Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = upslope shift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2177 KiB  
Article
Assessing Climate Change Risks and Conservation Needs for Carpinus Species in China Using Ensemble Distribution Modeling
by Wenjie Yang, Chenlong Fu, Zhuang Zhao, Wenjing Zhang, Xiaoyue Yang, Quanjun Hu and Zefu Wang
Forests 2025, 16(6), 888; https://doi.org/10.3390/f16060888 - 24 May 2025
Viewed by 497
Abstract
Climate change is reshaping the distribution of forest species globally, yet its effects on the temperate tree genus Carpinus in China remain understudied. This study used an ensemble species distribution modeling framework to predict current and future suitable habitats for 32 Carpinus taxa [...] Read more.
Climate change is reshaping the distribution of forest species globally, yet its effects on the temperate tree genus Carpinus in China remain understudied. This study used an ensemble species distribution modeling framework to predict current and future suitable habitats for 32 Carpinus taxa under three shared socioeconomic pathway (SSP) climate scenarios for the 2090s. Five algorithms were integrated, and models with high predictive performance (AUC > 0.9) were used to generate ensemble forecasts. The ensemble models achieved AUC values no lower than 0.987 and TSS values no lower than 0.904. The results showed a clear trend of northwestward and upslope range shifts, with substantial habitat contractions under high-emission scenarios. Temperature seasonality and annual precipitation were identified as key environmental drivers. Two narrowly distributed species, C. omeiensis and C. londoniana var. lanceolata, are projected to lose all suitable habitats under SSP585, indicating a high extinction risk. These findings emphasize the importance of integrating climate-based risk assessments into conservation strategies and highlight the need to prioritize vulnerable species and high-elevation refugia to safeguard the long-term persistence of Carpinus diversity in China. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 8553 KiB  
Article
The Evolution of Cropland Slope Structure and Its Implications for Fragmentation and Soil Erosion in China
by Guangjie Liu, Yi Xia and Li Bao
Land 2025, 14(5), 1093; https://doi.org/10.3390/land14051093 - 17 May 2025
Viewed by 588
Abstract
Cropland slope structure is a key factor influencing agricultural sustainability and ecological risk, especially in topographically complex regions. This study proposes a novel framework that integrates slope spectrum analysis with H3 hexagonal grid partitioning to examine the spatiotemporal dynamics of cropland slope across [...] Read more.
Cropland slope structure is a key factor influencing agricultural sustainability and ecological risk, especially in topographically complex regions. This study proposes a novel framework that integrates slope spectrum analysis with H3 hexagonal grid partitioning to examine the spatiotemporal dynamics of cropland slope across China from 1990 to 2023. Using 30 m CLCD land cover data, we derived key indicators, including the T-value, upper slope limit (ULS), peak area proportion (PaP), slope at maximum area (SMA), and cropland slope change index (CSCI). This grid-based, multi-indicator approach enables the fine-scale detection of slope structure transitions. Results show that the average slope of cropland fluctuated at around 4.12°, peaking at 4.18° in 2003, while the ULS remained stable at 17°, with 95% of cropland below this threshold. Regionally, cropland in southwest and northwest China was concentrated on steeper slopes (ULS > 26°, PaP < 10%), whereas flatter areas in north and south China had cropland mainly below 15°. From 1990 to 2023, upslope expansion was evident in south China (CSCI > 10), while downslope shifts aligned with high-slope cropland in the western regions. Geographically weighted regression revealed significant positive correlations between increasing ULS and CSCI and elevated cropland fragmentation and soil erosion in hilly areas. These findings highlight the ecological risks of cropland expansion into steep terrain. The proposed framework offers a spatially explicit perspective of cropland slope evolution and supports targeted strategies for land management and ecological restoration. Full article
Show Figures

Figure 1

19 pages, 982 KiB  
Review
Ecotones as Windows into Organismal-to-Biome Scale Responses across Neotropical Forests
by Perla Ortiz-Colin and Catherine M. Hulshof
Plants 2024, 13(17), 2396; https://doi.org/10.3390/plants13172396 - 27 Aug 2024
Cited by 2 | Viewed by 2940
Abstract
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone—the interstitial region between forest types. Ecotones are [...] Read more.
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone—the interstitial region between forest types. Ecotones are hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent ecosystems, with their locations determined by species’ physiological limits. In this review, we describe how studying ecotones can provide key indicators for monitoring the state of Neotropical forests from organisms to ecosystems. We first describe how ecotones have been studied in the past and summarize our current understanding of tropical ecotones. Next, we provide three example lines of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based forest dynamics plot data, among others, for understanding these important systems. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

19 pages, 6352 KiB  
Article
Climatic Effects on Position and Dynamics of Upper Open Forest Boundary in Altay and Western Sayan in the Last 60 Years
by Pavel A. Moiseev and Nail’ F. Nizametdinov
Forests 2023, 14(10), 1987; https://doi.org/10.3390/f14101987 - 3 Oct 2023
Cited by 4 | Viewed by 1333
Abstract
The upper treeline ecotone is a global and typically climate-dependent phenomenon. Its elevation is usually coupled with the thermal limitations of tree growth. The air temperature rise connected with global warming is assumed as the main cause of treeline upslope shifts in the [...] Read more.
The upper treeline ecotone is a global and typically climate-dependent phenomenon. Its elevation is usually coupled with the thermal limitations of tree growth. The air temperature rise connected with global warming is assumed as the main cause of treeline upslope shifts in the last century. It has been found that the treeline elevation also correlates with the distance from the coastline and the aridity or continentality of the climate or the mass elevation effect. However, previous and contemporary publications have not explained how the upper treeline position directly couples with climate parameters. Often, this has been restricted by a lack of climate measurements and spatial data. In our study, we obtained data from 339 regional weather stations for 1964–1974 and interpolated them to Altay and Western Sayan using regional DEMs and a specially developed regression model. Moreover, we semiautomatically identified the elevational position of the upper open forest boundary (OFB) (crown closure > 10%) on the slopes of 30 mountains in Altay and Western Sayan in 1960 and 2020. We took into account the slope aspect and edaphic constraints. The obtained data allowed us to undertake a regression analysis of the dependence of the OFB elevation on climatic parameters. As a result, we found that, in the 1960s, at OFB elevations rising from the outer to the inner parts of the study area to approximately 500–700 m, the summer air temperature and precipitation linearly decreased, but the summer sunshine duration increased. In the multiple regression analysis, including the climatic parameters as independent variables and the OFB elevation as a dependent variable, significant relations were found only for the combination of air temperature and sunshine duration. We assume that the OFB elevation is determined not only by the air temperature but also by the direct solar irradiation level, changing with latitude and cloudiness. We also found that the ratio between the OFB elevation on the northern and southern slopes varied with respect to latitude. The spatial analysis of OFB shifts in 1960–2020 revealed significant differences in its value in the central (80–90 m) and outer parts of the study area (110–130 m). We suppose that the OFB advance over the past 60 years has local specificity associated with the peculiarities of the climatic changes (summer temperature rise, precipitation decrease, and sunshine duration increase) in different parts of Altay and Western Sayan. Our results highlight the need to clearly determine climatic parameters when forecasting woody vegetation reactions to future climate changes. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 5190 KiB  
Article
Assessment of Past Decadal Dynamics of Tree Stands in Forest–Tundra Transition Zone on the Polar Ural Mountains Calibrated Using Historical and Modern Field Measurements
by Nail’ F. Nizametdinov, Yulia V. Shalaumova, Valery S. Mazepa and Pavel A. Moiseev
Forests 2022, 13(12), 2107; https://doi.org/10.3390/f13122107 - 9 Dec 2022
Cited by 3 | Viewed by 1807
Abstract
Altitudinal forest limits are typically climatically dependent, such that increasing temperatures connected to global warming are causing upslope shifts in treeline ecotones worldwide. However, at the local and regional levels, the degree of such a response is dependent on differences in climate, topography [...] Read more.
Altitudinal forest limits are typically climatically dependent, such that increasing temperatures connected to global warming are causing upslope shifts in treeline ecotones worldwide. However, at the local and regional levels, the degree of such a response is dependent on differences in climate, topography and soil features. In recent decades, attempts have been undertaken to estimate tree stand dynamics with remote sensing methods, but their resolution is still too coarse for a precise assessment of stand structural changes, and requires ground-truthing, which is not possible without historical data collected on a single-tree level. We used aerial photos (1962) and satellite images (2021) in combination with historical inventory data to investigate changes in open forest positions at different spatial scales at the eastern macroslope of the Polar Urals over the past 60 years. Additionally, obtained remote sensing data were validated on a single-slope level using tree crown size estimations. Our investigations showed that since 1960 up to present day, the total crown coverage increased from 6.9 to 22.1% within the test polygon. A highly spatially variable upslope advance in an open forest boundary was identified from 1.7 up to 7.1 m in altitude per decade. We revealed that the rate of tree stand transformations was to a great extent depended on the stand density in the 1960s, soil substrate type, moisture regime, slope aspect and inclination. Our results highlighted the necessity to consider the abovementioned factors when trying to predict climate-induced tree distributional responses in subarctic mountain regions. Full article
Show Figures

Figure 1

20 pages, 2519 KiB  
Article
The Evidence for Sparsentan-Mediated Inhibition of INa and IK(erg): Possibly Unlinked to Its Antagonism of Angiotensin II or Endothelin Type a Receptor
by Tzu-Hsien Chuang, Hsin-Yen Cho and Sheng-Nan Wu
Biomedicines 2022, 10(1), 86; https://doi.org/10.3390/biomedicines10010086 - 31 Dec 2021
Cited by 10 | Viewed by 3040
Abstract
Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and angiotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomerulosclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling [...] Read more.
Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and angiotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomerulosclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling in mouse models of focal segmental glomerulosclerosis. The ionic mechanisms through which it interacts with the magnitude and/or gating kinetics of ionic currents in excitable cells were not thoroughly investigated. Herein, we aimed to examine the effects of varying sparsentan concentrations on ionic currents residing in pituitary GH3 somatolactotrophs. From whole-cell current recordings made in GH3 cells, sparsentan (0.3–100 μM) differentially inhibited the peak and late components of voltage-gated Na+ current (INa). The IC50 value of sparsentan required to exert a reduction in peak and late INa in GH3 cells was 15.04 and 1.21 μM, respectively; meanwhile, the KD value estimated from its shortening in the slow component of INa inactivation time constant was 2.09 μM. The sparsentan (10 μM) presence did not change the overall current–voltage relationship of INa; however, the steady-state inactivation curve of the current was shifted to more negative potential in its presence (10 μM), with no change in the gating charge of the curve. The window INa activated by a brief upsloping ramp was decreased during exposure to sparsentan (10 μM); moreover, recovery of peak INa became slowed in its presence. The Tefluthrin (Tef)-stimulated resurgent INa activated in response to abrupt depolarization followed by the descending ramp pulse was additionally attenuated by subsequent application of sparsentan. In continued presence of Tef (3 μM) or β-pompilidotoxin (3 μM), further application of sparsentan (3 μM) reversed their stimulation of INa. However, sparsentan-induced inhibition of INa failed to be overcome by subsequent application of either endothelin 1 (1 μM) or angiotensin II (1 μM); moreover, in continued presence of endothelin (1 μM) or angiotensin II (1 μM), further addition of sparsentan (3 μM) effectively decreased peak INa. Additionally, the application of sparsentan (3 μM) inhibited the peak and late components of erg-mediated K+ current in GH3 cells, although it mildly decreased the amplitude of delayed-rectifier K+ current. Altogether, this study provides a distinct yet unidentified finding that sparsentan may perturb the amplitude or gating of varying ionic currents in excitable cells. Full article
(This article belongs to the Special Issue Actions of Small Molecules on Varying Type of Membrane Ion Channels)
Show Figures

Figure 1

29 pages, 12953 KiB  
Article
The Multi-Scale Dynamics Organizing a Favorable Environment for Convective Density Currents That Redirected the Yarnell Hill Fire
by Michael L. Kaplan, Curtis N. James, Jan Ising, Mark R. Sinclair, Yuh-Lang Lin, Andrew Taylor, Justin Riley, Shak M. S. Karim and Jackson Wiles
Climate 2021, 9(12), 170; https://doi.org/10.3390/cli9120170 - 29 Nov 2021
Cited by 3 | Viewed by 4774
Abstract
The deadly shift of the Yarnell Hill, Arizona wildfire was associated with an environment exhibiting gusty wind patterns in response to organized convectively driven circulations. The observed synoptic (>2500 km) through meso-β (approximately 100 km) scale precursor environment that organized a mid-upper tropospheric [...] Read more.
The deadly shift of the Yarnell Hill, Arizona wildfire was associated with an environment exhibiting gusty wind patterns in response to organized convectively driven circulations. The observed synoptic (>2500 km) through meso-β (approximately 100 km) scale precursor environment that organized a mid-upper tropospheric cross-mountain mesoscale jet streak circulation and upslope thermally direct flow was examined. Numerical simulations and observations indicated that both circulations played a key role in focusing the upper-level divergence, ascent, downdraft potential, vertical wind shear favoring mobile convective gust fronts, and a microburst. This sequence was initiated at the synoptic scale by a cyclonic Rossby Wave Break (RWB) 72 h prior, followed by an anticyclonic RWB. These RWBs combined to produce a mid-continent baroclinic trough with two short waves ushering in cooler air with the amplifying polar jet. Cool air advection with the second trough and surface heating across the Intermountain West (IW) combined to increase the mesoscale pressure gradient, forcing a mid-upper tropospheric subsynoptic jet around the periphery of the upstream ridge over Southern Utah and Northern New Mexico. Convection was triggered by an unbalanced secondary jetlet circulation within the subsynoptic jet in association with a low-level upslope flow accompanying a mountain plains solenoidal circulation above the Mogollon Rim (MR) and downstream mountains. Full article
(This article belongs to the Special Issue Extreme Weather Events)
Show Figures

Figure 1

20 pages, 3963 KiB  
Article
The Potential for Future Shifts in Tree Species Distribution Provided by Dispersal and Ecological Niches: A Comparison between Beech and Oak in Europe
by Maximilian Axer, Robert Schlicht, Rico Kronenberg and Sven Wagner
Sustainability 2021, 13(23), 13067; https://doi.org/10.3390/su132313067 - 25 Nov 2021
Cited by 10 | Viewed by 3684
Abstract
(1) Due to global warming, distribution ranges of temperate tree species are shifting northwards and upslope to cooler areas. Shifts in distribution first become visible through changes in regeneration dynamics. However, the future distribution of tree species in the face of rapid climate [...] Read more.
(1) Due to global warming, distribution ranges of temperate tree species are shifting northwards and upslope to cooler areas. Shifts in distribution first become visible through changes in regeneration dynamics. However, the future distribution of tree species in the face of rapid climate change depends not only on the climatic suitability of the tree species, but also on its ability to disperse into new habitats. The aim of the study was therefore to examine how the distribution of European beech and European oak shifts and how species can spread from fragmented seed trees. (2) In order to investigate the shift in distribution of beech and oak, the bioclimatic envelopes of the old trees and different size classes of the natural regeneration were compared. Subsequently, a simulation of the potential distribution for the present climate, as well as for the climate for the reference period 2091–2100, for three different representative concentration pathways (RCP) scenarios was determined. In order to determine which of these areas can actually be colonised, a dispersal potential for the species was determined using a quantile regression, taking habitat fragmentation into account. (3) The results of the present study demonstrate range shifts of the tree species regeneration distribution (B0, B1 and B2) compared to the overstorey distribution (OST). While oak regeneration shows an expansion of its distribution in the cold-wet range, beech regeneration shows a reduction of its distribution in the dry-warm range. As the dispersal potential of oak exceeds that of beech, it is expected that oak will be better able to spread from fragmented seed trees. However, the results also indicate that many areas, despite climatic suitability, cannot be colonised due to too large dispersal distances. (4) For the forest management, this results in an important planning tool for future tree species composition, as climatic suitability, habitat connectivity and dispersal ability are taken into account. Full article
Show Figures

Figure 1

11 pages, 2205 KiB  
Article
Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet
by Lili Zheng, Peili Shi, Tiancai Zhou, Ge Hou, Minghua Song and Feihai Yu
Forests 2021, 12(11), 1605; https://doi.org/10.3390/f12111605 - 20 Nov 2021
Cited by 8 | Viewed by 2571
Abstract
Alpine treelines are projected to shift upslope in response to climate warming, but empirical studies have yielded inconsistent results, with both upshifted and stable alpine treelines. Additionally, treelines on different slope aspects of the same mountain can differ. Thus, for a better understanding [...] Read more.
Alpine treelines are projected to shift upslope in response to climate warming, but empirical studies have yielded inconsistent results, with both upshifted and stable alpine treelines. Additionally, treelines on different slope aspects of the same mountain can differ. Thus, for a better understanding of the mechanisms of treeline formation and treeline responses to climate change, we need to elucidate the population dynamics at treelines on different slope aspects. Here, we quantified the population dynamics of Balfour spruce (Picea likiangensis var. rubescens) at treeline ecotones on contrasting north- and east-facing slopes on the eastern Tibetan Plateau based on field surveys. The alpine treeline positions of Balfour spruce have not advanced toward higher altitudes on the contrasting slopes in recent decades. Compared with the east-facing slope, more recruits occurred on the north-facing slope above the present treeline, indicating a more favorable regeneration condition. However, on the north-facing slope, the individual growth rate of Balfour spruce was lower, and the number of adult trees above the present treeline was higher than that on the east-facing slope. Thus, slope aspects mediate a trade-off between the growth and survival of treeline species, explaining the absence of an impact of slope aspects on treeline responses to climate change. Our results highlight the importance of considering the effect of topography on population dynamics in predicting alpine treeline dynamics under the scenario of climate change. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 1323 KiB  
Article
Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species
by Elisa J. Abeyta, Andrew W. Bartlow, Charles D. Hathcock and Jeanne M. Fair
Animals 2021, 11(8), 2457; https://doi.org/10.3390/ani11082457 - 21 Aug 2021
Viewed by 3176
Abstract
Geographic ranges of plants and animals are shifting due to environmental change. While some species are shifting towards the poles and upslope in elevation, the processes leading to these patterns are not well known. We analyzed 22 years of western bluebird (Sialia [...] Read more.
Geographic ranges of plants and animals are shifting due to environmental change. While some species are shifting towards the poles and upslope in elevation, the processes leading to these patterns are not well known. We analyzed 22 years of western bluebird (Sialia mexicana) data from a large nest box network in northern New Mexico at elevations between 1860 m and 2750 m. This population has shifted to higher elevations over time, but whether this is due to changes in nesting behavior and preference for higher elevation within the population or driven by immigration is unclear. We banded adults and nestlings from nest boxes and examined nesting location and elevation for individual birds captured two or more times. Most recaptured birds nested at the same nest boxes in subsequent years, and the number of birds that moved upslope did not significantly differ from the number that moved downslope. Fledglings moved greater distances and elevations than adults, but these movements were not upslope specific. Female fledglings showed greater changes in elevation and distance compared to male fledglings, but again, movements were not consistently upslope. The upslope shift in this population may be due to birds immigrating into the population and not from changes in individual nesting behavior. Full article
(This article belongs to the Special Issue Impact of Environmental Change on Bird Populations and Communities)
Show Figures

Figure 1

12 pages, 1228 KiB  
Article
Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium
by Min-Xin Luo, Hsin-Pei Lu, Min-Wei Chai, Jui-Tse Chang and Pei-Chun Liao
Plants 2021, 10(8), 1646; https://doi.org/10.3390/plants10081646 - 10 Aug 2021
Cited by 7 | Viewed by 2733
Abstract
Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium using chloroplast DNA [...] Read more.
Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium using chloroplast DNA to explore the relationships of terrain and local climate heterogeneity with range shifts and demography in Taiwan. Our results showed that the extant populations have shifted upward and northward to the mountains since the Last Glacial Maximum. The distributional upshift of A. caudatifolium is in contrast to the downward expansion of its closest relative in Taiwan, A. morrisonense. The northern populations of A. caudatifolium have acquired multiple-source chlorotypes and harbor high genetic diversity. However, effective gene flow between the north and south is interrupted by topography, geographic distance, north-south differences in October rainfall, and other climate heterogeneities, blocking southward genetic rescue. In addition, winter monsoon-driven rainfall may cause regional differences in the phenological schedule, resulting in adaptive effects on the timing of range shift and the genetic draft of chlorotype distribution. Terrain, distance, and local climate also differentiate the northernmost populations from the others, supporting the previous taxonomic treatment of Acer kawakamii var. taitonmontanum as an independent variety. Full article
(This article belongs to the Special Issue Plant Molecular Evolution and Population Ecology)
Show Figures

Figure 1

18 pages, 2644 KiB  
Article
Quantifying Climate-Wise Connectivity across a Topographically Diverse Landscape
by Morgan Gray, Elisabeth Micheli, Tosha Comendant and Adina Merenlender
Land 2020, 9(10), 355; https://doi.org/10.3390/land9100355 - 26 Sep 2020
Cited by 5 | Viewed by 3935
Abstract
Climate-wise connectivity is essential to provide species access to suitable habitats in the future, yet we lack a consistent means of quantifying climate adaptation benefits of habitat linkages. Species range shifts to cooler climates have been widely observed, suggesting we should protect pathways [...] Read more.
Climate-wise connectivity is essential to provide species access to suitable habitats in the future, yet we lack a consistent means of quantifying climate adaptation benefits of habitat linkages. Species range shifts to cooler climates have been widely observed, suggesting we should protect pathways providing access to cooler locations. However, in topographically diverse regions, the effects of elevation, seasonality, and proximity to large water bodies are complex drivers of biologically relevant temperature gradients. Here, we identify potential terrestrial and riparian linkages and their cooling benefit using mid-century summer and winter temperature extremes for interior coastal ranges in Northern California. It is rare for the same area to possess both terrestrial and riparian connectivity value. Our analysis reveals distinct differences in the magnitude and orientation of cooling benefits between the summer maximum and winter minimum temperatures provided by the linkages we delineated for the area. The cooling benefits for both linkage types were maximized to the west during summer, but upslope and to the northeast during winter. The approach we employ here provides an improved method to prioritize climate-wise connectivity and promote landscape resilience for topographically diverse regions. Full article
(This article belongs to the Special Issue Dynamic Landscape Connectivity)
Show Figures

Graphical abstract

16 pages, 622 KiB  
Article
Projected Impacts of Climate Change on the Protected Areas of Myanmar
by Thazin Nwe, Robert J. Zomer and Richard T. Corlett
Climate 2020, 8(9), 99; https://doi.org/10.3390/cli8090099 - 25 Aug 2020
Cited by 10 | Viewed by 8158
Abstract
Protected areas are the backbone of biodiversity conservation but are fixed in space and vulnerable to anthropogenic climate change. Myanmar is exceptionally rich in biodiversity but has a small protected area system. This study aimed to assess the potential vulnerability of this system [...] Read more.
Protected areas are the backbone of biodiversity conservation but are fixed in space and vulnerable to anthropogenic climate change. Myanmar is exceptionally rich in biodiversity but has a small protected area system. This study aimed to assess the potential vulnerability of this system to climate change. In the absence of good biodiversity data, we used a spatial modeling approach based on a statistically derived bioclimatic stratification (the Global Environmental Stratification, GEnS) to understand the spatial implications of projected climate change for Myanmar’s protected area system by 2050 and 2070. Nine bioclimatic zones and 41 strata were recognized in Myanmar, but their representation in the protected area system varied greatly, with the driest zones especially underrepresented. Under climate change, most zones will shift upslope, with some protected areas projected to change entirely to a new bioclimate. Potential impacts on biodiversity include mountaintop extinctions of species endemic to isolated peaks, loss of climate specialists from small protected areas and those with little elevational range, and woody encroachment into savannas and open forests as a result of both climate change and rising atmospheric CO2. Myanmar needs larger, better connected, and more representative protected areas, but political, social, and economic problems make this difficult. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

14 pages, 2169 KiB  
Article
Climate-Related Distribution Shifts of Migratory Songbirds and Sciurids in the White Mountain National Forest
by Aimee Van Tatenhove, Emily Filiberti, T. Scott Sillett, Nicholas Rodenhouse and Michael Hallworth
Forests 2019, 10(2), 84; https://doi.org/10.3390/f10020084 - 23 Jan 2019
Cited by 9 | Viewed by 3776
Abstract
Climate change has been linked to distribution shifts and population declines of numerous animal and plant species, particularly in montane ecosystems. The majority of studies suggest both that low-elevation avian and small mammal species are shifting up in elevation and that high-elevation avian [...] Read more.
Climate change has been linked to distribution shifts and population declines of numerous animal and plant species, particularly in montane ecosystems. The majority of studies suggest both that low-elevation avian and small mammal species are shifting up in elevation and that high-elevation avian communities are either shifting further upslope or relocating completely with an increase in average local temperatures. However, recent research suggests numerous high elevation montane species are either not shifting or are shifting down in elevation despite the local increasing temperature trends, perhaps as a result of the increased precipitation at high elevations. In this study, we examine common vertebrate species distributions across the Hubbard Brook valley in the White Mountain National Forest, including resident and migratory songbirds and small mammals, in relation to historic spring temperature and precipitation. We found no directional change in distributions through time for any of the species. However, we show that the majority of low-elevation bird species in our study area respond to warm spring temperatures by shifting upslope. All bird species that shifted were long-distance migrants. Each low-elevation migrant species responded differently to warm spring temperatures, through upslope distribution expansion, downslope distribution contraction, or total distribution shift upslope. In contrast, we found a majority of high-elevation bird species and both high- and low-elevation mammal species did not shift in response to spring temperature or precipitation and may be subject to more complex climate trends. The heterogeneous response to climate change highlights the need for more comprehensive studies on the subject and careful consideration for appropriate species and habitat management plans in northeastern montane regions. Full article
(This article belongs to the Special Issue Causes and Consequences of Species Diversity in Forest Ecosystems)
Show Figures

Figure 1

17 pages, 3855 KiB  
Article
Instantaneous 3D Continental-Shelf Scale Imaging of Oceanic Fish by Multi-Spectral Resonance Sensing Reveals Group Behavior during Spawning Migration
by Dong Hoon Yi, Zheng Gong, J. Michael Jech, Purnima Ratilal and Nicholas C. Makris
Remote Sens. 2018, 10(1), 108; https://doi.org/10.3390/rs10010108 - 14 Jan 2018
Cited by 9 | Viewed by 5638
Abstract
The migration of extensive social groups towards specific spawning grounds in vast and diverse ocean environments is an integral part of the regular spawning process of many oceanic fish species. Oceanic fish in such migrations typically seek locations with environmental parameters that maximize [...] Read more.
The migration of extensive social groups towards specific spawning grounds in vast and diverse ocean environments is an integral part of the regular spawning process of many oceanic fish species. Oceanic fish in such migrations typically seek locations with environmental parameters that maximize the probability of successful spawning and egg/larval survival. The 3D spatio-temporal dynamics of these behavioral processes are largely unknown due to technical difficulties in sensing the ocean environment over wide areas. Here, we use ocean acoustic waveguide remote sensing (OAWRS) to instantaneously image immense herring groups over continental-shelf-scale areas at the Georges Bank spawning ground. Via multi-spectral OAWRS measurements, we capture a shift in swimbladder resonance peak correlated with the herring groups’ up-slope spawning migration, enabling 3D spatial behavioral dynamics to be instantaneously inferred over thousands of square kilometers. We show that herring groups maintain near-bottom vertical distributions with negative buoyancy throughout the migration. We find a spatial correlation greater than 0.9 between the average herring group depth and corresponding seafloor depth for migratory paths along the bathymetric gradient. This is consistent with herring groups maintaining near-seafloor paths to both search for optimal spawning conditions and reduce the risk of predator attacks during the migration to shallower waters where near-surface predators are more dangerous. This analysis shows that multi-spectral resonance sensing with OAWRS can be used as an effective tool to instantaneously image and continuously monitor the behavioral dynamics of swimbladder-bearing fish group behavior in three spatial dimensions over continental-shelf scales. Full article
(This article belongs to the Special Issue Advances in Undersea Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop