1H NMR for Comparative Metabolic Analysis of Whey and WPC-80
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nuclear Magnetic Resonance
2.3. Statistical Analysis
3. Results
3.1. Exploratory Data Analysis
3.2. Principal Component Analysis
3.3. Partial Least Squares-Discriminant Analysis
3.4. Equivalence Testing
4. Discussion
4.1. Differences in Metabolite Abundance Between Whey and WPC-80
4.2. PCA-Based Clustering and Key Metabolites Identified by PLS-DA in Whey and WPC-80
4.3. Practical Relevance via Equivalence Testing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 1D | One-dimensional |
| 1H NMR | Proton nuclear magnetic resonance |
| BCAAs | Branched-chain amino acids |
| LV | Latent variable |
| MS | Mass spectrometry |
| NOESY | Nuclear Overhauser Effect Spectroscopy |
| PCA | Principal component analysis |
| PC | Principal component |
| PLS-DA | Partial least squares discriminant analysis |
| TOST | Two One-Sided Tests |
| VIP | Variable Importance in Projection |
| WPC | Whey protein concentrate |
| WPC-80 | Whey protein concentrate at 80% |
| WPI | Whey protein isolate |
References
- Patel, S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. J. Funct. Foods 2015, 19, 308–319. [Google Scholar] [CrossRef]
- Das, B.; Bhattacharjee, S.; Bhattacharjee, C. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module. J. Inst. Eng. (India) Ser. E 2013, 94, 79–84. [Google Scholar] [CrossRef]
- Besediuk, V.; Yatskov, M.; Korchyk, N.; Kucherova, A.; Maletskyi, Z. Whey - From waste to a valuable resource. J. Agric. Food Res. 2024, 18, 101280. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Domingues, M.A.F.; Ohara, A.; Okuro, P.K.; dos Santos, J.G.; Brexó, R.P.; Sato, H.H. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Struct. 2017, 14, 17–29. [Google Scholar] [CrossRef]
- Kheto, A.; Adhikary, U.; Dhua, S.; Sarkar, A.; Kumar, Y.; Vashishth, R.; Shrestha, B.B.; Saxena, D.C. A review on advancements in emerging processing of whey protein: Enhancing functional and nutritional properties for functional food applications. Food Saf. Heal. 2024, 3, 23–45. [Google Scholar] [CrossRef]
- Brody, E.P. Biological activities of bovine glycomacropeptide. Br. J. Nutr. 2000, 84 (Suppl. 1), 39–46. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-L.; Zhang, F.; Luo, H.-Y.; Quan, Z.-W.; Wang, Y.-F.; Huang, L.-T.; Wang, J.-H. Improving sarcopenia in older adults: A systematic review and meta-analysis of randomized controlled trials of whey protein supplementation with or without resistance training. J. Nutr. Heal. Aging 2024, 28, 100184. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-B.; Park, J.-H.; Park, H.-S.; Kim, H.-J.; Park, J.-J. Effects of Whey Protein Supplement on 4-Week Resistance Exercise-Induced Improvements in Muscle Mass and Isokinetic Muscular Function under Dietary Control. Nutrients 2023, 15, 1003. [Google Scholar] [CrossRef]
- Ye, Y.; Fang, Y.; Engholm-Keller, K.; Bechshøft, M.R.; Chatterton, D.E.; Sangild, P.T.; Nguyen, D.N.; Bering, S.B.; Lund, M.N. Protein Digestibility and Anti-inflammatory Activity of Processed Whey Protein Ingredients for Infant Formula. J. Agric. Food Chem. 2025, 73, 5465–5476. [Google Scholar] [CrossRef]
- Gilmour, S.R.; Holroyd, S.E.; Fuad, M.D.; Elgar, D.; Fanning, A.C. Amino Acid Composition of Dried Bovine Dairy Powders from a Range of Product Streams. Foods 2024, 13, 3901. [Google Scholar] [CrossRef]
- Falkowski, M.; Maciejczyk, M.; Koprowicz, T.; Mikołuć, B.; Milewska, A.; Zalewska, A.; Car, H. Whey Protein Concentrate WPC-80 Improves Antioxidant Defense Systems in the Salivary Glands of 14-Month Wistar Rats. Nutrients 2018, 10, 782. [Google Scholar] [CrossRef]
- Ghini, V.; Meoni, G.; Vignoli, A.; Di Cesare, F.; Tenori, L.; Turano, P.; Luchinat, C. Fingerprinting and profiling in metabolomics of biosamples. Prog. Nucl. Magn. Reson. Spectrosc. 2023, 138-139, 105–135. [Google Scholar] [CrossRef]
- Gottstein, V.; Lachenmeier, D.W.; Kuballa, T.; Bunzel, M. 1H NMR-based approach to determine the geographical origin and cultivation method of roasted coffee. Food Chem. 2023, 433, 137278. [Google Scholar] [CrossRef]
- Krishnan, P.; Kruger, N.J.; Ratcliffe, R.G. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 2004, 56, 255–265. [Google Scholar] [CrossRef]
- Meoni, G.; Sousa, I.; Tenori, L.; Niero, G.; Pozza, M.; De Marchi, M.; Manuelian, C.L. A metabolic profiling approach to characterize and discriminate plant-based beverages and milk. J. Dairy Sci. 2025, 108, 5675–5695. [Google Scholar] [CrossRef]
- Tenori, L.; Santucci, C.; Meoni, G.; Morrocchi, V.; Matteucci, G.; Luchinat, C. NMR metabolomic fingerprinting distinguishes milk from different farms. Food Res. Int. 2018, 113, 131–139. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef]
- Meoni, G.; Tenori, L.; Luchinat, C. Nuclear Magnetic Resonance-Based Metabolomic Comparison of Breast Milk and Organic and Traditional Formula Milk Brands for Infants and Toddlers. OMICS A J. Integr. Biol. 2020, 24, 424–436. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.-M.; Xu, L.-Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
- Kombolo-Ngah, M.; Goi, A.; Santinello, M.; Rampado, N.; Atanassova, S.; Liu, J.; Faure, P.; Thoumy, L.; Neveu, A.; Andueza, D.; et al. Across countries implementation of handheld near-infrared spectrometer for the on-line prediction of beef marbling in slaughterhouse. Meat Sci. 2023, 200, 109169. [Google Scholar] [CrossRef] [PubMed]
- Pourmohamad, T.; Lee, H.K.H. Equivalence testing for multiple groups. Stat 2024, 13, e645. [Google Scholar] [CrossRef]
- Zacometti, C.; Khazzar, S.; Massaro, A.; Tata, A.; Riuzzi, G.; Piro, R.; Novelli, E.; Segato, S.; Balzan, S. DART-HRMS reveals metabolic changes of whey through microparticulation and fermentations. Appl. Food Res. 2024, 4, 100443. [Google Scholar] [CrossRef]
- Wang, W.-Q.; Li, J.-J.; Zhou, J.-Y.; Song, M.-X.; Wang, J.-C.; Li, X.; Tang, C.-C.; Lu, M.-L.; Gu, R.-X. The effect of ion environment changes on retention protein behavior during whey ultrafiltration process. Food Chem. X 2022, 15, 100393. [Google Scholar] [CrossRef]
- Wen-Qiong, W.; Yun-Chao, W.; Xiao-Feng, Z.; Rui-Xia, G.; Mao-Lin, L. Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chem. 2019, 289, 468–481. [Google Scholar] [CrossRef]
- Dullius, A.; Goettert, M.I.; de Souza, C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J. Funct. Foods 2018, 42, 58–74. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain2. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef]
- Trommelen, J.; Tomé, D.; van Loon, L.J. Gut amino acid absorption in humans: Concepts and relevance for postprandial metabolism. Clin. Nutr. Open Sci. 2021, 36, 43–55. [Google Scholar] [CrossRef]
- Whittier, E. The Solubility of Calcium Phosphate in Fresh Milk. J. Dairy Sci. 1929, 12, 405–409. [Google Scholar] [CrossRef]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- Karlsson, M.A.; Lundh, Å.; Innings, F.; Höjer, A.; Wikström, M.; Langton, M. The Effect of Calcium, Citrate, and Urea on the Stability of Ultra-High Temperature Treated Milk: A Full Factorial Designed Study. Foods 2019, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, C.; Li, T.; Ma, L.; Sun, D.; Hou, J.; Jiang, Z. Surface Hydrophobicity and Functional Properties of Citric Acid Cross-Linked Whey Protein Isolate: The Impact of pH and Concentration of Citric Acid. Molecules 2018, 23, 2383. [Google Scholar] [CrossRef] [PubMed]
- Nakrani, M.N.; Wineland, R.H.; Anjum, F. Physiology, Glucose Metabolism; StatPearls Publishing LLC: Tampa, FL, USA, 2023. [Google Scholar]
- Burns, B.C.; Belani, J.D.; Wittorf, H.N.; Brailoiu, E.; Brailoiu, G.C. Choline—An Essential Nutrient with Health Benefits and a Signaling Molecule. Int. J. Mol. Sci. 2025, 26, 7159. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Meoni, G.; Tenori, L.; Luchinat, C.; Visentin, G.; Callegaro, S.; Visentin, E.; Cassandro, M.; De Marchi, M.; Penasa, M. Grazing affects metabolic pattern of individual cow milk. J. Dairy Sci. 2022, 105, 9702–9712. [Google Scholar] [CrossRef]



| Metabolite (× 10−4) | Whey (n = 5) | WPC-80 (n = 4) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Minimum | Maximum | CV, % | Mean | Minimum | Maximum | CV, % | ||
| 2-Oxoglutarate | 0.53 | 0.457 | 0.618 | 11.79 | - | - | - | - | |
| 2-Oxoglutarate + Carnitine | 1.96 | 1.7 | 2.2 | 13.28 | - | - | - | - | |
| Acetate | 9.39 | 4.17 | 17.17 | 75.28 | 19.54 | 19.30 | 19.90 | 1.58 | |
| Alanine | 0.5 | 0.48 | 0.52 | 3.22 | - | - | - | - | |
| Carnitine | 0.139 | 0.081 | 0.188 | 29.33 | - | - | - | - | |
| Choline | 5.72 | 3.45 | 7.56 | 34.09 | 10.64 | 8.29 | 12.99 | 25.20 | |
| Cis-aconitate | 0.18 | 0.068 | 0.25 | 41.93 | 0.31 | 0.13 | 0.51 | 57.70 | |
| Citrate | 43.37 | 37.23 | 47.79 | 9.97 | - | - | - | - | |
| Dimethyl sulfone | 0.87 | 0.59 | 1.09 | 29.78 | 0.30 | 0.25 | 0.34 | 14.35 | |
| Ethanol | 0.31 | 0.080 | 0.52 | 51.55 | - | - | - | - | |
| Formate | 0.15 | 0.13 | 0.17 | 10.77 | 1.13 | 1.06 | 1.21 | 5.88 | |
| Fumarate | 0.20 | 0.12 | 0.33 | 53.88 | 0.03 | 0 | 0.07 | 115.94 | |
| Galactose | 10.59 | 10.35 | 10.88 | 2.32 | 10.33 | 9.23 | 11.64 | 12.01 | |
| Glucose + Glucose-6-Phosphate | 2.74 | 1.30 | 3.74 | 46.67 | 14.80 | 12.60 | 17.08 | 16.58 | |
| Glycerophosphocholine | 38.80 | 35.65 | 40.98 | 7.22 | - | - | - | - | |
| Hippurate | 1.05 | 0.73 | 1.49 | 37.52 | - | - | - | - | |
| Histidine | 0.23 | 0.21 | 0.26 | 9.17 | 5.01 | 4.25 | 6.03 | 16.71 | |
| Isoleucine | 0.022 | 0 | 0.044 | 94.35 | - | - | - | - | |
| Lactate + Threonine | 127.39 | 98.58 | 168.64 | 28.07 | - | - | - | - | |
| Lactose | 616.88 | 613.46 | 621.09 | 0.54 | 69.11 | 59.83 | 77.42 | 13.28 | |
| N-Acetyl carbohydrates | 28.57 | 24.34 | 31.82 | 13.30 | - | - | - | - | |
| O-Acetylcarnitina | 0.58 | 0.35 | 0.92 | 51.33 | - | - | - | - | |
| Orotate | 1.97 | 1.86 | 2.08 | 4.45 | 0.46 | 0.37 | 0.59 | 21.52 | |
| Phosphocreatine + Creatine | 10.58 | 10.19 | 10.89 | 2.95 | - | - | - | - | |
| Phenylalanine | 0.046 | 0.018 | 0.068 | 44.20 | - | - | - | - | |
| Succinate | 3.19 | 3.08 | 3.32 | 3.50 | 0.99 | - | 1.94 | 109.04 | |
| Trans-aconitate | 0.07 | 0.026 | 0.11 | 50.80 | - | - | - | - | |
| Tyrosine | 0.059 | 0 | 0.103 | 67.44 | - | - | - | - | |
| Uracil | 0.066 | 0 | 0.091 | 57.17 | - | - | - | - | |
| Valine | 0.21 | 0.189 | 0.24 | 9.25 | - | - | - | - | |
| Metabolite | VIP | LV1 | LV2 | Metabolite | VIP | LV1 | LV2 |
|---|---|---|---|---|---|---|---|
| 2-Oxoglutarate | 1.104 | −0.20 | −0.02 | Hippurate | 1.103 | −0.20 | −0.01 |
| 2-Oxoglutarate and Carnitine | 1.104 | −0.20 | −0.02 | Histidine | 1.102 | 0.20 | 0.02 |
| Acetate | 0.748 | 0.14 | 0.30 | Isoleucine | 0.700 | −0.13 | −0.19 |
| Alanine | 1.105 | −0.20 | −0.03 | Lactate + Threonine | 1.104 | −0.20 | −0.02 |
| Carnitine | 1.103 | −0.20 | −0.06 | Lactose | 1.102 | −0.20 | −0.03 |
| Choline | 0.830 | 0.15 | −0.18 | N-Acetyl carbohydrates | 1.104 | −0.20 | −0.04 |
| Cis-aconitate | 0.484 | 0.09 | −0.39 | O-Acetylcarnitine | 1.101 | −0.20 | 0.00 |
| Citrate | 1.105 | −0.20 | −0.03 | Orotate | 1.091 | −0.20 | 0.00 |
| Dimethylsulfone | 1.008 | −0.18 | −0.23 | PCr + Creatine | 1.105 | −0.20 | −0.03 |
| Ethanol | 1.097 | −0.20 | 0.02 | Phenylalanine | 1.096 | −0.20 | −0.05 |
| Formate | 1.102 | 0.20 | 0.05 | Succinate | 0.684 | −0.12 | 0.11 |
| Fumarate | 0.793 | −0.14 | 0.41 | Trans-aconitate | 1.097 | −0.20 | −0.02 |
| Galactose | 0.275 | −0.04 | −0.01 | Tyrosine | 0.891 | −0.16 | 0.18 |
| Glucose + G6P | 1.021 | 0.19 | −0.10 | Uracil | 0.880 | −0.16 | 0.02 |
| Glycerophosphocholine | 1.105 | −0.20 | −0.03 | Valine | 1.104 | −0.20 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, I.; Meoni, G.; Tenori, L.; Pozza, M.; De Marchi, M.; Niero, G. 1H NMR for Comparative Metabolic Analysis of Whey and WPC-80. Metabolites 2025, 15, 770. https://doi.org/10.3390/metabo15120770
Sousa I, Meoni G, Tenori L, Pozza M, De Marchi M, Niero G. 1H NMR for Comparative Metabolic Analysis of Whey and WPC-80. Metabolites. 2025; 15(12):770. https://doi.org/10.3390/metabo15120770
Chicago/Turabian StyleSousa, Ingrid, Gaia Meoni, Leonardo Tenori, Marta Pozza, Massimo De Marchi, and Giovanni Niero. 2025. "1H NMR for Comparative Metabolic Analysis of Whey and WPC-80" Metabolites 15, no. 12: 770. https://doi.org/10.3390/metabo15120770
APA StyleSousa, I., Meoni, G., Tenori, L., Pozza, M., De Marchi, M., & Niero, G. (2025). 1H NMR for Comparative Metabolic Analysis of Whey and WPC-80. Metabolites, 15(12), 770. https://doi.org/10.3390/metabo15120770

