Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = unsupervised spectral unmixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3118 KB  
Article
AetherGeo: A Spectral Analysis Interface for Geologic Mapping
by Gonçalo Santos, Joana Cardoso-Fernandes and Ana C. Teodoro
Algorithms 2025, 18(7), 378; https://doi.org/10.3390/a18070378 - 21 Jun 2025
Viewed by 621
Abstract
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for [...] Read more.
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for spectral analysis, something considered beneficial for researchers, allowing for a flexible approach to start working on the topic without acquiring proprietary software licenses. It provides the user with a set of tools for spectral data analysis through classical approaches, such as band ratios and RGB combinations, but also more elaborate techniques, such as endmember extraction and unsupervised image classification with partial spectral unmixing techniques. While it has been tested on visible and near-infrared (VNIR), short-wave infrared (SWIR), and VNIR-SWIR datasets, the functions implemented have the potential to be applied to other spectral ranges. On top of this, all results can be visualized within the software, and some tools allow for the inspection and comparison of spectra and spectral libraries. Providing software with these capabilities in a unified platform has the potential to positively impact research and education, as students and educators usually have limited access to proprietary software. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

23 pages, 11602 KB  
Article
Nonoverlapping Spectral Ranges’ Hyperspectral Data Fusion Based on Combined Spectral Unmixing
by Yihao Wang, Jianyu Chen, Xuanqin Mou, Jia Liu, Tieqiao Chen, Xiangpeng Feng, Bo Qu, Jie Liu, Geng Zhang and Siyuan Li
Remote Sens. 2025, 17(4), 666; https://doi.org/10.3390/rs17040666 - 15 Feb 2025
Viewed by 1227
Abstract
Due to the development of spectral remote sensing imaging technology, hyperspectral data in different spectral ranges, such as visible and near-infrared, short-wave infrared, etc., can be acquired simultaneously. Data fusion between these nonoverlapping spectral ranges’ hyperspectral data has become an urgent task. Most [...] Read more.
Due to the development of spectral remote sensing imaging technology, hyperspectral data in different spectral ranges, such as visible and near-infrared, short-wave infrared, etc., can be acquired simultaneously. Data fusion between these nonoverlapping spectral ranges’ hyperspectral data has become an urgent task. Most existing hyperspectral data fusion methods focus on two types of hyperspectral data with overlapping spectral ranges, requiring spectral response functions as a necessary condition, which is not applicable to this task. To address this issue, we propose the combined spectral unmixing fusion (CSUF) method, an unsupervised method with certain physical significance. It effectively solves the problem of hyperspectral data fusion with nonoverlapping spectral ranges through the two hyperspectral data point spread function estimation and combined spectral unmixing. Experiments on airborne datasets and HJ-2 satellite data show that, compared with various leading methods, our method achieves the best performance in terms of reference evaluation indicators such as the PSNR and SAM, as well as the non-reference evaluation indicator the QNR. Furthermore, we deeply analyze the spectral response relationship and the impact of the ratio of spectral bands between the fused data on the fusion effect, providing references for future research. Full article
Show Figures

Figure 1

19 pages, 7749 KB  
Article
Generative Simplex Mapping: Non-Linear Endmember Extraction and Spectral Unmixing for Hyperspectral Imagery
by John Waczak and David J. Lary
Remote Sens. 2024, 16(22), 4316; https://doi.org/10.3390/rs16224316 - 19 Nov 2024
Cited by 1 | Viewed by 1586
Abstract
We introduce a new model for non-linear endmember extraction and spectral unmixing of hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember mixing using a latent space of points sampled within a (n1)-simplex corresponding to n [...] Read more.
We introduce a new model for non-linear endmember extraction and spectral unmixing of hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember mixing using a latent space of points sampled within a (n1)-simplex corresponding to n unique sources. Barycentric coordinates within this simplex are naturally interpreted as relative endmember abundances satisfying both the abundance sum-to-one and abundance non-negativity constraints. Points in this latent space are mapped to reflectance spectra via a flexible function combining linear and non-linear mixing. Due to the probabilistic formulation of the GSM, spectral variability is also estimated by a precision parameter describing the distribution of observed spectra. Model parameters are determined using a generalized expectation-maximization algorithm, which guarantees non-negativity for extracted endmembers. We first compare the GSM against three varieties of non-negative matrix factorization (NMF) on a synthetic data set of linearly mixed spectra from the USGS spectral database. Here, the GSM performed favorably for both endmember accuracy and abundance estimation with all non-linear contributions driven to zero by the fitting procedure. In a second experiment, we apply the GTM to model non-linear mixing in real hyperspectral imagery captured over a pond in North Texas. The model accurately identified spectral signatures corresponding to near-shore algae, water, and rhodamine tracer dye introduced into the pond to simulate water contamination by a localized source. Abundance maps generated using the GSM accurately track the evolution of the dye plume as it mixes into the surrounding water. Full article
Show Figures

Figure 1

25 pages, 12707 KB  
Article
Unsupervised Nonlinear Hyperspectral Unmixing with Reduced Spectral Variability via Superpixel-Based Fisher Transformation
by Zhangqiang Yin and Bin Yang
Remote Sens. 2023, 15(20), 5028; https://doi.org/10.3390/rs15205028 - 19 Oct 2023
Cited by 3 | Viewed by 2115
Abstract
In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability (SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the coupled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation, current unmixing studies [...] Read more.
In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability (SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the coupled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation, current unmixing studies usually separate the consideration of nonlinearity and SV. As a result, errors individually caused by the nonlinearity or SV still persist, potentially leading to overfitting and the decreased accuracy of estimated endmembers and abundances. In this paper, a novel unsupervised nonlinear unmixing method accounting for SV is proposed. First, an improved Fisher transformation scheme is constructed by combining an abundance-driven dynamic classification strategy with superpixel segmentation. It can enlarge the differences between different types of pixels and reduce the differences between pixels corresponding to the same class, thereby reducing the influence of SV. Besides, spectral similarity can be well maintained in local homogeneous regions. Second, the polynomial postnonlinear model is employed to represent observed pixels and explain nonlinear components. Regularized by a Fisher transformation operator and abundances’ spatial smoothness, data reconstruction errors in the original spectral space and the transformed space are weighed to derive the unmixing problem. Finally, this problem is solved by a dimensional division-based particle swarm optimization algorithm to produce accurate unmixing results. Extensive experiments on synthetic and real hyperspectral remote sensing data demonstrate the superiority of the proposed method in comparison with state-of-the-art approaches. Full article
(This article belongs to the Special Issue Advances in Hyperspectral Remote Sensing Image Processing)
Show Figures

Graphical abstract

18 pages, 1989 KB  
Article
Modeling and Unsupervised Unmixing Based on Spectral Variability for Hyperspectral Oceanic Remote Sensing Data with Adjacency Effects
by Yannick Deville, Salah-Eddine Brezini, Fatima Zohra Benhalouche, Moussa Sofiane Karoui, Mireille Guillaume, Xavier Lenot, Bruno Lafrance, Malik Chami, Sylvain Jay, Audrey Minghelli, Xavier Briottet and Véronique Serfaty
Remote Sens. 2023, 15(18), 4583; https://doi.org/10.3390/rs15184583 - 18 Sep 2023
Cited by 5 | Viewed by 2128
Abstract
In a previous paper, we introduced (i) a specific hyperspectral mixing model for the sea bottom, based on a detailed physical analysis that includes the adjacency effect, and (ii) an associated unmixing method that is supervised (i.e., not blind) in the sense that [...] Read more.
In a previous paper, we introduced (i) a specific hyperspectral mixing model for the sea bottom, based on a detailed physical analysis that includes the adjacency effect, and (ii) an associated unmixing method that is supervised (i.e., not blind) in the sense that it requires a prior estimation of various parameters of the mixing model, which is constraining. We here proceed much further, by first analytically showing that the above model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF unsupervised (i.e., blind) unmixing method that we proposed in previous works to handle spectral variability. Such variability especially occurs when the sea depth significantly varies over the considered scene. We show that IP-NMF then yields significantly better pure spectra estimates than a classical method from the literature that was not designed to handle such variability. We present test results obtained with realistic synthetic data. These tests address several reference water depths, up to 7.5 m, and clear or standard water. For instance, they show that when the reference depth is set to 7.5 m and the water is clear, the proposed approach is able to distinguish various classes of pure materials when the water depth varies up to ±0.2 m around this reference depth, over all pixels of the analyzed scene or over a “subscene”: the overall scene may first be segmented, to obtain smaller depths variations over each subscene. The proposed approach is therefore effective and can be used as a building block in performing the subpixel classification of the sea bottom for shallow water. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

18 pages, 5054 KB  
Article
An Attention-Based 3D Convolutional Autoencoder for Few-Shot Hyperspectral Unmixing and Classification
by Chunyu Li, Rong Cai and Junchuan Yu
Remote Sens. 2023, 15(2), 451; https://doi.org/10.3390/rs15020451 - 12 Jan 2023
Cited by 12 | Viewed by 5882
Abstract
Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of [...] Read more.
Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where endmember abundance maps obtained by HU are treated as latent features for classification. A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features. In addition, an attention approach is used to improve the accuracy of abundance estimation by extracting the diagnostic spectral features associated with the given endmember more effectively. The endmember abundance estimated by the proposed model outperforms other convolutional neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and compared to several supervised and semi-supervised models. The experimental findings demonstrate that the proposed approach has promising potential for hyperspectral feature extraction and has better performance relative to CNN-based supervised classification under small-sample conditions. Full article
Show Figures

Figure 1

24 pages, 9275 KB  
Article
Nonlinear Unmixing via Deep Autoencoder Networks for Generalized Bilinear Model
by Jinhua Zhang, Xiaohua Zhang, Hongyun Meng, Caihao Sun, Li Wang and Xianghai Cao
Remote Sens. 2022, 14(20), 5167; https://doi.org/10.3390/rs14205167 - 15 Oct 2022
Cited by 8 | Viewed by 3038
Abstract
Hyperspectral unmixing decomposes the observed mixed spectra into a collection of constituent pure material signatures and the associated fractional abundances. Because of the universal modeling ability of neural networks, deep learning (DL) techniques are gaining prominence in solving hyperspectral analysis tasks. The autoencoder [...] Read more.
Hyperspectral unmixing decomposes the observed mixed spectra into a collection of constituent pure material signatures and the associated fractional abundances. Because of the universal modeling ability of neural networks, deep learning (DL) techniques are gaining prominence in solving hyperspectral analysis tasks. The autoencoder (AE) network has been extensively investigated in linear blind source unmixing. However, the linear mixing model (LMM) may fail to provide good unmixing performance when the nonlinear mixing effects are nonnegligible in complex scenarios. Considering the limitations of LMM, we propose an unsupervised nonlinear spectral unmixing method, based on autoencoder architecture. Firstly, a deep neural network is employed as the encoder to extract the low-dimension feature of the mixed pixel. Then, the generalized bilinear model (GBM) is used to design the decoder, which has a linear mixing part and a nonlinear mixing one. The coefficient of the bilinear mixing part can be adjusted by a set of learnable parameters, which makes the method perform well on both nonlinear and linear data. Finally, some regular terms are imposed on the loss function and an alternating update strategy is utilized to train the network. Experimental results on synthetic and real datasets verify the effectiveness of the proposed model and show very competitive performance compared with several existing algorithms. Full article
(This article belongs to the Special Issue Deep Learning for the Analysis of Multi-/Hyperspectral Images)
Show Figures

Figure 1

25 pages, 10380 KB  
Article
Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery
by Mastoureh Yousefi, Seyed Hassan Tabatabaei, Reyhaneh Rikhtehgaran, Amin Beiranvand Pour and Biswajeet Pradhan
Minerals 2021, 11(11), 1235; https://doi.org/10.3390/min11111235 - 6 Nov 2021
Cited by 23 | Viewed by 3470
Abstract
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping [...] Read more.
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated with porphyry copper deposits. The main objective of this investigation is to practice an algorithm that can accurately model the best training data as input for supervised methods such as SVM. For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data, different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio, Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent of each alteration was determined. Finally, the detected alterations were used as training data to identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM) methods. Several high potential zones were identified in the study area. Field surveys and laboratory analysis were used to validate the image processing results. This investigation demonstrates that the application of the SVM algorithm for mapping hydrothermal alteration zones associated with porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity mapping in many metallogenic provinces around the world. Full article
Show Figures

Figure 1

29 pages, 2978 KB  
Article
Hyperspectral Unmixing Based on Constrained Bilinear or Linear-Quadratic Matrix Factorization
by Fatima Zohra Benhalouche, Yannick Deville, Moussa Sofiane Karoui and Abdelaziz Ouamri
Remote Sens. 2021, 13(11), 2132; https://doi.org/10.3390/rs13112132 - 28 May 2021
Cited by 13 | Viewed by 3524
Abstract
Unsupervised hyperspectral unmixing methods aim to extract endmember spectra and infer the proportion of each of these spectra in each observed pixel when considering linear mixtures. However, the interaction between sunlight and the Earth’s surface is often very complex, so that observed spectra [...] Read more.
Unsupervised hyperspectral unmixing methods aim to extract endmember spectra and infer the proportion of each of these spectra in each observed pixel when considering linear mixtures. However, the interaction between sunlight and the Earth’s surface is often very complex, so that observed spectra are then composed of nonlinear mixing terms. This nonlinearity is generally bilinear or linear quadratic. In this work, unsupervised hyperspectral unmixing methods, designed for the bilinear and linear-quadratic mixing models, are proposed. These methods are based on bilinear or linear-quadratic matrix factorization with non-negativity constraints. Two types of algorithms are considered. The first ones only use the projection of the gradient, and are therefore linked to an optimal manual choice of their learning rates, which remains the limitation of these algorithms. The second developed algorithms, which overcome the above drawback, employ multiplicative projective update rules with automatically chosen learning rates. In addition, the endmember proportions estimation, with three alternative approaches, constitutes another contribution of this work. Besides, the reduction of the number of manipulated variables in the optimization processes is also an originality of the proposed methods. Experiments based on realistic synthetic hyperspectral data, generated according to the two considered nonlinear mixing models, and also on two real hyperspectral images, are carried out to evaluate the performance of the proposed approaches. The obtained results show that the best proposed approaches yield a much better performance than various tested literature methods. Full article
(This article belongs to the Special Issue Machine Learning and Pattern Analysis in Hyperspectral Remote Sensing)
Show Figures

Figure 1

25 pages, 2847 KB  
Article
Blind Unmixing of Hyperspectral Remote Sensing Data: A New Geometrical Method Based on a Two-Source Sparsity Constraint
by Djaouad Benachir, Yannick Deville, Shahram Hosseini and Moussa Sofiane Karoui
Remote Sens. 2020, 12(19), 3198; https://doi.org/10.3390/rs12193198 - 30 Sep 2020
Cited by 3 | Viewed by 3168
Abstract
Blind source separation (or unmixing) methods process a set of mixed signals, which are typically linear memoryless combinations of source signals, so as to estimate these unknown source signals and/or combination coefficients. These methods have been extensively applied to hyperspectral images in the [...] Read more.
Blind source separation (or unmixing) methods process a set of mixed signals, which are typically linear memoryless combinations of source signals, so as to estimate these unknown source signals and/or combination coefficients. These methods have been extensively applied to hyperspectral images in the field of remote sensing, because the reflectance spectrum of each image pixel is often a mixture of elementary contributions, due to the limited spatial resolution of hyperspectral remote sensing sensors. Each spatial source signal then corresponds to a pure material, and its value in each pixel is equal to the “abundance fraction” of the corresponding Earth surface covered by that pure material. The mixing coefficients then form the pure material spectra. Various unmixing methods have been designed for this data model and the majority of them are either geometrical or statistical, or even based on sparse regressions. Various such unmixing techniques mainly consider assumptions that are related to the presence or absence of pure pixels (i.e., pixels which contain only one pure material). The case when, for each pure material, the image includes at least one pixel or zone which only contains that material yielded attractive unmixing methods, but corresponds to a stringent sparsity condition. We here aim at relaxing that condition, by only requesting a few tiny pixel zones to contain two pure materials. The proposed linear and geometrical sparse-based, blind (or unsupervised) unmixing method first automatically detects these zones. Each such zone defines a line in the data representation space. These lines are then estimated and clustered. The pairs of cluster centers, corresponding to lines, which have an intersection, yield the spectra of pure materials, forming the columns of the mixing matrix. Finally, the proposed method derives all abundance fractions, i.e., source signals, by using a least squares method with a non-negativity constraint. This method is applied to realistic synthetic images and is shown to outperform various methods from the literature. Indeed, and for the conducted experiments, when considering the pure material spectra extraction, the obtained improvements, for the considered spectral angle mapper performance criterion, vary between 0.02 and 12.43. For the abundance fractions estimation, the proposed technique is able to achieve a normalized mean square error lower than 0.01%, while the tested literature methods yield errors greater than 0.1%. Full article
(This article belongs to the Special Issue Machine Learning and Pattern Analysis in Hyperspectral Remote Sensing)
Show Figures

Graphical abstract

11 pages, 3234 KB  
Letter
An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging
by Valeria Grasso, Joost Holthof and Jithin Jose
Sensors 2020, 20(11), 3235; https://doi.org/10.3390/s20113235 - 6 Jun 2020
Cited by 25 | Viewed by 5896
Abstract
Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using [...] Read more.
Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using spectral unmixing methods. Currently, most of the reported image processing algorithms use standard unmixing procedures, which include user interaction in the form of providing the expected spectral signatures. For translational research with patients, these types of supervised spectral unmixing can be challenging, as the spectral signature of the tissues can differ with respect to the disease condition. Imaging exogenous contrast agents and accessing their biodistribution can also be problematic, as some of the contrast agents are susceptible to change in spectral properties after the tissue interaction. In this work, we investigated the feasibility of an unsupervised spectral unmixing algorithm to detect and extract the tissue chromophores without any a-priori knowledge and user interaction. The algorithm has been optimized for multispectral photoacoustic imaging in the spectral range of 680–900 nm. The performance of the algorithm has been tested on simulated data, tissue-mimicking phantom, and also on the detection of exogenous contrast agents after the intravenous injection in mice. Our finding shows that the proposed automatic, unsupervised spectral unmixing method has great potential to extract and quantify the tissue chromophores, and this can be used in any wavelength range of the multispectral photoacoustic images. Full article
Show Figures

Figure 1

30 pages, 10469 KB  
Article
Improved Spatial-Spectral Superpixel Hyperspectral Unmixing
by Mohammed Q. Alkhatib and Miguel Velez-Reyes
Remote Sens. 2019, 11(20), 2374; https://doi.org/10.3390/rs11202374 - 13 Oct 2019
Cited by 14 | Viewed by 4091
Abstract
In this paper, an unsupervised unmixing approach based on superpixel representation combined with regional partitioning is presented. A reduced-size image representation is obtained using superpixel segmentation where each superpixel is represented by its mean spectra. The superpixel image representation is then partitioned into [...] Read more.
In this paper, an unsupervised unmixing approach based on superpixel representation combined with regional partitioning is presented. A reduced-size image representation is obtained using superpixel segmentation where each superpixel is represented by its mean spectra. The superpixel image representation is then partitioned into regions using quadtree segmentation based on the Shannon entropy. Spectral endmembers are extracted from each region that corresponds to a leaf of the quadtree and combined using clustering into endmember classes. The proposed approach is tested and validated using the HYDICE Urban and ROSIS Pavia data sets. Different levels of qualitative and quantitative assessments are performed based on the available reference data. The proposed approach is also compared with global (no-regional quadtree segmentation) and with pixel-based (no-superpixel representation) unsupervised unmixing approaches. Qualitative assessment was based primarily on agreement with spatial distribution of materials obtained from a reference classification map. Quantitative assessment was based on comparing classification maps generated from abundance maps using winner takes it all with a 50% threshold and a reference classification map. High agreement with the reference classification map was obtained by the proposed approach as evidenced by high kappa values (over 70%). The proposed approach outperforms global unsupervised unmixing approaches with and without superpixel representation that do not account for regional information. The agreement performance of the proposed approach is slightly better when compared to the pixel-based approached using quadtree segmentation. However, the proposed approach resulted in significant computational savings due to the use of the superpixel representation. Full article
(This article belongs to the Special Issue Advances in Unmixing of Spectral Imagery)
Show Figures

Graphical abstract

23 pages, 1212 KB  
Article
Parameterized Nonlinear Least Squares for Unsupervised Nonlinear Spectral Unmixing
by Risheng Huang, Xiaorun Li, Haiqiang Lu, Jing Li and Liaoying Zhao
Remote Sens. 2019, 11(2), 148; https://doi.org/10.3390/rs11020148 - 14 Jan 2019
Cited by 7 | Viewed by 3145
Abstract
This paper presents a new parameterized nonlinear least squares (PNLS) algorithm for unsupervised nonlinear spectral unmixing (UNSU). The PNLS-based algorithms transform the original optimization problem with respect to the endmembers, abundances, and nonlinearity coefficients estimation into separate alternate parameterized nonlinear least squares problems. [...] Read more.
This paper presents a new parameterized nonlinear least squares (PNLS) algorithm for unsupervised nonlinear spectral unmixing (UNSU). The PNLS-based algorithms transform the original optimization problem with respect to the endmembers, abundances, and nonlinearity coefficients estimation into separate alternate parameterized nonlinear least squares problems. Owing to the Sigmoid parameterization, the PNLS-based algorithms are able to thoroughly relax the additional nonnegative constraint and the nonnegative constraint in the original optimization problems, which facilitates finding a solution to the optimization problems . Subsequently, we propose to solve the PNLS problems based on the Gauss–Newton method. Compared to the existing nonnegative matrix factorization (NMF)-based algorithms for UNSU, the well-designed PNLS-based algorithms have faster convergence speed and better unmixing accuracy. To verify the performance of the proposed algorithms, the PNLS-based algorithms and other state-of-the-art algorithms are applied to synthetic data generated by the Fan model and the generalized bilinear model (GBM), as well as real hyperspectral data. The results demonstrate the superiority of the PNLS-based algorithms. Full article
(This article belongs to the Special Issue Advances in Unmixing of Spectral Imagery)
Show Figures

Figure 1

34 pages, 4255 KB  
Article
Unsupervised Nonlinear Hyperspectral Unmixing Based on Bilinear Mixture Models via Geometric Projection and Constrained Nonnegative Matrix Factorization
by Bin Yang, Bin Wang and Zongmin Wu
Remote Sens. 2018, 10(5), 801; https://doi.org/10.3390/rs10050801 - 21 May 2018
Cited by 15 | Viewed by 5509
Abstract
Bilinear mixture model-based methods have recently shown promising capability in nonlinear spectral unmixing. However, relying on the endmembers extracted in advance, their unmixing accuracies decrease, especially when the data is highly mixed. In this paper, a strategy of geometric projection has been provided [...] Read more.
Bilinear mixture model-based methods have recently shown promising capability in nonlinear spectral unmixing. However, relying on the endmembers extracted in advance, their unmixing accuracies decrease, especially when the data is highly mixed. In this paper, a strategy of geometric projection has been provided and combined with constrained nonnegative matrix factorization for unsupervised nonlinear spectral unmixing. According to the characteristics of bilinear mixture models, a set of facets are determined, each of which represents the partial nonlinearity neglecting one endmember. Then, pixels’ barycentric coordinates with respect to every endmember are calculated in several newly constructed simplices using a distance measure. In this way, pixels can be projected into their approximate linear mixture components, which reduces greatly the impact of collinearity. Different from relevant nonlinear unmixing methods in the literature, this procedure effectively facilitates a more accurate estimation of endmembers and abundances in constrained nonnegative matrix factorization. The updated endmembers are further used to reconstruct the facets and get pixels’ new projections. Finally, endmembers, abundances, and pixels’ projections are updated alternately until a satisfactory result is obtained. The superior performance of the proposed algorithm in nonlinear spectral unmixing has been validated through experiments with both synthetic and real hyperspectral data, where traditional and state-of-the-art algorithms are compared. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

30 pages, 31032 KB  
Article
Exploration of Planetary Hyperspectral Images with Unsupervised Spectral Unmixing: A Case Study of Planet Mars
by Jun Liu, Bin Luo, Sylvain Douté and Jocelyn Chanussot
Remote Sens. 2018, 10(5), 737; https://doi.org/10.3390/rs10050737 - 10 May 2018
Cited by 7 | Viewed by 5459
Abstract
We propose to replace traditional spectral index methods by unsupervised spectral unmixing methods for the exploration of large datasets of planetary hyperspectral images. The main goal of this article is to test the ability of these analysis techniques to automatically extract the spectral [...] Read more.
We propose to replace traditional spectral index methods by unsupervised spectral unmixing methods for the exploration of large datasets of planetary hyperspectral images. The main goal of this article is to test the ability of these analysis techniques to automatically extract the spectral signatures of the species present on the surface and to map their abundances accurately and with an acceptable processing time. We consider observations of the surface of Mars acquired by the imaging spectrometer OMEGA aboard MEX as a case study. The moderate spatial resolution (≈300 m/pixel at best) of this instrument implies the systematic existence of geographical mixtures possibly conjugated with non-linear (e.g., intimate) mixtures. We examine the sensitivity of a series of state-of-the-art methods of unmixing to the intrinsic spectral variability of the species in the image and to intimate assemblages of compounds. This study is made possible thanks to the use of well-controlled synthetic data and a real OMEGA image, for which the present icy species (water and carbon dioxide ices) and their characteristic spectra are widely known by the planetary community. Furthermore, reference maps of component abundances are built by the inversion of a more realistic physical model (simulating the propagation of solar light through the atmosphere and reflected back to the sensor) in order to validate the methods with the real image by comparison with the maps extracted by unmixing. The results produced by the processing pipeline of the eigenvalue likelihood maximization (ELM), vertex component analysis (VCA) and non-negativity condition least squares error estimators (NNLS) are the most robust to non-linear effects, highly-mixed pixels and different types of mixtures. Despite this fact, the produced results are not always the best because the VCA method assumes the existence of pure pixels in the image, that is pixels completely occupied by a single species. However, this pipeline is very fast and provides endmember spectra that are always interpretable. Finally, it produces more accurate distribution maps than the spectral index methods. More generally, the potential benefits of unsupervised spectral unmixing methods in planetary exploration is emphasized. Full article
Show Figures

Graphical abstract

Back to TopTop