < 0.05). Moreover, metabolites such as hippurate, valine, lactate + threonine, and uracil were exclusively found on whey and not in WPC-80, likely due to processing steps such as ultrafiltration. Conclusions: These findings highlight the metabolic distinctions introduced by WPC-80 processing from Parmigiano Reggiano whey and provide insights into the nutritional and functional characteristics of whey-derived products. Such knowledge can inform the design of innovative dairy ingredients and functional foods, with potential benefits for both industry applications and consumer health. Full article
(This article belongs to the Section Metabolomic Profiling Technology)
Show Figures

Figure 1

17 pages, 3970 KB  
Article
Study of the Influence of Melamine and Expanded Graphite on Selected Properties of Polyurethane Foams Based on Uracil Derivatives
by Elżbieta Chmiel-Szukiewicz and Joanna Paciorek-Sadowska
Polymers 2025, 17(19), 2610; https://doi.org/10.3390/polym17192610 - 26 Sep 2025
Viewed by 543
Abstract
Polyurethane foams containing heterocyclic rings are characterized by high thermal resistance, but unfortunately, they are flammable. This work examined the effect of halogen-free flame retardants such as melamine and expanded graphite: EG 096 and EG 290 on the properties of foams with a [...] Read more.
Polyurethane foams containing heterocyclic rings are characterized by high thermal resistance, but unfortunately, they are flammable. This work examined the effect of halogen-free flame retardants such as melamine and expanded graphite: EG 096 and EG 290 on the properties of foams with a 1,3-pyrimidine ring. Oligoetherol obtained from 6-aminouracil, ethylene carbonate, and propylene oxide was foamed with polymeric diphenylmethane 4,4′-diisocyanate with the addition of flame retardants. The oxygen index was determined, and flammability tests were conducted on the resulting foams. Their apparent density, water absorption, thermal resistance, thermal conductivity coefficient, and compressive strength were also examined. Both melamine and expanded graphite significantly reduce the flammability of foams. The resulting foams are classified as V-0 flammability class, and their oxygen index is in the range of 24.9–29.5 vol.%. Expanded graphite is a better flame retardant and does not cause deterioration of other foam properties. Full article
(This article belongs to the Special Issue Biopolymers and Bio-Based Polymer Composites, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 2802 KB  
Communication
Investigation of the Cytotoxicity of Cu(II), Au(III), and Pd(II) Complexes with 2,4-Dithiouracil and 6-Propyl-2-thiouracil Derivatives
by Petya Marinova, Denica Blazheva, Aleksandar Slavchev and Petia Genova-Kalou
BioTech 2025, 14(3), 53; https://doi.org/10.3390/biotech14030053 - 1 Jul 2025
Viewed by 999
Abstract
This study investigates the cytotoxic properties of metal complexes incorporating thio-uracil derivatives, specifically 2,4-dithiouracil and 6-propyl-2-thiouracil. The research focuses on the cytotoxic effects of Cu(II) and Pd(II) complexes with 6-propyl-2-thiouracil, as well as mixed-ligand transition metal Cu(II) and Au(III) complexes of 2,4-dithiouracil with [...] Read more.
This study investigates the cytotoxic properties of metal complexes incorporating thio-uracil derivatives, specifically 2,4-dithiouracil and 6-propyl-2-thiouracil. The research focuses on the cytotoxic effects of Cu(II) and Pd(II) complexes with 6-propyl-2-thiouracil, as well as mixed-ligand transition metal Cu(II) and Au(III) complexes of 2,4-dithiouracil with 2-thiouracil and uracil. Cytotoxic activity was assessed against human cervical carcinoma cells (HeLa) and normal kidney cells from the African green monkey. The results demonstrated that incorporating Cu(II) and Au(III) into the compound structures significantly enhanced their cytotoxic effects. Notably, all tested complexes exhibited a stronger inhibitory effect on cancer cell proliferation compared to normal cells, with the palladium(II) complex of 6-propyl-2-thiouracil showing the lowest CD50 value against the tumor cell line (0.00064 mM), which were 149 times lower than that of the ligand (0.0955 mM). These findings suggest that thio-uracil-based metal complexes, particularly those containing palladium (II) and gold(III), hold significant potential for further development as anticancer agents. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Graphical abstract

18 pages, 2193 KB  
Article
Hybrid Uracil Derivatives with Caffeine and Gramine Obtained via Click Chemistry as Potential Antioxidants and Inhibitors of Plant Pathogens
by Milda Szlaużys, Kamil Ostrowski, Damian Nowak, Wiesław Prukała, Justyna Starzyk, Beata Jasiewicz and Lucyna Mrówczyńska
Molecules 2025, 30(13), 2714; https://doi.org/10.3390/molecules30132714 - 24 Jun 2025
Viewed by 1121
Abstract
A series of novel hybrid uracil derivatives incorporating the natural alkaloids caffeine or gramine, linked via 1,2,3-triazole ring, were synthetized using click chemistry. The structures of the obtained compounds were confirmed by spectroscopic methods, including 1H NMR, 13C NMR, FT-IR, and [...] Read more.
A series of novel hybrid uracil derivatives incorporating the natural alkaloids caffeine or gramine, linked via 1,2,3-triazole ring, were synthetized using click chemistry. The structures of the obtained compounds were confirmed by spectroscopic methods, including 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The biological activity of hybrids was evaluated in vitro, including assessments of hemolytic activity, antioxidant potential, antifungal efficacy, and antibacterial activity. Additionally, molecular docking studies were conducted in silico for the most active antioxidant candidate. The results revealed that the hemocompatibility of the derivatives was structure-dependent. While caffeine-containing hybrids exhibited moderate-to-low cytoprotective activity under oxidative stress conditions, those incorporating gramine showed significantly higher potency. A plausible molecular mechanism underlying their cytoprotective activity is proposed. Several compounds also inhibited the growth of the plant pathogens Fusarium culmorum and Botrytis cinerea. The promising antioxidant and antifungal properties of selected uracil–alkaloid hybrids highlight their potential as multifunctional bioactive compounds for managing oxidative stress and controlling plant pathogens. Furthermore, the finding demonstrates the effectiveness of click chemistry as a versatile tool for the synthesis of bioactive heterocyclic compounds. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

22 pages, 2043 KB  
Article
5′-Guanidino Xylofuranosyl Nucleosides as Novel Types of 5′-Functionalized Nucleosides with Biological Potential
by Jennifer Szilagyi, Tânia Moreira, Rafael Santana Nunes, Joana Silva, Celso Alves, Alice Martins, Rebeca Alvariño, Niels V. Heise, René Csuk and Nuno M. Xavier
Pharmaceuticals 2025, 18(5), 734; https://doi.org/10.3390/ph18050734 - 16 May 2025
Cited by 1 | Viewed by 1314
Abstract
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted [...] Read more.
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted xylofuranosyl nucleosides and 5-guanidine xylofuranose derivatives, we present herein the synthesis and biological evaluation of 5′-guanidino furanosyl nucleosides comprising 6-chloropurine and uracil moieties and a 3-O-benzyl xylofuranosyl unit. Methods: The synthetic methodology was based on the N-glycosylation of a 5-azido 3-O-benzyl xylofuranosyl acetate donor with the silylated nucleobase and a subsequent one-pot sequential two-step protocol involving Staudinger reduction of the thus-obtained 5-azido uracil and N7/N9-linked purine nucleosides followed by guanidinylation with N,N′-bis(tert-butoxycarbonyl)-N′′-triflylguanidine. The molecules were evaluated for their anticancer and anti-neurodegenerative diseases potential. Results: 5′-Guanidino 6-chloropurine nucleosides revealed dual anticancer and butyrylcholinesterase (BChE)-inhibitory effects. Both N9/N7-linked nucleosides exhibited mixed-type and selective submicromolar/micromolar BChE inhibiton. The N9 regioisomer was the best inhibitor (Ki/Ki′ = 0.89 μM/2.96 μM), while showing low cytotoxicity to FL83B hepatocytes and no cytotoxicity to human neuroblastoma cells (SH-SY5Y). Moreover, the N9-linked nucleoside exhibited selective cytotoxicity to prostate cancer cells (DU-145; IC50 = 27.63 μM), while its N7 regioisomer was active against all cancer cells tested [DU-145, IC50 = 24.48 μM; colorectal adenocarcinoma (HCT-15, IC50 = 64.07 μM); and breast adenocarcinoma (MCF-7, IC50 = 43.67 μM)]. In turn, the 5′-guanidino uracil nucleoside displayed selective cytotoxicity to HCT-15 cells (IC50 = 76.02 μM) and also showed neuroprotective potential in a Parkinson’s disease SH-SY5Y cells’ damage model. The active molecules exhibited IC50 values close to or lower than those of standard drugs, and comparable, or not significant, neuro- and hepatotoxicity. Conclusions: These findings demonstrate the interest of combining guanidine moieties with nucleoside frameworks towards the search for new therapeutic agents. Full article
Show Figures

Graphical abstract

11 pages, 3528 KB  
Article
N4-Methylcytosine Supports the Growth of Escherichia coli Uracil Auxotrophs
by Jaunius Urbonavičius, Aušrinė Čekytė and Daiva Tauraitė
Int. J. Mol. Sci. 2025, 26(5), 1812; https://doi.org/10.3390/ijms26051812 - 20 Feb 2025
Cited by 2 | Viewed by 1357
Abstract
N4-methylcytosine is a modified heterocyclic base present both in RNA and DNA. The biosynthesis and function of this derivative are widely investigated. However, how the demethylation of this base occurs is not known. Here, we have investigated the growth of an [...] Read more.
N4-methylcytosine is a modified heterocyclic base present both in RNA and DNA. The biosynthesis and function of this derivative are widely investigated. However, how the demethylation of this base occurs is not known. Here, we have investigated the growth of an Escherichia coli uracil auxotroph strain in minimal M9 medium supplemented with N4-methylcytosine. We have found that this compound, but not the related N4,N4-dimethylcytosine, well supports growth with a generation time of the bacterium being 3 h compared to 1.5 h for media supplemented with cytosine or uracil. Using high-performance liquid chromatography (HPLC), we have demonstrated that the concentration of N4-methylcytosine in the growth medium decreases by 12% after 24 h of growth. We have shown that N4-methylcytosine is not directly converted into uracil by E. coli CodA cytosine deaminase. Instead, we propose the enzymatic pathway in which N4-methylcytosine is converted into cytosine by yet unknown demethylase, whereas CodA converts the resulting cytosine to uracil, thereby supporting the growth. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

24 pages, 1331 KB  
Article
Acid-Base Equilibria for Tautomeric Heterocycles in the Gas-Phase: A Case of Uracil
by Ewa Daniela Raczyńska
Symmetry 2025, 17(2), 177; https://doi.org/10.3390/sym17020177 - 24 Jan 2025
Cited by 1 | Viewed by 1536
Abstract
Prototropic conversion (prototropy) for heterocyclic nucleobases was already signaled by Watson and Crick about seventy years ago as one of the reasons for nucleic acids mutations. This isomeric phenomenon has been investigated for neutral derivatives by means of both experimental and theoretical procedures, [...] Read more.
Prototropic conversion (prototropy) for heterocyclic nucleobases was already signaled by Watson and Crick about seventy years ago as one of the reasons for nucleic acids mutations. This isomeric phenomenon has been investigated for neutral derivatives by means of both experimental and theoretical procedures, and their favored tautomers discussed in numerous articles published in the last fifty years. Protonation/deprotonation reactions in the gas phase have also been studied using both quantum-chemical calculations and experimental techniques. Some thermochemical parameters of these processes have been documented. However, prototropy has not always been taken into account in protonation/deprotonation reactions. Most frequently, tautomeric heterocycles have been treated as simple polyfunctional compounds without possible intramolecular protontransfers. Taking into account the lack of data for the complete tautomeric mixtures, quantum-chemical investigations have been undertaken by us about twenty-five years ago for prototropic heterosystems. In this work, the pyrimidine base uracil (U) was chosen. It possesses two identical exo groups (=O/OH) at the 2- and 4-positions, two labile (tautomeric) protons, and five conjugated sites (N1, N3, C5, O7, and O8). Different types of isomerism, prototropy and OH-rotation, were considered for the neutral, protonated, and deprotonated forms. Using quantum-chemical methods, thermochemical stabilities of all possible tautomers-rotamers were examined in vacuo and the potential isomers selected. The selected isomeric mixtures for the neutral and ionic forms were applied for the determination of the thermochemical parameters in the four-step acid/base equilibria: B2− BH BH2 BH3+ BH42+, where BH2 indicates U. For each step, the microscopic (kinetic) and macroscopic (thermodynamic) acid/base parameters were estimated, and sites of the proton gain and proton loss examined. The similarities and differences between the acid/base equilibria for uracil and other pyrimidine nucleobases were discussed. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

12 pages, 3504 KB  
Article
Metabolomic Profiling of Tenebrio molitor Reared on Chestnut Shell-Enriched Substrate Using NMR Spectroscopy
by Irene Ferri, Mattia Spano, Matteo Dell’Anno, Luisa Mannina and Luciana Rossi
Foods 2024, 13(23), 3757; https://doi.org/10.3390/foods13233757 - 24 Nov 2024
Cited by 1 | Viewed by 1760
Abstract
The aim of this study was to evaluate the metabolomic profile of T. molitor larvae reared on the following innovative growth substrates: wheat bran (control, CTRL); wheat bran supplemented with 12.5% w/w chestnut shell (TRT1); and wheat bran supplemented with 25% [...] Read more.
The aim of this study was to evaluate the metabolomic profile of T. molitor larvae reared on the following innovative growth substrates: wheat bran (control, CTRL); wheat bran supplemented with 12.5% w/w chestnut shell (TRT1); and wheat bran supplemented with 25% w/w chestnut shell (TRT2) for 14 days of trial. At the end of this experiment, larvae were transformed into insect meals for nutritional characterization. Nuclear Magnetic Resonance (NMR) spectroscopy was carried out to evaluate the metabolomic profile of organic acids, sugars, nitrogen bases and derivates, fatty acids, and other compounds. Chemical analysis showed an increased level of crude protein in TRT1 compared to CTRL and TRT2 (p = 0.0391). The metabolite profiles of TRT1 and TRT2 were similar to each other but distinct from those of the CTRL group. Notably, larvae enriched with chestnut shells revealed the presence of uracil, uridine, and glucose, while fumarate was absent. The enrichment analysis showed that in TRT1 and TRT2, the glyoxylate and dicarboxylate metabolism was more relevant compared to CTRL. These findings indicate that chestnut shell inclusion affects the larvae metabolism of T. molitor and demonstrates the effectiveness of NMR spectroscopy in revealing a relation between insect metabolism and growth substrate. Full article
(This article belongs to the Special Issue Discovery and Valorization of New Food Matrices)
Show Figures

Figure 1

5 pages, 1213 KB  
Proceeding Paper
Molecular Docking/ADME-TOX-Based Analysis for New Anti-Colorectal Cancer Through Peroxiredoxin 1 Inhibition
by Imane Bensahbane, Nadjib Melkemi, Ismail Daoud and Faiza Asli
Chem. Proc. 2024, 16(1), 56; https://doi.org/10.3390/ecsoc-28-20215 - 14 Nov 2024
Viewed by 975
Abstract
Colorectal cancer ranks as the third most prevalent form of cancer on a global scale. The abnormal expression of Peroxiredoxin 1, or PRDX1, plays an important role in cancer progression and tumor cell survival. This makes inhibiting this protein a promising target for [...] Read more.
Colorectal cancer ranks as the third most prevalent form of cancer on a global scale. The abnormal expression of Peroxiredoxin 1, or PRDX1, plays an important role in cancer progression and tumor cell survival. This makes inhibiting this protein a promising target for colorectal cancer treatment. In order to develop effective PRDX1 inhibitors, a drug design investigation based on computational methods was carried out using a collection of recently synthesized compounds derived from two main chemical base structures: C-5 sulfenylated amino uracils and 1,2,3-triazole benzothiazole derivatives. To obtain the PRDX1 protein PDB ID: 7WET, molecular docking was performed on the studied compounds in combination with PRDX1. The 1,2,3-triazole benzothiazole derivatives showed interesting docking results. For instance, nine promising candidates were distinguished by their formation of better stable complexes with PRDX1 in terms of E (binding) from −7.0 to −7.3 kcal/mol, namely, 7WET-L18, 7WET-L17, 7WET-L25, 7WET-L19, 7WET-L20, 7WET-L26, 7WET-L22, 7WET-L23, and 7WET-L24, as well as an E of −6.8 kcal/mol for Celastrol, a known PRDX1 inhibitor. Moreover, an extensive evaluation of ADME-TOX was performed to predict the pharmacokinetic, pharmacodynamic, and toxicological properties of the compounds studied. The findings offer significant support for the prospective application of these analogs in the fight against colorectal cancer. Full article
Show Figures

Figure 1

18 pages, 1404 KB  
Article
Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds
by Selma Zukić, Amar Osmanović, Anja Harej Hrkać, Sandra Kraljević Pavelić, Selma Špirtović-Halilović, Elma Veljović, Sunčica Roca, Snežana Trifunović, Davorka Završnik and Uko Maran
Int. J. Mol. Sci. 2024, 25(17), 9390; https://doi.org/10.3390/ijms25179390 - 29 Aug 2024
Cited by 5 | Viewed by 3357
Abstract
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization [...] Read more.
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization and predictive capabilities in the search for new active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were collected and curated. A workflow was developed for data-driven machine learning QSAR using an intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly externally validated against available data. Blind validation was also performed by synthesis and antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted with the QSAR model with differences of 0.02 compared to experimentally tested activity. Full article
Show Figures

Graphical abstract

16 pages, 2634 KB  
Article
Derivatives of Pyrimidine Nucleosides Affect Artificial Membranes Enriched with Mycobacterial Lipids
by Olga S. Ostroumova, Svetlana S. Efimova, Polina D. Zlodeeva, Liudmila A. Alexandrova, Dmitry A. Makarov, Elena S. Matyugina, Vera A. Sokhraneva, Anastasia L. Khandazhinskaya and Sergey N. Kochetkov
Pharmaceutics 2024, 16(9), 1110; https://doi.org/10.3390/pharmaceutics16091110 - 23 Aug 2024
Cited by 4 | Viewed by 1426
Abstract
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives [...] Read more.
The mechanisms of action of pyrimidine nucleoside derivatives on model lipid membranes of various compositions were studied. A systematic analysis of the tested agents’ effects on the membrane physicochemical properties was performed. Differential scanning microcalorimetry data indicated that the ability of nucleoside derivatives to disorder membrane lipids depended on the types of nucleoside bases and membrane-forming lipids. The 5′-norcarbocyclic uracil derivatives were found to be ineffective, while N4-alkylcytidines demonstrated the most pronounced effects, significantly decreasing the dipalmitoylphosphocholine melting temperature and cooperativity of phase transition. The elongation of hydrophobic acyl radicals potentiated the disordering action of N4-alkylcytidines, while an increase in hydrophilicity due to replacing deoxyribose with ribose inhibited this effect. The ability of compounds to form transmembrane pores was also tested. It was found that 5-alkyluridines produced single, ion-permeable pores in phosphatidylglycerol membranes, and that methoxy-mycolic acid and trehalose monooleate potentiated the pore-forming activity of alkyloxymethyldeoxyuridines. The results obtained open up perspectives for the development of innovative highly selective anti-tuberculosis agents, which may be characterized by a low risk of developing drug resistance due to the direct action on the membranes of the pathogen. Full article
(This article belongs to the Special Issue Bioactive Agents for the Treatment against Tuberculosis)
Show Figures

Graphical abstract

20 pages, 590 KB  
Article
Metabolite Predictors of Breast and Colorectal Cancer Risk in the Women’s Health Initiative
by Sandi L. Navarro, Brian D. Williamson, Ying Huang, G. A. Nagana Gowda, Daniel Raftery, Lesley F. Tinker, Cheng Zheng, Shirley A. A. Beresford, Hayley Purcell, Danijel Djukovic, Haiwei Gu, Howard D. Strickler, Fred K. Tabung, Ross L. Prentice, Marian L. Neuhouser and Johanna W. Lampe
Metabolites 2024, 14(8), 463; https://doi.org/10.3390/metabo14080463 - 20 Aug 2024
Cited by 5 | Viewed by 2977
Abstract
Metabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = [...] Read more.
Metabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = 758 controls with available specimens (collected mean 7.2 years prior to diagnosis) in the Women’s Health Initiative Bone Mineral Density subcohort. Fasting samples were analyzed by LC-MS/MS and lipidomics in serum, plus GC-MS and NMR in 24 h urine. For feature selection, we applied LASSO regression and Super Learner algorithms. Prediction models were subsequently derived using logistic regression and Super Learner procedures, with performance assessed using cross-validation (CV). For BC, metabolites did not increase predictive performance over established risk factors (CV-AUCs~0.57). For CRC, prediction increased with the addition of metabolites (median CV-AUC across platforms increased from ~0.54 to ~0.60). Metabolites related to energy metabolism: adenosine, 2-hydroxyglutarate, N-acetyl-glycine, taurine, threonine, LPC (FA20:3), acetate, and glycerate; protein metabolism: histidine, leucic acid, isoleucine, N-acetyl-glutamate, allantoin, N-acetyl-neuraminate, hydroxyproline, and uracil; and dietary/microbial metabolites: myo-inositol, trimethylamine-N-oxide, and 7-methylguanine, consistently contributed to CRC prediction. Energy metabolism may play a key role in the development of CRC and may be evident prior to disease development. Full article
(This article belongs to the Special Issue Metabolomics-Based Biomarkers for Nutrition and Health)
Show Figures

Graphical abstract

18 pages, 2438 KB  
Article
Novel Coumarin–Nucleobase Hybrids with Potential Anticancer Activity: Synthesis, In Vitro Cell-Based Evaluation, and Molecular Docking
by Maiara Correa de Moraes, Rafaele Frassini, Mariana Roesch-Ely, Favero Reisdorfer de Paula and Thiago Barcellos
Pharmaceuticals 2024, 17(7), 956; https://doi.org/10.3390/ph17070956 - 17 Jul 2024
Cited by 2 | Viewed by 1792
Abstract
A new series of compounds planned by molecular hybridization of the nucleobases uracil and thymine, or the xanthine theobromine, with coumarins, and linked through 1,2,3-triazole heterocycles were evaluated for their in vitro anticancer activity against the human tumor cell lines: colon carcinoma (HCT116), [...] Read more.
A new series of compounds planned by molecular hybridization of the nucleobases uracil and thymine, or the xanthine theobromine, with coumarins, and linked through 1,2,3-triazole heterocycles were evaluated for their in vitro anticancer activity against the human tumor cell lines: colon carcinoma (HCT116), laryngeal tumor cells (Hep-2), and lung carcinoma cells (A549). The hybrid compound 9a exhibited better activity in the series, showing an IC50 of 24.19 ± 1.39 μM against the HCT116 cells, with a selectivity index (SI) of 6, when compared to the cytotoxicity against the non-tumor cell line HaCat. The in silico search for pharmacological targets was achieved through molecular docking studies on all active compounds, which suggested that the synthesized compounds possess a high affinity to the Topoisomerase 1–DNA complex, supporting their antitumor activity. The in silico toxicity prediction studies suggest that the compounds present a low risk of causing theoretical mutagenic and tumorigenic effects. These findings indicate that molecular hybridization from natural derivative molecules is an interesting approach to seek new antitumor candidates. Full article
Show Figures

Graphical abstract

16 pages, 3402 KB  
Article
Repair and DNA Polymerase Bypass of Clickable Pyrimidine Nucleotides
by Anton V. Endutkin, Anna V. Yudkina, Timofey D. Zharkov, Alexander E. Barmatov, Daria V. Petrova, Daria V. Kim and Dmitry O. Zharkov
Biomolecules 2024, 14(6), 681; https://doi.org/10.3390/biom14060681 - 12 Jun 2024
Viewed by 1624
Abstract
Clickable nucleosides, most often 5-ethynyl-2′-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for [...] Read more.
Clickable nucleosides, most often 5-ethynyl-2′-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase β. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

16 pages, 2078 KB  
Article
Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1
by Daria V. Kim, Evgeniia A. Diatlova, Timofey D. Zharkov, Vasily S. Melentyev, Anna V. Yudkina, Anton V. Endutkin and Dmitry O. Zharkov
Int. J. Mol. Sci. 2024, 25(1), 64; https://doi.org/10.3390/ijms25010064 - 20 Dec 2023
Cited by 4 | Viewed by 3177
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave [...] Read more.
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent. Full article
(This article belongs to the Special Issue Stem Cell Technology and Genome Editing in Advanced Disease Modeling)
Show Figures

Figure 1

Back to TopTop